More Workload Characterization & Basic Probability and Statistics

Dr. John Mellor-Crummey

Department of Computer Science
Rice University

johnmc@cs.rice.edu

Goals for Today

- Finish remaining approaches for characterizing workload
 - -Markov models
 - —clustering
- Review basic probability and statistics concepts needed that will be used throughout the rest of the course

Markov Models

Sometimes, not only the relative frequency but order of service requests is important

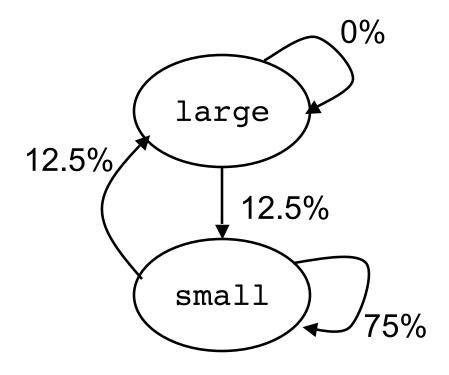
- First Order Markov Models
 - —probabilistic models that can generate sequences of states (here, representing service requests)
 - —next state depends only upon current state
 - —completely characterized by a transition probability matrix
 - —transition probability matrix properties
 - a_{ii} = P(system will enter state j | system is in state i)
 - $0 \le a_{ii} \le 1$
 - $-\sum_{i=1}^n a_{ij}=1$
- Commonly used in queueing analysis

First Order Markov Model Example I

- Modeling packets on network
 - —small packets = 87.5%; large packets = 12.5% (1 in 8 is large)
 - —large packet always followed by a small packet

Pairwise percentages

	next packet	
current	small	large
packet		
small	75%	12.5%
large	12.5%	0%



First Order Markov Model Example I

- Modeling packets on network
 - —small packets = 87.5%; large packets = 12.5% (1 in 8 is large)
 - —large packet always followed by a small packet

Pairwise percentages

	next packet	
current	small	large
packet		
small	75%	12.5%
large	12.5%	0%

Transition Matrix

	next packet	
current	small	large
packet		
small	75/87.5 =	12.5/87.5 =
	.85714	.14286
large	1	0

First Order Markov Model Example I

- Modeling packets on network
 - —small packets = 87.5%; large packets = 12.5% (1 in 8 is large)
 - —large packet always followed by a small packet

85714

.14286 large small

Transition Matrix

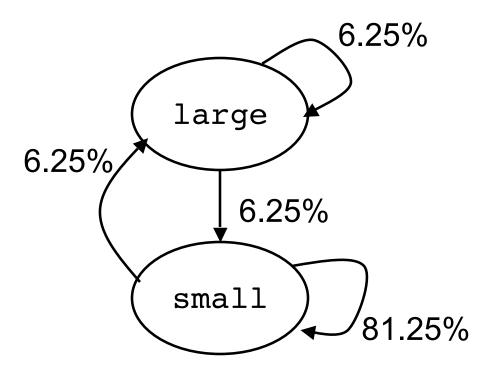
	next packet	
current	small	large
packet		
small	75/87.5	12.5/87.5
	=	=
	.85714	.14286
large	1	0

First Order Markov Model Example II

- Modeling packets on network
 - —small packets = 87.5%; large packets = 12.5% (1 in 8 is large)
 - —large packet followed by a small packet 50% of the time

Pairwise percentages

	next packet	
current	small	large
packet		
small	81.25%	6.25%
large	6.25%	6.25%



First Order Markov Model Example 2

- Modeling packets on network
 - —small packets = 87.5%; large packets = 12.5% (1 in 8 is large)
 - —large packet followed by a small packet half the time

Pairwise percentages

	next packet	
current	small	large
packet		
small	81.25%	6.25%
large	6.25%	6.25%

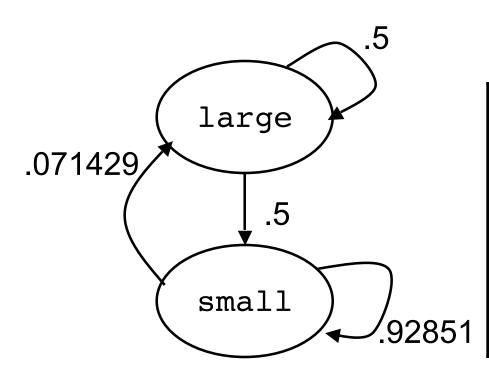
Transition Matrix

	next packet	
current	small	large
packet		
small	81.25/87.5	6.25/87.5
	=	=
	.928571	.071429
large	6.25/12.5	6.25/12.5
	=	=
	.5	.5

