
Dual Marching Cubes: Primal Contouring of Dual Grids

Scott Schaefer and Joe Warren
Rice University
6100 Main St.

Houston, TX 77005
sschaefe@rice.edu and jwarren@rice.edu

Abstract

We present a method for contouring an implicit function
using a grid topologically dual to structured grids such as
octrees. By aligning the vertices of the dual grid with the
features of the implicit function, we are able to reproduce
thin features of the extracted surface without excessive sub-
division required by methods such as Marching Cubes or
Dual Contouring. Dual Marching Cubes produces a crack-
free, adaptive polygonalization of the surface that repro-
duces sharp features. Our approach maintains the advan-
tage of using structured grids for operations such as CSG
while being able to conform to the relevant features of the
implicit function yielding much sparser polygonalizations
than has been possible using structured grids.

1. Introduction

Implicit modeling has become a popular method for ex-
tracting surfaces from volumetric information arising from
sources such as MRI data and CAT scans. In this technique,
a volumetric function

� �� � � � � � is given, whose value typi-
cally represents density information or distance to a surface.
To extract a surface from this function, we use a level set of� �� � � � � � � �. Notice that we can always reduce this prob-
lem to examining the zero-contour of the function by sim-
ply subtracting�.

This form of modeling has several advantages over tra-
ditional modeling techniques. Since

� �� � � � � � encodes the
surface, modifications to the surface (such as CSG opera-
tions) can be performed simply by modifying the under-
lying functions

� �� � � � � �. The topology of the surface is
also implicitly defined by

� �� � � � � � so topological modi-
fications are easy because the topology doesn’t have to be
changed explicitly. Finally, this technique is volumetricand
additional information can be gleaned from the underlying
function such as distance to the surface simply by evaluat-
ing

� �� � � � � �.

Since representing functions that contain arbitrary ge-
ometry can be difficult, many techniques sample the func-
tion

� �� � � � � � on a structured grid. Such grids are typically
axis-aligned and have vertices from a uniform sampling of
space (uniform grids) or some dyadic sampling (octrees).
The main advantage of using these grids is that operations
(such as CSG) are easy to perform because the grids be-
tween two different implicit surfaces align and the opera-
tion can be reduced to an operation on the vertices of the
grid.

Methods that use structured grids for implicit modeling
are quite abundant. Perhaps the most popular is Marching
Cubes [9]. Marching Cubes takes as input a uniform grid
whose vertices are samples of the function

� �� � � � � � and
extracts a surface as the zero-contour. For each cube in the
grid, Marching Cubes examines the values at the eight cor-
ners of the cube and determines the intersection of the sur-
face with the edges of the cube. Then Marching Cubes pro-
vides a lookup table indexed by the sign configuration at
the eight corners that yields the topology of the surface in-
side of that cube. After processing each cube in the grid, the
surface is complete.

There have been many attempts to extend Marching
Cubes from uniform to adaptive grids such as octrees.
However, these methods all require some sort of patch-
ing between cubes of different resolution [12, 11, 5]. Re-
cently several dual approaches to contouring have been
introduced that effectively eliminate this patching prob-
lem [2, 10, 4, 13]. In these methods, each cell in the grid
is given a representative vertex. For methods such as Dual
Contouring, this vertex is placed at sharp features of the sur-
face, which allows the method to reproduce sharp features
such as edges and corners. Polygons are then generated by
examiningminimal edges (an edge that contains no smaller
edge) in the octree. Then for each minimal edge the surface
passes through, a polygon is generated that connects the ver-
tices of the cells containing that minimal edge. Since the
surfaces produced by these methods are topologically dual
to the surfaces produced by Marching Cubes, we call these



Figure 1. A thin-walled room defined via CSG
(upper left). Polygonal approximations were
generated by Marching Cubes (lower left,
67K polys), Dual Contouring (lower right, 17K
polys) and Dual Marching Cubes (upper right,
440 polys). Using Dual Marching Cubes, the
size of the contour mesh is insensitive to the
thickness of the walls.

methodsdual contouring methods and cube-based methods
primal contouring methods.

