Comparing Systems Using Sample Data

Dr. John Mellor-Crummey

Department of Computer Science Rice University

johnmc@cs.rice.edu

Goals for Today

Understand

- Population and samples
- Confidence intervals
- How to compute confidence intervals for
 - —sample mean
 - -proportions
- How to test a hypothesis using a test for zero mean
- How to compare two alternatives
- How to determine minimum sample size for estimating
 - —sample mean with a given accuracy
 - —proportion with a given accuracy

Sample vs. Population

- Suppose we generate a set S containing several million random numbers. We will call this set the population.
 - —denote population mean with μ
 - —denote population std deviation with σ
- Draw a sample of n numbers {x₁, x₂, ..., x_n} from S
 - —denote sample mean with $\,\mathcal{X}\,$
 - —denote the std deviation of the sample with s
- No guarantee that $\overline{x} = \mu \wedge s = \sigma$
- (\overline{x},s) of sample are estimates of the population parameters (μ,σ)
- Conventions
 - —population characteristics: parameters (μ , σ) (Greek alphabet)
 - —sample estimates: statistics (\overline{x},s) (Roman alphabet)

Confidence Interval for the Mean

- k samples of a population may yield k different sample means
- No sample or finite set of samples will necessarily give a perfect estimate for the population mean μ
- Instead, we use probability bounds for an estimate of μ , the population mean

$$P(c_1 \le \mu \le c_2) = 1 - \alpha$$

- Confidence interval (c₁,c₂)
- Significance level
- Confidence coefficient
- Confidence level (a percentage): 100(1- α)

Understanding Confidence Intervals

Why use them?

- —provide a way to decide if measurements are meaningful
- —characterize potential error in sample mean
- —enable comparisons in the presence of experimental error

Understand their limitations!

 — at 95% confidence, confidence intervals for 5% of sample means do not include the population mean μ

Computing (c_1,c_2) for Population Mean μ

The hard way

To compute a 90% confidence interval for a population mean μ

- Take k samples of the population (each sample is a set)
- Compute the set of sample means (one for each sample)
- Sort the set of sample means
- Select the [1 + .05(k-1)]th element as c₁
- Select the [1 + .95(k-1)]th element as c₂
- 90% confidence interval for μ is (c₁, c₂)

```
90% = 100(1-\alpha)
.05 = \alpha/2
.95 = 1-\alpha/2
```

The Central Limit Theorem

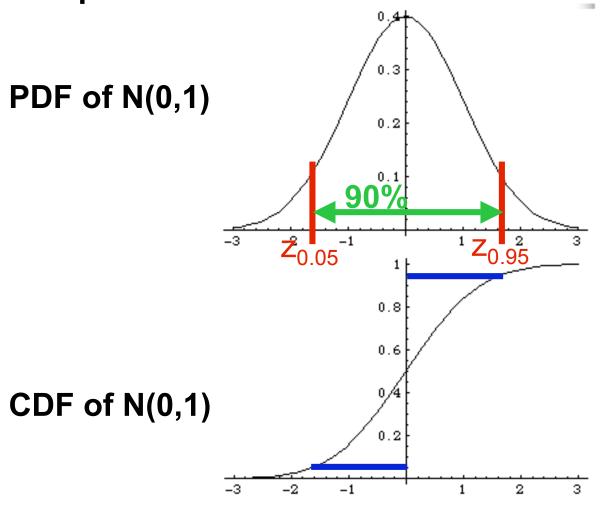
- If observations {x₁, x₂, ..., x_n} are
 - -independent
 - —from the same population
 - —the population has mean μ
 - —the population has std deviation σ
- Then sample mean \overline{x} for large samples is approximately normally distributed

$$\bar{x} \sim N(\mu, \sigma/\sqrt{n})$$

- Std error = std deviation of sample mean
- If population std deviation is σ , std error is σ/\sqrt{n}

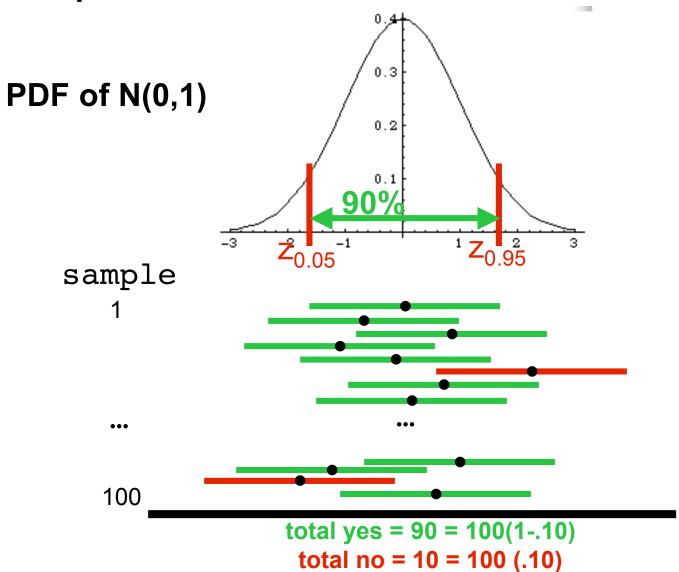
Confidence Interval of a Normal Distribution