First Order Markov Model Example 2

- Modeling packets on network
 - —small packets = 87.5%; large packets = 12.5% (1 in 8 is large)
 - —large packet followed by a small packet half the time

Transition Matrix



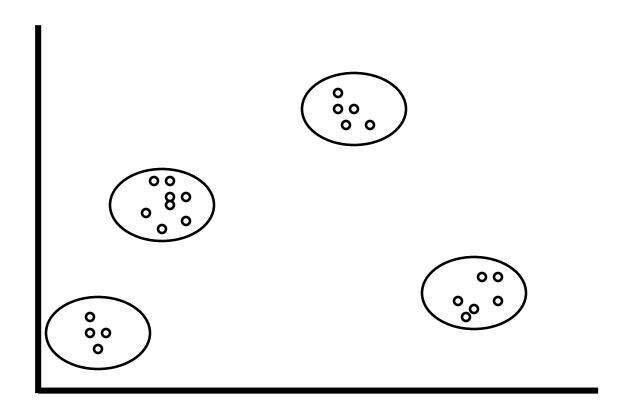
	next packet	
current	small	large
packet		
small	81.25/87.5	6.25/87.5
	=	=
	.928571	.071429
large	6.25/12.5	6.25/12.5
	=	=
	.5	.5

First Order Markov Model Properties

- Finite: The model consists of a finite number of states
- Memory-less: The next state depends only upon the present state, not past states
- Absorbing state: (enter, but never leave) any state with a 1 on the main diagonal in the transition probability matrix
- Time independent: Transition matrix probabilities do not vary over time

Clustering

- Workload often consists of large number of components
- Want to classify components into small number of clusters whose members are similar



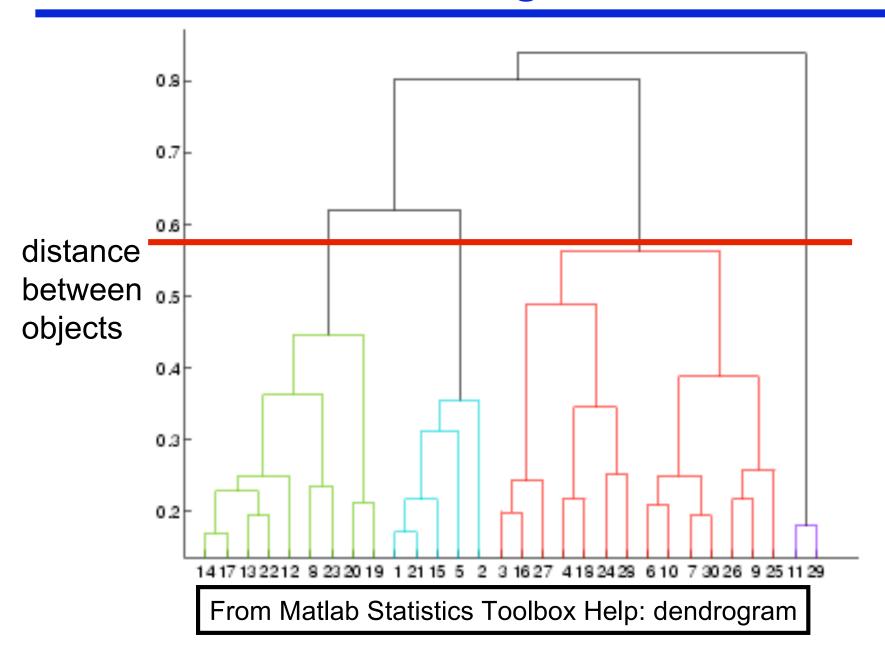
How to Cluster - I

- Select workload components to cluster
 - —e.g. random sample of all components of interest
- Select workload parameters for clustering components
 - —select those that (1) impact performance, and (2) vary significantly
- Transform parameters to minimize skew, if necessary
 - —e.g. log of parameter value if ratio rather than absolute value is important
- Remove outliers
 - —outliers affect normalization and thus can affect clustering
 - —remove if they do not consume significant fraction of system resources
- Scale observations (e.g. normalize to 0 mean, unit variance)
- Select distance metric, e.g. Euclidean, Manhattan distance

How to Cluster - II

- Select clustering algorithm, e.g.
 - —nearest neighbor: min dist between objects in two clusters
 - —furthest neighbor: max dist between objects in two clusters
 - —average: avg dist betw all pairs (a,b) of objects a∈cluster i, b∈ cluster j
 - —centroid: Euclidean distance between centroid of two clusters
- Perform clustering
 - —start with n clusters, using minimum spanning tree to merge
 - —represent with dendrogram

