Analyzing Simulation Results

Dr. John Mellor-Crummey

Department of Computer Science
Rice University

johnmc@cs.rice.edu
Topics for Today

Understand

• Model verification
• Model validation
• Transient removal
• Terminating simulations
• Stopping criteria
Model Goodness

Fidelity to modeled system

• Measuring goodness
 — validation: are assumptions reasonable?
 — verification: does model implement assumptions correctly?

• Possible model states

<table>
<thead>
<tr>
<th>invalid, unverified</th>
<th>invalid, verified</th>
</tr>
</thead>
<tbody>
<tr>
<td>valid, unverified</td>
<td>valid, verified</td>
</tr>
</tbody>
</table>

— correctly implements bad assumptions
— incorrectly implements good assumptions
— correctly implements good assumptions
Model Verification Techniques I

• Strategies for avoiding bugs
 — software engineering
 – top-down design
 • layered (hierarchical) system structure
 – modularity
 • well-defined interfaces
 • unit testing
 — assertions to check invariants
 – e.g., # packets received = # packets sent - # packets lost - # in flight
 – entity accounting
 — structured walk through

• Deterministic models
 — run simulation with known distributions for random variates

• Simplified test cases with easily analyzed results
• Tracing: events, procedures, variables
Model Verification Techniques II

- **On-line graphical visualizations**
 —convey progress of simulation

- **Continuity test**
 —test simulation with slightly different parameters
 —investigate sudden changes in output

- **Degeneracy tests**
 —check model works for extreme cases
 —e.g. networking: no routers, no router delays, no sources, …
Model Verification Techniques III

• Consistency tests
 — similar results for parameters that should have similar effects
 – e.g. router simulation: 2 sources, rate r ~ 1 source, rate 2r

• Seed independence
 — similar results for different seed values
Model Validation Techniques I

- **What to check**
 - assumptions
 - input parameter values and distributions
 - output values and conclusions

- **How**
 - expert intuition: most common and practical
 - measurements of real system
 - are simulation results and measurements distinguishable?
 - can use statistical tests, e.g. paired observations
 - verify input distributions, e.g. chi-square test

\[\sum_{k=1}^{n} \frac{(o_i - e_i)^2}{e_i} < \chi^2_{[\alpha;k-1]} \]
Model Validation Techniques II

• How (continued)
 — theoretical results, e.g. queueing model
 – simplifying assumptions helps
 – validate a few simple cases of theoretical model with simulation or intuition
 – use analytical model to predict complex cases

Caution: myth of a fully-validated model
 — generally possible only to prove model not wrong for some cases
 — more comparisons increase confidence, but prove nothing!
Transient Removal

- Transient state: prefix of simulation before steady state
- Steady state performance is usually that of interest
 - e.g. cache performance after cache is "warm"
- Goal: results exclude transient state before steady state
- Problem: identifying end of transient state
- Heuristic approaches for removing transient state
 - long runs
 - proper initialization
 - truncation
 - initial data deletion
 - moving average of independent replications
 - batch means
Transient Removal: Long Runs

• Long run = steady state results long enough to dominate effects of initial transients
• Disadvantages
 — wastes resources (computer time and real time)
 — difficult to ensure length of run is “long enough”
• Recommendation: avoid this method
Transient Removal: Proper Initialization

• Proper initialization = starting simulation in state close to expected steady state
 — e.g. start CPU scheduling simulation with non-empty job queue
 — e.g. start WWW cache trace-driven simulation with most frequently referenced files in cache

• Effect: reduces length of transient behavior
Transient Removal: Truncation

- Assumption: variability of steady state < transient state
- Truncation method assumes variability = range
- Truncation algorithm

input: n observations \(\{x_1, x_2, \ldots, x_n\} \)
for k = 2, n

\[
\min_k = \min \{x_k, \ldots, x_n\} \\
\max_k = \max \{x_k, \ldots, x_n\} \\
\text{if } \min_k \neq x_k \text{ and } \max_k \neq x_k \text{ break}
\]

post condition: if k \neq n then k - 1 = length of transient state

is there a flaw?
can we fix it?