Example: 90% confidence interval. $\alpha = .10$



Meaning of a Confidence Interval

Example: 90% confidence interval. $\alpha = .10$



Computing (c₁,c₂) for a Population Mean µ

The easy way (for a *large* sample, n > 30)

By the central limit theorem, a 100(1- α)% confidence interval for μ

$$(\overline{x} - z_{1-\alpha/2} s/\sqrt{n}, \overline{x} + z_{1-\alpha/2} s/\sqrt{n})$$

Where

 $\overline{\mathcal{X}}$ is the sample mean

scaled by std error

s is the sample std deviation

n is the sample size

 α is the significance level, 100(1- α)% is the confidence level

 $z_{1-\alpha/2}$ is the (1- $\alpha/2$) quantile of the unit normal variate

Confidence Interval Example

- Given a (large) sample with the following characteristics
 - 32 elements (n = 32)
 - —sample mean \overline{x} = 3.90
 - —sample std deviation s = .71
- A 90% confidence interval for the mean can be computed as

$$(\overline{x} - z_{1-\alpha/2} s / \sqrt{n}, \overline{x} + z_{1-\alpha/2} s / \sqrt{n})$$

$$(\bar{x} - (z_{0.95})s/\sqrt{n}, \bar{x} + (z_{0.95})s/\sqrt{n})$$

Recall $z_{1-\alpha/2}$ is approximately 4.91[(1- α /2) $^{0.14}$ -(α /2) $^{0.14}$]

$$(3.90 - (1.645)(0.71)/\sqrt{32}, 3.90 + (1.645)(0.71)/\sqrt{32})$$

$$= (3.69, 4.11)$$

Computing (c_1,c_2) for Population Mean μ

The easy way (for a *small* sample, $n \le 30$)

- For smaller samples, confidence intervals can only be constructed if samples come from a normally distributed population
- Ratio of $(\bar{x} \mu)/(s/\sqrt{n})$ follows a t(n-1) distribution
- For small samples, 100(1- α)% confidence interval for μ is

$$(\bar{x} - t_{[1-\alpha/2;n-1]} s / \sqrt{n}, \bar{x} + t_{[1-\alpha/2;n-1]} s / \sqrt{n})$$

Where

 $\overline{\mathcal{X}}$ is the sample mean

s is the sample std deviation

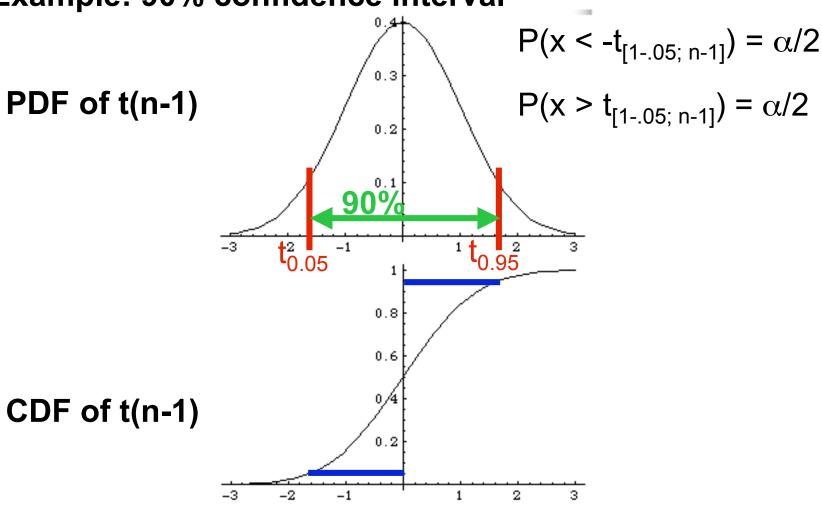
n is the sample size

 α is the significance level, 100(1- α)% is the confidence level

 $t_{[1-\alpha/2; n-1]}$: (1- $\alpha/2$) quantile of t distribution with n-1 degrees of freedom

