
John Mellor-Crummey

Robert Fowler    Nathan Tallent    Gabriel Marin

Department of Computer Science
Rice University

HPCToolkit : Multi-platform Tools for
Profile-based Performance Analysis

http://hipersoft.cs.rice.edu/hpctoolkit/



http://hipersoft.cs.rice.edu/hpctoolkit/2

Performance Analysis and Tuning

• Increasingly necessary
—gap between typical and peak performance is growing

• Increasingly hard
—complex architectures are harder to program effectively

– complex processors
 VLIW
 deeply pipelined, out of order, superscalar

– complex memory hierarchy
 non-blocking, multi-level caches
 TLB

—modern scientific applications pose challenges for tools
– multi-lingual programs
– many source files
– complex build process
– external libraries in binary-only form



http://hipersoft.cs.rice.edu/hpctoolkit/3

HPCToolkit Goals

• Support large, multi-lingual applications
—a mix of of Fortran, C, C++
—external libraries
—thousands of procedures
—hundreds of thousands of lines
—we must avoid

– manual instrumentation
– significantly altering the build process
– frequent recompilation

• Multi-platform

• Scalable data collection

• Analyze both serial and parallel codes

• Effective presentation of analysis results
—intuitive enough for physicists and engineers to use
—detailed enough to meet the needs of compiler writers



http://hipersoft.cs.rice.edu/hpctoolkit/4

HPCToolkit System Overview

application
source

application
source

profile executionprofile execution

performance
profile

performance
profile

binary
object code

binary
object code

compilation
linking

binary analysisbinary analysis

program
structure

program
structure

interpret profileinterpret profile

source
correlation
source

correlation

hyperlinked
database

hyperlinked
database

hpcviewerhpcviewer



http://hipersoft.cs.rice.edu/hpctoolkit/5

HPCToolkit System Overview

profile executionprofile execution

performance
profile

performance
profile

application
source

application
source

binary
object code

binary
object code

compilation
linking

binary analysisbinary analysis

program
structure

program
structure

interpret profileinterpret profile

source
correlation
source

correlation

hyperlinked
database

hyperlinked
database

hpcviewerhpcviewer

—launch unmodified, optimized application binaries
—collect statistical profiles of events of interest



http://hipersoft.cs.rice.edu/hpctoolkit/6

HPCToolkit System Overview

profile executionprofile execution

performance
profile

performance
profile

application
source

application
source

binary
object code

binary
object code

compilation
linking

binary analysisbinary analysis

program
structure

program
structure

interpret profileinterpret profile

source
correlation
source

correlation

hyperlinked
database

hyperlinked
database

hpcviewerhpcviewer

—decode instructions and combine with profile data



http://hipersoft.cs.rice.edu/hpctoolkit/7

HPCToolkit System Overview

profile executionprofile execution

performance
profile

performance
profile

application
source

application
source

binary
object code

binary
object code

compilation
linking

binary analysisbinary analysis

program
structure

program
structure

interpret profileinterpret profile

source
correlation
source

correlation

hyperlinked
database

hyperlinked
database

hpcviewerhpcviewer

—extract loop nesting information from executables



http://hipersoft.cs.rice.edu/hpctoolkit/8

HPCToolkit System Overview

profile executionprofile execution

performance
profile

performance
profile

application
source

application
source

binary
object code

binary
object code

compilation
linking

binary analysisbinary analysis

program
structure

program
structure

interpret profileinterpret profile

source
correlation
source

correlation

hyperlinked
database

hyperlinked
database

hpcviewerhpcviewer

—synthesize new metrics by combining metrics
—relate metrics, structure, and program source



http://hipersoft.cs.rice.edu/hpctoolkit/9

HPCToolkit System Overview

profile executionprofile execution

performance
profile

performance
profile

application
source

application
source

binary
object code

binary
object code

compilation
linking

binary analysisbinary analysis

program
structure

program
structure

interpret profileinterpret profile

source
correlation
source

correlation

hyperlinked
database

hyperlinked
database

hpcviewerhpcviewer

—support top-down analysis with interactive viewer
—analyze results anytime, anywhere



http://hipersoft.cs.rice.edu/hpctoolkit/10

HPCToolkit System Overview

profile executionprofile execution

performance
profile

performance
profile

application
source

application
source

binary
object code

binary
object code

compilation
linking

binary analysisbinary analysis

program
structure

program
structure

interpret profileinterpret profile

source
correlation
source

correlation

hyperlinked
database

hyperlinked
database

hpcviewerhpcviewer



http://hipersoft.cs.rice.edu/hpctoolkit/11

Data Collection

Support analysis of unmodified, optimized binaries

• Inserting code to start, stop and read counters has
many drawbacks, so don’t do it!