transient state
Terminating Simulations: Initial Data Deletion

• Conceptual idea
 — compute average after some of initial observations omitted
 — during steady state average does not change much as additional
 observations are deleted

• Problem
 — randomness in observations causes avg to change even in SS

• Solution
 — average across several replications
 — replication: same parameter values; only seed values differ
 — rationale: smooths trajectory

• Input: m replications, each of length n
Initial Data Deletion: First Steps

• Compute mean trajectory by averaging across replications

\[\bar{x}_j = \frac{1}{m} \sum_{i=1}^{m} x_{ij}, \quad j = 1, 2, \ldots, n \]

\[\bar{x} = \frac{1}{n} \sum_{j=1}^{n} \bar{x}_j \]

• Compute overall mean
Initial Data Deletion: Remaining Steps

for $k = 1, n - 1$

assume transient state is of length k
delete first k observations from mean trajectory
compute overall mean from remaining $n - k$ values

$$\bar{x} = \frac{1}{n - k} \sum_{j=k+1}^{n} \bar{x}_j$$

compute relative change in overall mean

$$\text{Relative change} = \frac{\bar{x}_k - \bar{x}}{\bar{x}}$$

find knee in a curve showing the relative change in overall mean
Initial Deletion: Putting it all Together

- Individual replications
- Mean across replications
- Mean of last n-k observations
- Relative change

 transient interval

knee
Moving Average of Independent Replications

• Compute mean trajectory by averaging across replications
 \[\bar{x}_j = \frac{1}{m} \sum_{i=1}^{m} x_{ij}, \quad j = 1, 2, \ldots, n \]

• for \(k = 1 \) to \(n \)
 — plot trajectory of moving average of successive \(2k+1 \) values
 \[\bar{x}_j = \frac{1}{2k+1} \sum_{l=-k}^{k} \bar{x}_{j+l}, \quad j = k+1, k+2, \ldots, n - k \]

 — if trajectory is “sufficiently smooth”, break

• find the knee in the curve.
• \(j \) at the knee gives the length of the transient phase
Moving Average of Independent Replications

- Mean trajectory
- Moving average $k=1$
- Moving average $k=2$

Transient interval
Knee
Batch Means

• Run a very long simulation
• Afterward, divide it into several parts of equal duration
• Each part is a batch
• Batch mean = mean of observations in each batch

Input: m batches of floor(M/n)

Algorithm
— for each batch, compute a batch mean
— compute the overall mean across all batches
— compute variance of batch means
— repeat for increasing n=3,4,5,…
— plot variance as function of batch size
— length of transient interval is length at which variance starts decreasing

\[
\bar{x}_i = \frac{1}{n} \sum_{j=1}^{n} x_{ij}, \quad i = 1,2,...,m
\]

\[
\bar{x} = \frac{1}{m} \sum_{i=1}^{m} \bar{x}_i
\]

\[
\text{Var}(\bar{x}) = \frac{1}{m-1} \sum_{i=1}^{m} (\bar{x}_i - \bar{x})^2
\]
Terminating Simulations

• Most simulations reach a steady state, but some don’t
 — Example
 – network traffic consists of xfer of small files (1-3 packets each)
 – steady state simulations using large files give results of no interest to typical user

• Necessary to study such systems in transient state

• Terminating simulations: ones that don’t reach steady state

• Other terminating simulations
 — one that shuts down at 10PM every day
 — systems with parameters that change over time

• Terminating simulations don’t require transient removal

• Final conditions
 — may not be typical. can remove like “initial conditions”
Stopping Criteria: Variance Estimation

• Choosing proper simulation length is important
 — too short: results highly variable
 — too long: wastes time and resources

• Simulation should be run until confidence interval for mean response narrows to desired width

\[
\bar{x} \pm z_{1-\alpha/2} \sqrt{\text{Var}(\bar{x})}
\]

• Problem: how to estimate the variance
 — observations in simulation are not independent
 — e.g. waiting time for job I+1 depends on time for job I
Variance Estimation: Independent Replications