However, all of these methods are limited in their ex-
pressivity because they are based on structured grids. For
instance, to represent very thin features, these methods re-
quire that a vertex of the grid lies inside the surface and an-
other, adjacent vertex outside the surface. Since the grids
are structured in nature, extracting very small, thin features
may require a very fine grid. Figure 1 (top, left) shows a
room generated by CSG operations with very thin walls.
Three different contouring methods have been used to pro-
duce the surface from the CSG tree. Both Marching Cubes
and Dual Contouring rely on structured grids and require
fine grids (and, consequently, large amounts of polygons)
to reproduce the correct topology of the room. While Dual
Contouring is a multi-resolution contouring algorithm that
can adaptively simplify the surface, the amount of simplifi-
cation is still limited by the thickness of the walls.

Balmelli et al [1] attempt to solve this problem by con-
structing a uniform grid whose vertices are allowed to con-
form to the features of the surface using an importance map.

While this approach yields better tessellations, it is still lim-
ited by uniform sampling and cannot reconstruct sharp fea-
tures accurately. Furthermore, performing operations such
as CSG between two objects becomes difficult because the
vertices of the two grids no longer align and resampling
must be performed.

Varadhan et al [13] provide an alternate solution based
off of Dual Contouring [4] and directed distance fields [6].
In that paper the authors provide a technique that can re-
construct a two-sheeted surface in a cell of the octree. This
allows their method to reproduce very thin walls. However,
their algorithm is still based off of a primal grid and requires
the isosurface to intersect the edges of the primal grid in or-
der to be reconstructed faithfully.

Contributions
We propose a fundamentally different approach to con-

touring, which we entitle Dual Marching Cubes. The grid
that we perform contouring on will be topologically dual to
the structured grids used by other techniques. Therefore, we
denote this type of grid as adual grid and structured grids as
primal grids. Our underlying data structure is an octree that
adaptively samples

� �� � � � � �. To generate a surface, we ex-
tract a dual grid to this primal octree. The vertices of this
dual grid are positioned at the features of the implicit func-
tion

� �� � � � � � inside each cell of the octree. Using this dual
grid that conforms to the features of

� �� � � � � �, we generate
the surface using a generalized version of Marching Cubes.
Contouring on this dual grid yields several advantages

� Since we use a structured grid to sample
� �� � � � � �,

we maintain the advantages associated with structured
grids for operations such as CSG.

� The vertices of our dual grid align with the features of� �� � � � � �, which allows us to reproduce sharp features
similar to the reproduction achieved by [6, 4].

� The surfaces produced by this method are adaptive
polygonalizations that are crack-free and topologically
manifold.

� Due to the use of a dual grid for contouring, we can
reproduce small, thin features in the surface such as
walls or tubes without excessive subdivision of the oc-
tree.

First, we describe the creation of the dual grid that we
perform contouring on, which proceeds in two steps: fea-
ture isolation and topology creation. Feature isolation takes
an octree as input and generates a single vertex for each cell
at a feature of

� �� � � � � � inside that cell. After building the
vertices of the dual grid, we construct the topology of the
grid using a simple extension of the traversal algorithm of
Ju et al. [4]. We then describe how Marching Cubes can be
applied to this dual grid to generate a surface.



2. Feature isolation

Given a function
� �� � � � � � and an octree, our goal in

feature isolation is to construct a vertex for each cell in the
octree that will become a vertex of the dual grid. In con-
trast to methods such as Dual Contouring, this vertex is
not aligned with the features of the surface but with fea-
tures of the implicit function. Therefore, each vertex will
not only contain a position

�� � � � � � but a scalar value�
indicating the estimated value of

� �� � � � � � at that vertex.
Our approach to detecting features from implicit functions
is similar to the technique of Garland [3] for detecting fea-
tures of surfaces. To determine the vertex that approximates
the feature of

� �� � � � � � inside of a cell�, we use quadratic
error functions (QEFs) (as developed in [3]). To generate
these QEFs, we compute tangent planes to the graph of� �� � � � � � on a grid of points sampled over�. At a sam-
ple point

�� � � � � � � � �, the tangent plane to� � � �� � � � � �
has the equation� � � � �� � � � � � where

� � �� � � � � � � � � �� � � � � � � � � � ��� � � � � � � �� � � � � � � � ��

and� � �� � � � � � � � � is the gradient of
� �� � � � � � � � �. To build

the QEF, we square this equation and sum over all sample
points yielding

� �� � � � � � � � � ��
�� � �� �� � � � � ���
	 
 �� � �� � � � � � � � � �� � (1)

The denominator of this expression normalizes the contri-
bution of each tangent plane to have equal weight.