—nested measurements skew results

• Use hardware performance monitoring to collect
statistical profiles of events of interest

• Different platforms have different capabilities

—event-based counters: MIPS, IA64, Pentium

—ProfileMe instruction tracing: Alpha

• Different capabilities require different approaches



http://hipersoft.cs.rice.edu/hpctoolkit/12

Data Collection Tools

Goal: limit development to essentials only

• MIPS-IRIX:
—ssrun + prof  ptran

• Alpha-Tru64:
—uprofile + prof  ptran
—DCPI/ProfileMe  xprof

• IA64-Linux and IA32-Linux
—papirun/papiprof



http://hipersoft.cs.rice.edu/hpctoolkit/13

papirun/papiprof

• PAPI: Performance API
—interface to hardware performance monitors
—supports many platforms

• papirun: open source equivalent of SGI’s ‘ssrun’
—sample-based profiling of an execution

– preload monitoring library before launching application
– inspect load map to set up sampling for all load modules
– record PC samples for each module along with load map

—Linux IA64 and IA32

• papiprof: ‘prof’-like tool
—based on Curtis Janssen’s vprof
—uses GNU binutils to perform PC ➔ source mapping
—output styles

– XML for use with hpcview
– plain text



http://hipersoft.cs.rice.edu/hpctoolkit/14

DCPI and ProfileMe

• Alpha ProfileMe
—EV67+ records info about an instruction as it

executes
– mispredicted branches, memory access replay traps
– more accurate attribution of events

• DCPI: (Digital) Continuous Profiling Infrastructure
—sample processor counters and instructions

continuously during execution of all code
– all programs
– shared libraries
– operating system

—support both on-line and off-line data analysis
– to date, we use only off-line analysis



http://hipersoft.cs.rice.edu/hpctoolkit/15

HPCToolkit System Overview

profile executionprofile execution

performance
profile

performance
profile

application
source

application
source

binary
object code

binary
object code

compilation
linking

binary analysisbinary analysis

program
structure

program
structure

interpret profileinterpret profile

source
correlation
source

correlation

hyperlinked
database

hyperlinked
database

hpcviewerhpcviewer



http://hipersoft.cs.rice.edu/hpctoolkit/16

Metric Synthesis with xprof (Alpha)

Interpret  DCPI samples into useful metrics

• Transform low-level data to higher-level metrics
—DCPI ProfileMe information associated with PC values
—project ProfileMe data into useful equivalence classes

—decode instruction type info in application binary at each PC
– FLOP

– memory operation

– integer operation

—fuse the two kinds of information
– Retired instructions + instruction type =

 retired FLOPs

 retired integer operations

 retired memory operations

• Map back to source code like papiprof



http://hipersoft.cs.rice.edu/hpctoolkit/17

HPCToolkit System Overview

profile executionprofile execution

performance
profile

performance
profile

application
source

application
source

binary
object code

binary
object code

compilation
linking

binary analysisbinary analysis

program
structure

program
structure

interpret profileinterpret profile

source
correlation
source

correlation

hyperlinked
database

hyperlinked
database

hpcviewerhpcviewer



http://hipersoft.cs.rice.edu/hpctoolkit/18

Program Structure Recovery with bloop

• Parse instructions in an executable using GNU binutils

• Analyze branches to identify basic blocks

• Construct control flow graph using branch target analysis
—be careful with machine conventions and delay slots!

• Use interval analysis to identify natural loop nests

• Map machine instructions to source lines with symbol table
—dependent on accurate debugging information!

• Normalize output to recover source-level view

Platforms: Alpha+Tru64, MIPS+IRIX, Linux+IA64, Linux+IA32,
Solaris+SPARC



http://hipersoft.cs.rice.edu/hpctoolkit/19

Sample Flowgraph from an Executable

Loop nesting structure
—blue: outermost level
—red: loop level 1
—green loop level 2

Observation
optimization complicates 

program structure!



http://hipersoft.cs.rice.edu/hpctoolkit/20

Normalizing Program Structure

Coalesce duplicate lines

(1) if duplicate lines appear in different loops
– find least common ancestor in scope tree; merge

corresponding loops along the paths to each of the
duplicates
 purpose: re-rolls loops that have been split