Confidence Interval of a t(n-1) Distribution

Example: 90% confidence interval



Confidence Interval Example

- Given a (small) sample with the following characteristics
 - —modeling error shown to be normally distributed from quantile/quantile plot {-.04,-.19,.14,-.09,-.14,.19,.04,.09}
 - **—8 elements (n = 8)**
 - —sample mean $\overline{X} = 0$
 - —sample std deviation s = .138
- A 90% confidence interval for the mean can be computed as

$$(\bar{x} - t_{[1-\alpha/2;n-1]} s / \sqrt{n}, \bar{x} + t_{[1-\alpha/2;n-1]} s / \sqrt{n})$$

$$(0 - (t_{[0.95;7]})(.138) / \sqrt{8}, 0 + (t_{[0.95;7]})(.138) / \sqrt{8})$$

Look up $t_{[1-.05; n-1]}$ in Jain Table A.4 = 1.895

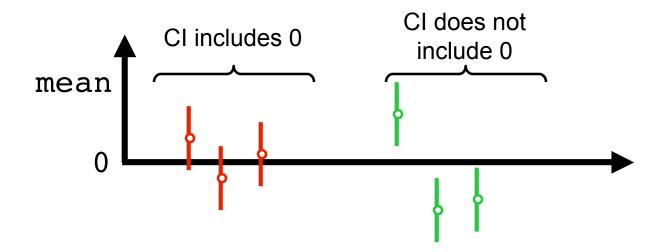
$$(0 - (1.895)(.138)/\sqrt{8},0 + (1.895)(.138)/\sqrt{8})$$
$$= (-.0926,+.0926)$$

Small vs. Large Samples

- Why the difference when computing confidence for small vs. large samples?
- As n increases, t-distribution approaches normal distribution

Testing for a Zero Mean

- Is a measured value significantly different from zero?
 - —common use of confidence intervals
- When comparing random measurement with zero, must do so probabilistically
- If value different from zero with probability $100(1-\alpha)\%$, then value is significantly different from zero



Example: Testing for a Zero Mean

- Difference in running time of two sorting algorithms A and B was measured on several different input sequences
- Differences are {1.5, 2.6, -1.8, 1.3, -.5, 1.7, 2.4}
- Can we say with 99% confidence that 1 algorithm is superior?
- Example properties

```
-n = 7, X = 1.03, std deviation = 1.6

-\alpha = .01, \alpha/2 = .005

-confidence interval (1.03 - t_{[1-.005;6]}*1.60/\sqrt{7}, 1.03 + t_{[1-.005;6]}*1.60/\sqrt{7})

Look up \mathbf{t}_{[1-.005; 6]} = \mathbf{t}_{[.995; 6]} in Jain Table A.4 = 3.707

(1.03 - (3.707)*1.60/\sqrt{7}, 1.03 + (3.707)*1.60/\sqrt{7})

= (-1.21, 3.27)
```

Confidence interval includes 0; thus, cannot say with 99% confidence that the mean difference between A & B is significantly different from 0

Comparing Two Alternatives

- Most performance analysis projects require determining the best of two or more systems
- Here we compare 2 systems with very similar workloads
 - —more than 2 systems or substantially different workloads
 - use techniques for experimental design (covered later in course)

Paired Observations

Conduct n experiments on each of 2 systems

```
—system a: \{a_1, a_2, ..., a_n\}
—system b: \{b_1, b_2, ..., b_n\}
```

- If one-one correspondence between tests on both systems
 - —observations are said to be "paired"
- Treat the samples for 2 systems as one sample of n pairs
- For each pair, compute difference in performance

```
-\{a_1-b_1, a_2-b_2, ..., a_n-b_n\}
```

- Construct a confidence interval for the mean difference
- Is the confidence interval includes 0, systems not significantly different

Unpaired Observations (t-test)

- Two samples, one size n_a, the other size n_b
- Compute mean of each sample: $\overline{\mathcal{X}}_a$, $\overline{\mathcal{X}}_b$
- Compute std deviation of each sample: s_a, s_b
- Compute mean difference $\overline{x}_a \overline{x}_b$
- Compute std deviation of mean difference $\sqrt{\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}}$
- Effective number of degrees of freedom

$$v = \frac{(s_a^2/n_a + s_b^2/n_b)^2}{\frac{1}{n_a + 1} \left(\frac{s_a^2}{n_a}\right)^2 + \frac{1}{n_b + 1} \left(\frac{s_b^2}{n_b}\right)^2} - 2$$

Confidence interval for mean difference

$$(\overline{x}_a - \overline{x}_b) \pm t_{[1-\alpha/2;\nu]} s$$

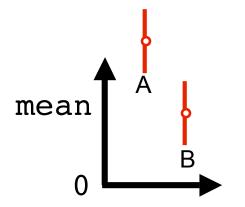
Notes on Unpaired Observations

- Preceding slide made following assumptions
 - —two samples of unequal size
 - —standard deviations not assumed equal
 - —small sample sizes
 - —normal populations

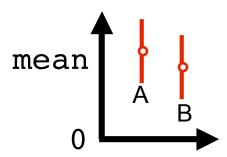
Approximate Visual Test

Simple visual test to compare unpaired samples

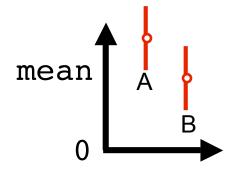
CI no overlap A > B



CI overlap; means in CI of other; alternatives not different



CI overlap; mean A not in CI B; need t-test



What Confidence Level to Use?