Next, we minimize this quadratic function over the cell� to find the vertex of the dual grid
�� � � � � � � �. If the min-

imizer is underdetermined, we follow the method of Lind-
strom [7] and use the pseudo-inverse to position the mini-
mizer as close as possible to the center of�.

Notice that our description of this feature isola-
tion phase does not specify what format

� �� � � � � � must
take on. Specifically, our description allows for a wide va-
riety of possible inputs. For instance, uniform scalar grids
typically associated with Marching Cubes can be used
where each cube in the grid is regarded as a trilinear func-
tion so that

� �� � � � � � and� � �� � � � � � are well defined. Al-
ternatively, we can restrict our sampling above to the
grid points of this uniform grid and use divided differ-
ences to estimate� � �� � � � � � at these vertices. The lat-
ter strategy has the advantage of defining a single normal� � �� � � � � � at the grid vertices instead of several discon-
tinuous normals as the former method does. Directed dis-
tance fields provide an alternative to uniform, scalar fields
and can provide more accurate gradients to help repro-
duce sharp features.

CSG trees are another possible input to our algorithm.
CSG performs set operations on solids where the leaves

Figure 2. Connectivity of the dual grid (thick
black) for a primal quadtree (thin blue).

of the CSG trees are solids and interior nodes are opera-
tions such as union and intersection. To use such CSG trees
in our algorithm, we must convert the trees to scalar val-
ued functions

� �� � � � � � that contain a well defined gradi-
ent� � �� � � � � �. At the leaves of the CSG tree, we replace
the solids with their signed Euclidean distance functions for
primitives such as planes, cylinders, etc... At interior nodes,
we replace union and intersection operations with Min and
Max operations respectively. Evaluation of the CSG tree at
a point

�� � � � � � simply involves evaluation of the distance
functions of each leaf at

�� � � � � � and performing the corre-
sponding operations at the interior nodes of the CSG tree.
To compute the gradient,� � �� � � � � � is evaluated at the cor-
responding point at each of the leaves of the CSG tree and
passed upwards during the Min/Max operations along with
the value of the function at that point. Figures 1 and 6 were
each generated by evaluating a CSG tree.

2.1. Octree construction

Our current description of feature isolation has assumed
that an octree is present to partition space into cells. How-
ever, sometimes it is desirable to approximate

� �� � � � � �
to a given tolerance. To perform this approximation, we
present a top-down octree construction algorithm.

This octree construction algorithm proceeds by starting
with a single cell� as the octree. We use the sampling algo-
rithm above to sample

� �� � � � � � finely on a uniform grid
over � (a random sampling strategy could also be used).
Next, we construct a QEF for� using those sample points
and minimize the QEF. If the error

� �� � � � � � � � from equa-
tion 1 is greater than, then we subdivide the cell into
eight sub-cells and proceed recursively. The procedure stops
when all of the leaves of the octree have error less than and
constructs a minimal octree to approximate

� �� � � � � �.



Figure 3. Recursive functions faceProc
(black), edgeProc (dark gray) and vertProc
(light gray) used in enumerating cells of the
dual grid.

3. Topology creation

Given an octree, feature isolation generates vertices of
the dual grid that the surface will be extracted from. Topol-
ogy creation actually generates the topology of the dual
grid. This dual grid is topologically dual to the octree.
Therefore, for each vertex in the octree, a cell in the dual
grid will be created whose vertices are the feature vertices
inside of each cube in the octree containing that vertex.
Figure 2 shows the topology of a dual grid created from
an example quadtree where each vertex of the dual grid is
placed at the center of its cube. Although our algorithm op-
erates on octrees, the discussion in this section will focuson
quadtrees for simplicity; however, the algorithms described
here naturally extend to octrees.

Given a quadtree�, our task is to enumerate each cell
of the dual grid in an efficient manner without any explicit
neighbor finding in the quadtree. Our solution is a recur-
sive traversal of� that enumerates tuples of all leaf squares
that share a common vertex and is a simple extension of the
quadtree traversal used in [4].