(2) if duplicate lines appear at multiple levels in a loop
nest
– discard all but the innermost instance

 purpose: handles loop-invariant code motion

apply (1) and (2) repeatedly until a fixed point is
reached

Constraint: each source line must appear at most once



http://hipersoft.cs.rice.edu/hpctoolkit/21

<LM n="/apps/smg98/test/smg98">
   ...
   <F n="/apps/smg98/struct_linear_solvers/smg_relax.c">
      <P n="hypre_SMGRelaxFreeARem">
         <L b="146" e="146">
            <S b="146" e="146"/>
         </L>
      </P>
      <P n="hypre_SMGRelax">
         <L b="297" e="328">
            <S b="297" e="297"/>
            <L b="301" e="328">
               <S b="301" e="301"/>
               <L b="318" e="325">
                  <S b="318" e="325"/>
               </L>
               <S b="328" e="328"/>
            </L>
            <S b="302" e="302"/>
         </L>
      </P>
      ...
   </F>
 </PGM>

Recovered Program Structure

Load Module

File

Statement

Loop

Procedure



http://hipersoft.cs.rice.edu/hpctoolkit/22

HPCToolkit System Overview

profile executionprofile execution

performance
profile

performance
profile

application
source

application
source

binary
object code

binary
object code

compilation
linking

binary analysisbinary analysis

program
structure

program
structure

interpret profileinterpret profile

source
correlation
source

correlation

hyperlinked
database

hyperlinked
database

hpcviewerhpcviewer



http://hipersoft.cs.rice.edu/hpctoolkit/23

Data Correlation

• Problem
—any one performance measure provides a myopic view

– some measure potential causes (e.g. cache misses)
– some measure effects (e.g. cycles)
– cache misses not always a problem

—event counter attribution is inaccurate for out-of-order
processors

• Approaches
— multiple metrics for each program line
—computed metrics, e.g. cycles - FLOPS

– eliminate mental arithmetic
– serve as a key for sorting

—hierarchical structure
– line level attribution errors give good loop-level information



http://hipersoft.cs.rice.edu/hpctoolkit/24

HPCToolkit System Overview

profile executionprofile execution

performance
profile

performance
profile

application
source

application
source

binary
object code

binary
object code

compilation
linking

binary analysisbinary analysis

program
structure

program
structure

interpret profileinterpret profile

source
correlation
source

correlation

hyperlinked
database

hyperlinked
database

hpcviewerhpcviewer



http://hipersoft.cs.rice.edu/hpctoolkit/25

HPCViewer Screenshot

MetricsNavigation

Annotated Source View



http://hipersoft.cs.rice.edu/hpctoolkit/26

Flattening for Top Down Analysis

• Problem
—strict hierarchical view of a program is too rigid
—want to compare program components at the same

level as peers

• Solution
—enable a scope’s descendants to be flattened to

compare their children as peers

flatten

Current scope

unflatten



http://hipersoft.cs.rice.edu/hpctoolkit/27

Some Uses for HPCToolkit

• Identifying unproductive work
—where is the program spending its time not

performing FLOPS

• Memory hierarchy issues
—bandwidth utilization: misses x line size/cycles
—exposed latency: ideal vs. measured

• Cross architecture or compiler comparisons
—what program features cause performance

differences?

• Gap between peak and observed performance
—loop balance vs. machine balance?

• Evaluating load balance in a parallelized code
—how do profiles for different processes compare



http://hipersoft.cs.rice.edu/hpctoolkit/28

Assessment of HPCToolkit Functionality

• Top down analysis focuses attention where it belongs
—sorted views put the important things first

• Integrated browsing interface facilitates exploration
—rich network of connections makes navigation simple

• Hierarchical, loop-level reporting facilitates analysis
—more sensible view when statement-level data is imprecise

• Binary analysis handles multi-lingual applications and libraries
—succeeds where language and compiler based tools can’t

• Sample-based profiling, aggregation and derived metrics
—reduce manual effort in analysis and tuning cycle

• Multiple metrics provide a better picture of performance

• Multi-platform data collection

• Platform independent analysis tool



http://hipersoft.cs.rice.edu/hpctoolkit/29

What’s Next?

Research
—collect and present dynamic content

– what path gets us to expensive computations?

– accurate call-graph profiling of unmodified executables

– analysis and presentation of dynamic content

—communication in parallel programs

—statistical clustering for analyzing large-scale parallelism

—performance diagnosis: why rather than what

Development
—harden toolchain

—new platforms: Opteron and PowerPC

—data collection with oprofile on Linux