- Typically use confidence of 90% or 95%
- Need not always be that high
- Choice of confidence level is based on cost of loss if wrong!
- If loss is high compared to gain, use high confidence
- If loss is negligible compared to gain, low confidence OK

One-sided Confidence Intervals

- Sometimes only a one-sided confidence interval is needed
- Example: want to test if mean > μ₀
- In this case, one-sided lower confidence interval for μ needed

$$(\overline{x} - t_{[1-\alpha;n-1]} s / \sqrt{n}, \overline{x})$$

 For large samples, use z-values (unit normal distribution) rather than t-distribution

Confidence Intervals for Proportions

- For categorical variables, data often associated with probabilities of various categories
- Example: want confidence interval for n₁ of n of type 1
- Proportion = $p = n_1/n$
- Confidence interval for proportion

$$p \pm z_{1-\alpha/2} \sqrt{\frac{p(1-p)}{n}}$$

- Confidence interval based on approximating the binomial distribution
 - —valid only if np ≥ 10
- If np ≤ 10, can't use t-values; must use binomial tables

Example: Confidence for Proportions

- If 10 out of 1000 pages from a laser printer are illegible
- Proportion of illegible pages is 10/1000 = .01
- Since np ≥ 10, we can use the aforementioned confidence interval

$$p \pm z_{1-\alpha/2} \sqrt{\frac{p(1-p)}{n}}$$

$$.01 \pm z_{1-\alpha/2} \sqrt{\frac{.01(.99)}{1000}}$$

Recall $z_{1-\alpha/2}$ is approximately 4.91[(1- $\alpha/2$) ^{0.14} -($\alpha/2$)^{0.14}]

$$.01 \pm z_{1-\alpha/2} \sqrt{.0000099} = .01 \pm z_{1-\alpha/2} (.0031)$$

90% confidence =
$$.01 \pm (1.645)(.0031) = (.0049,.0151)$$

95% confidence =
$$.01 \pm (1.96)(.0031) = (.0039,.0161)$$

Determining Sample Size

- Confidence level from a sample depends on sample size
 - —the larger the sample, the higher the confidence
- Goal: determine smallest sample yielding desired accuracy

Sample Size for Determining Mean

• For a sample size n, the $100(1-\alpha)\%$ confidence interval of μ is

$$\overline{x} \pm z_{1-\alpha/2} \frac{s}{\sqrt{n}}$$

• For a desired accuracy of r%, the confidence interval must be

$$\bar{x} \pm \bar{x} \frac{r}{100}$$

- Thus, $z_{1-\alpha/2} \frac{s}{\sqrt{n}} = \overline{x} \frac{r}{100}$ and $n = \left| \left(\frac{100 z_{1-\alpha/2} s}{r \overline{x}} \right)^2 \right|$
- In a preliminary test, sample mean of response time is 20 seconds and std dev. = 5 seconds. How many repetitions are needed to estimate the mean response time within 2s at 95% confidence? Required accuracy r = 2 in 20 = 10%

$$n = \left[\left(\frac{100 z_{1-\alpha/2} s}{r \overline{x}} \right)^2 \right] = \left[\left(\frac{100 (1.96)(5)}{(10)(20)} \right)^2 \right] = \left[24.01 \right] = 25$$

Sample Size for Determining Proportions

- Recall confidence interval for proportion $p \pm z_{1-\alpha/2} \sqrt{\frac{p(1-p)}{n}}$
- To get an accuracy of r, $p \pm r = p \pm z_{1-\alpha/2} \sqrt{\frac{p(1-p)}{n}}$
- Thus, $r = z_{1-\alpha/2} \sqrt{\frac{p(1-p)}{n}}$ and $n = \left[(z_{1-\alpha/2})^2 \frac{p(1-p)}{r^2} \right]$
- A preliminary measurement of a laser printer showed an illegible print rate of 1 in 10000. How many pages must be observed to get an accuracy of 1 per million at 95% confidence?

$$p = 1/10,000 = 10^{-4}; r = 10^{-6}; z_{.975} = 1.96$$

$$n = \left[(1.96)^2 \frac{10^{-4} (1 - 10^{-4})}{(10^{-6})^2} \right] = 384,160,000$$