Dendrogram



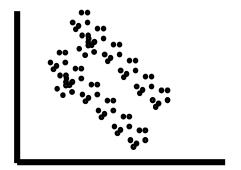
How to Cluster - III

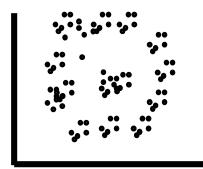
Interpret results

- —discard small clusters, particularly if insignificant resources used
- —interpret clusters in functional terms: what do they mean?
- —select one or more representatives from each cluster for further study

Potential problems

—minimizing intracluster variance may not always give the natural partitioning



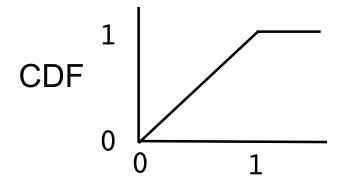


Basic Probability and Statistics Concepts

Basic Probability and Statistics - I

- Independent events
 - —occurrence of one event does not in any way affect the probability of another
- Random variable
 - —takes one of a specified set of values with a specified probability
- Cumulative distribution function (CDF)
 - —CDF of a random variable maps a given value a to the probability of the variable taking a value ≤ a

$$F_{x}(a) = P(x \le a)$$



CDF of a uniform random variable $0 < x \le 1$

Basic Probability and Statistics - II

- For a continuous random variable x
 - —probability density function (pdf) = the derivative of the CDF

$$f(x) = \frac{dF(x)}{dx}$$

$$f(x) = \frac{dF(x)}{dx}$$

$$P(x_1 < x \le x_2) = F(x_2) - F(x_1) = \int_0^{x_2} f(x) dx$$

- For a discrete random variable $x \in \{x_1, x_2, ..., x_n\}$
 - —discrete probabilities $\{p_1, p_2, ..., p_n\}$ such that $P(x = x_i) = p_i$
 - —probability mass Function (pmf) maps x_i to p_i

$$f(x_i) = p_i$$

$$P(x_1 < x \le x_2) = F(x_2) - F(x_1) = \sum_{x_1 < x_i \le x_2} p_i$$

Mean or Expected Value

Mean or expected value
$$\mu = E(x) = \sum_{i=1}^{n} p_i x_i = \int_{-\infty}^{+\infty} x f(x) dx$$

form for a discrete random variable

form for a continuous random variable

Variance σ^2 and Standard Deviation σ

Form for a discrete variable

$$\sigma^2 = Var(x) = E((x - \mu)^2) = \sum_{i=1}^n p_i (x_i - \mu)^2$$

Form for a continuous variable

$$\sigma^2 = Var(x) = E((x - \mu)^2) = \int_{-\infty}^{+\infty} (x - \mu)^2 f(x) dx$$

• Standard deviation $\sigma = \sqrt{Var(x)}$

Assessing Variation

Coefficient of variation C.O.V.

C.O.V. =
$$\frac{\text{standard deviation}}{\text{mean}} = \frac{\sigma}{\mu}$$

• Covariance of random variables x and y with means μ_x and μ_y

$$Cov(x,y) = \sigma_{xy}^2 = E((x - \mu_x)(y - \mu_y)) = E(xy) - E(x)E(y)$$

- For independent random variables x and y, Cov(x,y) = 0
- Correlation: normalized covariance

$$Cor(x, y) = \rho_{xy} = \frac{Cov(x, y)}{\sigma_x \sigma_y} = \frac{\sigma_{xy}^2}{\sigma_x \sigma_y}, -1 \le Cor(x, y) \le 1$$

Mean and Variance of Sums

Mean of sums for random variables

—Given

- $-x_1, x_2, ..., x_k$ are k random variables
- $a_1, a_2, ..., a_k$ are arbitrary weights

$$E(a_1x_1 + a_2x_2 + \dots + a_kx_k) = a_1E(x_1) + a_2E(x_2) + \dots + a_kE(x_k)$$

Variance of sums for independent variables

$$Var(a_1x_1 + a_2x_2 + ... + a_kx_k) =$$

$$a_1^2Var(x_1) + a_2^2Var(x_2) + ... + a_k^2Var(x_k)$$

Quantile, Percentile, Median & Mode

- α -quantile: the x value at which the CDF takes value α
 - —denoted as \mathbf{x}_{α}

$$P(x \le x_{\alpha}) = F(x_{\alpha}) = \alpha$$

- 100 α -percentile: the x value at which the CDF reaches percentile 100 α
- Median = 50-percentile = .5-quantile
- Mode = most likely value
 - —for a discrete variable, the x_i that has the highest probability
 - —for a continuous variable, the x where pdf is maximum

Normal Distribution

$N(\mu, \sigma)$ most commonly used distribution in data analysis

pdf =
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$$
, $-\infty \le x \le \infty$ $\mu = \text{mean}$ $\sigma = \text{std dev}$

(also known as a Gaussian distribution)