The traversal involves three recursive func-
tions faceProc[��], edgeProc[��,��] and
vertProc[��,��,��,��]. Given an interior node�� in
the quadtree,faceProc[��] recursively calls itself on the
four children of�� as well as callingedgeProc on all four
pairs of edge-adjacent children of�� and one call tovert-
Proc on its four children. Given a pair of edge-adjacent in-
terior nodes�� and �� , edgeProc[��,��] recursively
calls itself on the two pairs of edge-adjacent children span-
ning the common edge between�� and�� as well as mak-
ing a single call tovertProc on the four children of��
and �� that touch the midpoint of this common edge. Fi-

Figure 4. The dual grid of the Max of two linear
functions with the plane � � � drawn trans-
parently (left). The zero-contour of this func-
tion (bold) as well as the projections of the
dual grid onto the contour plane (right).

nally, given four interior nodes��, ��, �� and�� that share
a common vertex,vertProc[��,��,��,��] recur-
sively calls itself on the four children that meet at the com-
mon vertex. During these calls, if one of the� � is a leaf,
then its children cannot be used for subsequent recur-
sive calls. In this case, a copy of� � is passed to the recursive
call for each child of� � required by the recursion. Fig-
ure 3 depicts the mutually recursive structure of these three
functions.

The recursive calls to these functions terminate when
all � � are leaves of the quadtree. At this point invert-
Proc, we have four leaves sharing the same corner. We
then construct a cell of the dual grid by connecting the ver-
tices generated by feature isolation for each cell to topolog-
ically form a square. In adaptive cases, one of the� � may
actually be repeated, which causes the square to geometri-
cally form a triangle. Note the running time of this method
is linear in the size of the quadtree since there is one call
to faceProc for each square in the quadtree, one call to
edgeProc for each edge in the quadtree and one call to
vertProc for each vertex in the quadtree.

As described above, callingfaceProc[��] generates
only cells that are interior to the root of the quadtree. To ex-
tend the dual grid to the boundary of the quadtree, we treat
the quadtree as being the center square in a� � � degener-
ate rectangular grid. Four squares in this grid degenerate to
edges of the quadtree while the remaining four squares de-
generate to the vertices of the quadtree. CallingedgeProc
with the root of the quadtree and each of its degenerate edge
neighbors generates those tiles touching the corresponding
edge of the quadtree. Likewise, callingvertProc at each
vertex of the root with its three degenerate vertex neigh-
bors generates the single dual cell touching the vertex. Fig-
ure 2 shows a dual grid generated using this method that
contains vertices on the edges and corners of the grid.



Figure 5. Contoured sphere without sliver
elimination (left) and with sliver elimination
(right).

4. Contouring dual grids

After generating the dual grid, we extract the surface us-
ing a simple extension of Marching Cubes to these dual
grids. Marching Cubes was originally designed to operate
only on axis-aligned cubes. However, the cells of our dual
grid have arbitrary vertices in space. Our solution is to no-
tice that each cell in the dual grid generated by the recursive
algorithm in section 3 is topologically equivalent to a cube
(although some vertices may be repeated due to the multi-
resolution structure of the octree). Using the scalar values�
at the vertices of the dual grid, we compute edge intersec-
tion points for each edge that contains a sign change. Then
we use the look-up table provided by Marching Cubes to
generate the topology of the surface interior to that cell.

Since the vertices of the dual grid lie on the features of� �� � � � � �, the contours of this dual grid also exhibit sharp
features similar to those produced by Extended Marching
Cubes and Dual Contouring. The principle advantage of
Dual Marching Cubes over these methods is that the under-
lying octree used to produce an equivalent contour is much
sparser.

To understand this phenomena, we consider a 2D exam-
ple. Figure 4 (left) contains the distance function for two
closely space, parallel lines shown on the right of the fig-
ure. These two linear functions are formed by taking the
Max of the distance function for each line. The left of the
figure shows the dual grid of

� �� � � � which consists of four
quads where the height of the vertex is formed by the scalar
value� . Contouring each of these quads yields four line
segments independent of the spacing of the two parallel
lines. In methods such as EMC and Dual Contouring, the
density of the primal grid used to resolve the two separate
contour lines of this function depends on the separation dis-
tance of the two contours. With Dual Marching Cubes, the
grid used in contouring the function adapts to features of
the distance function as opposed to features of the contour.
This distinction often avoids the need for high levels of re-
finement to separate closely spaced features of the contour.