- Replications obtained by repeating simulation with different seed
- Method assumption: means of independent replications are independent even though observations within a replication are correlated
- Input: m replications of size n + n₀ (n₀ is size transient phase)
- Algorithm
 - compute mean for each replication, excluding transient phase
 - compute overall mean for all replications \(\overline{x} \)
 - calculate variance of replicate means
 \[
 \text{Var}(\overline{x}) = \frac{1}{m-1} \sum_{i=1}^{m} (\overline{x}_i - \overline{x})^2
 \]
 - confidence interval is then
 \[
 \overline{x} \pm z_{1-\alpha/2} \sqrt{\text{Var}(\overline{x})}
 \]
 Note: conf interval inversely proportional to \(\sqrt{mn} \)
waste less by increasing n rather than m
Variance Estimation: Batch Means

• Run long simulation; remove transient & divide into batches

• Algorithm
 — compute mean for each batch
 — compute overall mean for all batches \bar{x}
 — calculate variance of batch means
 \[\text{Var}(\bar{x}) = \frac{1}{m-1} \sum_{i=1}^{m} (\bar{x}_i - \bar{x})^2 \]
 — confidence interval is then
 \[\bar{x} \pm z_{1-\alpha/2} \sqrt{\frac{\text{Var}(\bar{x})}{m}} \]

• Notes
 — increase confidence by increasing # batches (m) or batch size (n)
 — batch size must be large so batch means have little correlation
 — finding correct n
 – increase batch size until autocovariance between batch means is small w.r.t. variance
 – autocovariance =
 \[\text{Cov}(\bar{x}_i, \bar{x}_{i+1}) = \frac{1}{m-2} \sum_{i=1}^{m} (\bar{x}_i - \bar{x})(\bar{x}_{i+1} - \bar{x}) \]
Variance Estimation: Batch Means

• Run long simulation; remove transient & divide into batches

• Algorithm
 — compute mean for each batch
 — compute overall mean for all batches \(\bar{x} \)
 — calculate variance of batch means
 \[
 \text{Var}(\bar{x}) = \frac{1}{m-1} \sum_{i=1}^{m} (\bar{x}_i - \bar{x})^2
 \]
 — confidence interval is then
 \[
 \bar{x} \pm z_{1-\alpha/2} \sqrt{\frac{\text{Var}(\bar{x})}{m}}
 \]

• Notes
 — increase confidence by increasing # batches (m) or batch size (n)
 — batch size must be large so batch means have little correlation
 — finding correct n
 – increase batch size until autocovariance between batch means is small w.r.t. variance
 – autocovariance =
 \[
 \text{Cov}(\bar{x}_i, \bar{x}_{i+1}) = \frac{1}{m-2} \sum_{i=1}^{m} (\bar{x}_i - \bar{x})(\bar{x}_{i+1} - \bar{x})
 \]
Variance Estimation: Method of Regeneration

- Consider CPU scheduling algorithm
 - every time queue is empty, it is like a fresh start for the simulation
 - trajectory in interval after empty state does not depend on prior trajectory
 - this phenomenon called regeneration
- Regeneration point:
 - when a simulation enters an independent phase

- Regenerative period: duration between 2 regeneration points
- Not all systems are regenerative
 - system with many queues regenerates only when all are empty
Variance Estimation: Method of Regeneration

- **Algorithm**
 - compute cycle sums \(y_i = \sum_{j=1}^{n_i} x_{ij} \)
 - compute the overall mean \(\bar{x} = \frac{\sum y_i}{\sum n_i} \)
 - calculate difference between expected and observed cycle sums \(w_i = y_i - n_i \bar{x}, \quad i = 1, 2, \ldots, m \quad (w_i \text{ IID mean 0}) \)
 - calculate variance of differences \(\text{Var}(w) = \frac{1}{m-1} \sum_{i=1}^{m} w_i^2 \)
 - compute the mean cycle length \(\bar{n} = \frac{1}{m} \sum_{i=1}^{m} n_i \)
 - confidence interval for mean response
 \[
 \bar{x} \pm z_{1-\alpha/2} \frac{1}{\bar{n}} \sqrt{\frac{\text{Var}(w)}{m}}
 \]

- \(m \) cycles of size \(n_1, n_2, \ldots, n_m \)