Workload Characterization

Dr. John Mellor-Crummey

Department of Computer Science Rice University

johnmc@cs.rice.edu

Goals for Today

Understand

Different approaches for characterizing workload

Workload Characterization

Two key parts

- Observe key performance characteristics of a workload
- Develop a model that can be used for further study
- Terms
 - —workload unit/component: present service requests to SUT interface
 - examples: each application in a set, sites, user sessions
 - components should be homogeneous if possible, otherwise split
- Workload parameters:
 - —measured quantities that depend on workload not system
 - —types
 - service requests
 - resource demands
 - -examples
 - transaction types, instructions, packet types & destinations
 - page reference patterns

Techniques for Workload Characterization

- Averaging
- Specifying Dispersion
- Single-parameter histograms
- Multiparameter histograms
- Principal components analysis
- Markov models
- Clustering

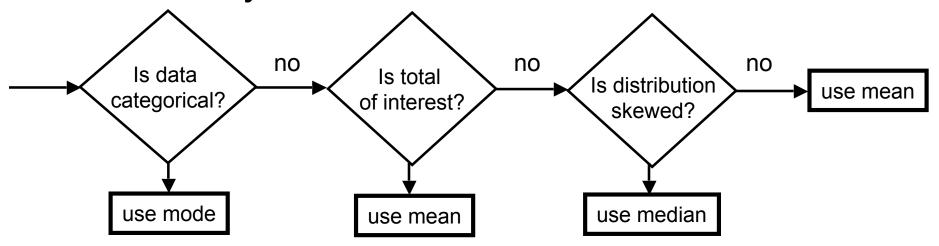
Note: the items marked in red will be discussed in the next lecture

Averaging

aka arithmetic mean of values $\{x_1, x_2, ..., x_n\}$

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

 Caution: arithmetic mean is not always appropriate "index of central tendency"



- Median = 50th percentile value
- Mode = most frequent
 - -e.g. most frequent destination for packets

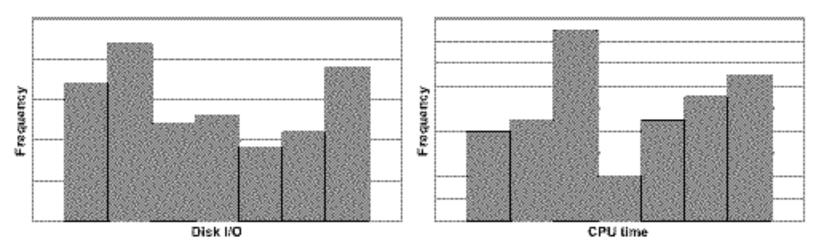
Specifying Dispersion

- Averaging is insufficient if 3 large variability in data values
- Variability of {x₁,x₂,...,x_n} is commonly specified by variance

sample variance
$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

- Sample standard deviation, s = sqrt(sample variance)
 - —often more meaningful: same units as the mean
- Alternatives for summarizing variability
 - -range: maximum minimum
 - —10 and 90 percentiles
 - —semi-interquartile range (SIQR) = $(x_{[.75(n-1)+1]} x_{[.25(n-1)+1]})/2$
 - —mean absolute deviation $=\frac{1}{n}\sum_{i=1}^{n}|x_i-\overline{x}|$
- Coefficient of variation = ratio of std. dev to mean = S/\overline{X} —if C.O.V. = 0, $\forall_i x_i = c$; high C.O.V. \Rightarrow mean is not sufficient

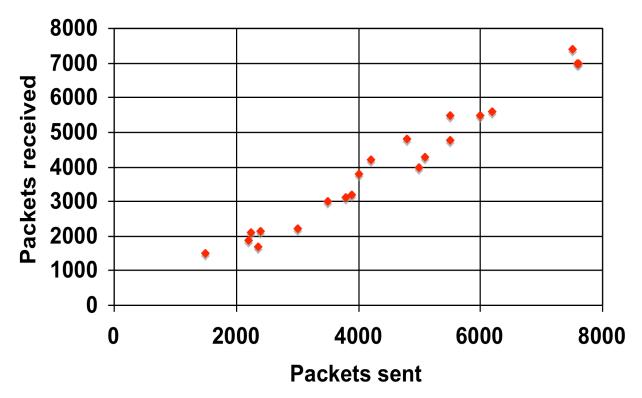
Single-parameter Histograms



- SPH: relative frequencies of various values of a parameter
 - —divide complete range into buckets
 - —count observations that fall in each
- Uses
 - —simulation: generate test workload matching distribution
 - —analytical model: validate probability distribution used in model
- Disadvantages
 - —much data: n buckets, m parameters/ component, k components
 - should only be used if variance is high and averages are inappropriate
 - —SPH ignore correlation among parameters

Multiparameter Histograms

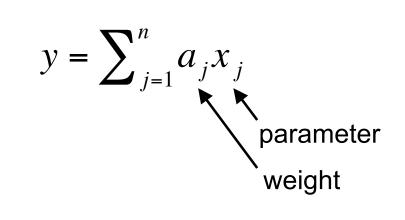
MPH: use when significant correlation between parameters



- Disadvantages
 - —rendering more than 2-parameter histograms is problematic
 - —much detail; uncommon to use them

Weighted Sum of Parameters

Classify workload components by weighted sum of their parameter values



- Use y to classify components into categories, e.g. high, low
- Problem: choosing appropriate weights for parameters
 - —bad choice of weights may group dissimilar components

Principal-Component Analysis

Choosing Good Weights

- Problem
 - —find weights so that weighted sums provide maximum discrimination among components

$$y_i = \sum_{j=1}^n a_{ij} x_j$$

- For each component i,
 - —y_i is a linear combination of parameter values x_i
 - $-a_{ii}$ is loading of x_i on y_i
- Choose weights so that y's form an orthogonal set, namely

$$\langle y_i, y_j \rangle = \sum_{k} a_{ik} a_{kj} = 0$$

- Properties: y's form an ordered set such that
 - —y₁ explains highest percentage of variance in resource demands
 - —successive y_i explain increasingly lower percentages

Sample Problem

- Given a set of n workstations
 - X_{s_i} number of packets sent by workstation i
 - X_{r_i} number of packets received by workstation i
- There is a considerable correlation between x_{s_i} and x_{r_i}
- Compute y_{ki} k=1,2 for each workstation i, such that successive y_k vectors provide next best discriminatory power