As a more complex 3D example, consider the thin-
walled room of figure 1. This room is designed as a se-
quence of CSG operations based on planar primitives. The
lower left mesh is the Marching Cubes contour of this dis-
tance function on a fine grid to reproduce the thin walls
(note the rounding of sharp edges). The lower right mesh,
produced by Dual Contouring, exactly reproduces the shape
of the room but cannot simplify the numerous flat regions
in the mesh due to the thinness of the room’s walls. Our
method computes an octree to approximate the CSG tree
using the method of section 2.1. The resulting surface on
the upper right was generated by Dual Marching Cubes by
contouring the dual grid of that octree. This surface exactly
reproduces the shape of the room but uses far fewer poly-
gons. Note that as the thickness of the walls of this room de-
creases, the number of polygons used to contour this room
using Marching Cubes and Dual Contouring increases dra-
matically while the number of polygons produced by Dual
Marching Cubes remains roughly constant.

One drawback with using Marching Cubes to contour
these dual grids is that it tends to produce numerous sliver
polygons when the vertices of the dual grid lie close to the
plane� � �. The solution to this problem is to position the
vertices of the dual grid to lie exactly on� � � when possi-
ble. The effect on the resulting contour is to eliminate most
sliver polygons. To achieve this positioning, we first com-
pute the minimizer�� of the restricted QEF

� �� � � � � � � �. If
the residual at�� is less than, �

� is used as the vertex for
that cube. Otherwise, we perform feature isolation as be-
fore. Figure 5 shows the contours generated by Dual March-
ing Cubes illustrating sliver elimination.

Figure 6 depicts an example of a rocket constructed as
a sequence of CSG operations and the approximating mod-
els using Dual Marching Cubes, Marching Cubes and Dual
Contouring. The rocket is an interesting example because
the thin fins on the bottom of the shape exhibit five-fold
symmetry. While primal grids perform well when features
are axis aligned, these fins do not conform to parameter
lines on the primal grid. Consequently, methods such as
Marching Cubes and Dual Contouring have a difficult time
reproducing these thin features. On the other hand, Dual
Marching Cubes constructs a dual grid that conforms to the
fins and can reconstruct them accurately despite the fact that
the fins do not align with the octree.

Figure 7 illustrates adaptive surface extraction using a
horse and a dragon. On the horse, the polygons are more
coarse on the body than along the neck and the legs of the
horse. Despite the fact that the legs are thin compared to
the rest of the horse, they are reproduced accurately. The
dragon also shows an adaptive polygonalization where its
face and feet contain finer polygons than the rest of its body.
Though we have simply run Marching Cubes on these mod-
els without any multi-resolution extensions, the structure



Figure 6. CSG model of a rocket (upper left)
and models approximating the shape using
the same number of polygons. Dual Marching
Cubes (upper right), Marching Cubes (lower
left) and Dual Contouring (lower right).

of the dual grid naturally generates these multi-resolution
contours. Furthermore, since we use Marching Cubes to
contour these models, the resulting surface is topologically
manifold.

5. Implementation

When implementing this method, we abstract out the dif-
ferent possible inputs to our algorithm as a function that we
can evaluate to determine the scalar value and gradient at
our sample points. Since we are estimating sharp features
using QEFs, the same problems arise for volumes as found
in surface methods. For instance, when minimizing equa-
tion 1, the feature vertex may lie outside of the cube that
generated it. In this case, we minimize the QEF over the
boundary of the cube as in Lindstrom [8].

Also, notice that there is nothing that requires we place
vertices at the features of the distance function. While this

Figure 7. Adaptive surfaces extracted using
Dual Marching Cubes.

placement reproduces sharp features, one could modify the
feature isolation phase to simply sample

� �� � � � � � at the
center of each cube. The resulting algorithm is a contouring
algorithm similar to [10] except no special cases are gener-
ated in adaptive configurations and a manifold surface is al-
ways produced.

As far as performance is concerned, contouring dual
grids takes no longer than contouring primal grids. Since
dual grids conform better to the features of

� �� � � � � �,
sparser grids can be used to extract surfaces, which can ac-
tually decrease the time taken to contour. However, dual
grid generation is still somewhat slow. Feature isolation
took � �	 seconds for figure 1,� �� seconds for figure 6 and
several minutes for figure 7 using the octree construction al-
gorithm from section 2.1 on a�GHz Pentium.

One way of solving this problem is to realize that most
of the dual grid does not directly contribute to the ex-
tracted surface. Only cells of the dual grid that contain a
sign change will contain a piece of the surface. Therefore,
it may be possible to develop an algorithm that restricts the
feature isolation and topology creation phases to only those
cells that contain a piece of the extracted surface. We antic-
ipate the speed of this optimized method to be comparable
with other popular methods.

6. Future Work

We believe that the concept of dual grid generation has
applications outside of contouring. In fact, this grid gener-
ation actually extracts a piecewise linear approximation to
a given function

� �� � � � � � over a cubical domain. With this



in mind, dual grid generation should be an excellent method
for adaptively tiling several intersecting parametric surfaces
due to its ability to adapt edges of the dual grid to the inter-
section curves. In robotics, distance functions also play a
crucial role in applications such as path planning. There-
fore, another possible application of this dual grid would be
to compute an accurate, adaptive approximation to the dis-
tance function and then perform path planning on the dual
grid.

7. Acknowledgements

We’d like to thank Tao Ju for his help in creating several
of the figures in the paper as well as the Stanford Graphics
Laboratory and Cyberware for providing the models of the
dragon and horse.

References

[1] L. Balmelli, C. J. Morris, G. Taubin, and F. Bernardini. Vol-
ume warping for adaptive isosurface extraction. InProceed-
ings of the conference on Visualization ’02, pages 467–474.
IEEE Computer Society, 2002.

[2] S. F. Frisken, R. N. Perry, A. P. Rockwood, and T. R. Jones.
Adaptively sampled distance fields: A general representa-
tion of shape for computer graphics. InProceedings of
SIGGRAPH 2000, Computer Graphics Proceedings, Annual
Conference Series, pages 249–254. ACM Press / ACM SIG-
GRAPH / Addison Wesley Longman, July 2000.

[3] M. Garland and P. S. Heckbert. Surface simplification us-
ing quadric error metrics. InProceedings of SIGGRAPH 97,
Computer Graphics Proceedings, Annual Conference Series,
pages 209–216, Los Angeles, California, August 1997. ACM
SIGGRAPH / Addison Wesley.

[4] T. Ju, F. Losasso, S. Schaefer, and J. Warren. Dual contouring
of hermite data.ACM Transactions on Graphics, 21(3):339–
346, July 2002. ISSN 0730-0301 (Proceedings of ACM SIG-
GRAPH 2002).

[5] T. Ju, S. Schaefer, and J. Warren. Convex contouring of vol-
umetric data.The Visual Computer, 19(7–8):513–525, 2003.

[6] L. P. Kobbelt, M. Botsch, U. Schwanecke, and H.-P. Seidel.
Feature-sensitive surface extraction from volume data. In
Proceedings of SIGGRAPH 2001, Computer Graphics Pro-
ceedings, Annual Conference Series, pages 57–66. ACM
Press / ACM SIGGRAPH, August 2001.

[7] P. Lindstrom. Out-of-core simplification of large polygo-
nal models. InProceedings of SIGGRAPH 2000, Computer
Graphics Proceedings, Annual Conference Series, pages
259–262. ACM Press / ACM SIGGRAPH / Addison Wes-
ley Longman, July 2000.

[8] P. Lindstrom and C. T. Silva. A memory insensitive tech-
nique for large model simplification. InProceedings of the
conference on Visualization ’01, pages 121–126. IEEE Com-
puter Society, 2001.

[9] W. E. Lorensen and H. E. Cline. Marching cubes: A high
resolution 3d surface construction algorithm. InComputer
Graphics (Proceedings of SIGGRAPH 87), volume 21, pages
163–169, Anaheim, California, July 1987.

[10] R. N. Perry and S. F. Frisken. Kizamu: A system for sculpt-
ing digital characters. InProceedings of SIGGRAPH 2001,
Computer Graphics Proceedings, Annual Conference Series,
pages 47–56. ACM Press / ACM SIGGRAPH, August 2001.

[11] R. Shekhar, E. Fayyad, R. Yagel, and J. F. Cornhill. Octree-
based decimation of marching cubes surfaces. InIEEE Visu-
alization ’96, pages 335–344. IEEE, October 1996.

[12] R. Shu, C. Zhou, and M. S. Kankanhalli. Adaptive marching
cubes.The Visual Computer, 11(4):202–217, 1995.

[13] G. Varadhan, S. Krishnan, Y. Kim, and D. Manocha. Feature-
sensitive subdivision and iso-surface reconstruction. InIEEE
Visualization 2003, pages 99–106. IEEE, 2003.


