An Experimental Evaluation of List Scheduling *

Keith D. Cooper, Philip J. Schielke, and Devika Subramanian

Department of Computer Science, Rice University, Houston Texas
keith@cs.rice.edu, phisch@cs.rice.edu, devika@cs.rice.edu

Abstract. While altering the scope of instruction scheduling has a rich heritage in compiler literature, instruction scheduling algorithms have received little coverage in recent times. The widely held belief is that greedy heuristic techniques such as list scheduling are “good” enough for most practical purposes. The evidence supporting this belief is largely anecdotal with a few exceptions.

In this paper we examine some hard evidence in support of list scheduling. To this end we present two alternative algorithms to list scheduling that use randomization: randomized backward forward list scheduling, and iterative repair. Using these alternative algorithms we are better able to examine the conditions under which list scheduling performs well and poorly. Specifically, we explore the efficacy of list scheduling in light of available parallelism, the list scheduling priority heuristic, and number of functional units. While the generic list scheduling algorithm does indeed perform quite well overall, there are important situations which may warrant the use of alternate algorithms.

1 Introduction

Instruction scheduling plays a critical role in determining the performance of compiled code on today’s computers. Today’s microprocessors rely on the compiler to hide memory latencies and to keep functional units busy—both are tasks for the instruction scheduler. On the microprocessors of tomorrow, the quality of instruction scheduling may be more important, since these machines will feature longer memory latencies and more functional units.

Despite the importance of scheduling, we know quite little about the behavior of list scheduling—the most widely used technique for instruction scheduling [1, 3]. This paper presents an experimental evaluation of list scheduling that attempts to answer the following questions:

1. Is there room for improvement beyond list scheduling? It is widely believed that list scheduling usually achieves optimal or near-optimal results [5]; is this the case?
2. Will new microprocessor designs change the efficacy of list scheduling? To keep these machines busy, compilers will apply transformations that increase instruction-level parallelism; how will that change the scheduling problems that the compiler sees?

* This work has been supported by DARPA and the USAF Research Laboratory through Award F30602-97-2-298.
3. Can we classify scheduling problems so that the compiler can recognize when other scheduling techniques should be invoked? If we can discover metrics that predict bad behavior from list scheduling, we can design compilers that avoid it.

To answer these and other questions, this paper examines the strengths and weaknesses of list scheduling. We develop several metrics to classify instances of scheduling problems. We evaluate the performance of list scheduling against those metrics and compare it against two alternative scheduling algorithms. Our experiments use both real benchmark codes and randomly-generated sets of basic blocks.

The remainder of the paper is organized as follows. Section 2 provides background information about the framework in which we performed this investigation. Section 3 discusses the list scheduling algorithm. Section 4 describes improvements to list scheduling and an alternative technique based on iterative repair. Section 5 presents our metrics for classifying instances of the scheduling problem. Sections 6 and 7 present experimental results.

2 Experimental Setup

Our experiments use components of a research compiler system developed at Rice University. It has front ends for both C and Fortran; these translate the input code into a linear, low-level intermediate form called iloc. The individual iloc operations resemble simple risc machine operations, with register-to-register operations that manipulate virtual registers, plus load and store operations. Individual operations are grouped together into instructions; an instruction aggregates together all the operations that begin execution in a single cycle.

Before scheduling, the compiler applies a series of optimizations to the iloc code. This includes pointer analysis, dead code elimination, global value numbering, lazy code motion, constant propagation, strength reduction, register coalescing, dead code elimination, and empty block removal. For the purposes of this paper, no register allocation was performed; this eliminates interactions between allocation and scheduling and isolates the impact of scheduling.

After optimization, the compiler passes the code to the scheduler. Each block is scheduled individually. The first step constructs a data-precedence graph (dpg) for the block. The dpg $G = (N, E, E')$ has a node $n \in N$ for each operation. Edges $e = (n_i, n_j) \in E$ represent dependences between operations; their direction matches the flow of values. Edges in E' represent anti-dependences in the code that prevent reordering. An anti-edge $e = (n_i, n_j) \in E'$ indicates that moving n_j before n_i would change the flow of values because of a name that n_i uses and n_j redefines. The details of the individual schedulers vary; they are described in sections 3 and 4.

To evaluate the schedules, we use several variations on a simple processor model. Each architecture consists of k identical pipelined functional units. Each functional unit can execute any iloc operation. For our experiments, we vary k between one and three. Each iloc operation has a latency—the number of
cycles required before its results are available. Register values are read in the cycle when the instruction begins execution, and results are defined in the last cycle of its latency. Thus, an operation \(v \) can begin execution when all operations \(\forall (v, u) \in E \) have completed, and all operations \(\forall (u, w) \in E' \) have already been issued.

3 The List Scheduling Algorithm

Here we describe our implementation of list scheduling. First, the \(\text{DPG} \) is built as described in the previous section. Next, priorities are assigned to each node in the graph. There are several different heuristics that can be used to assign priorities. A common and effective strategy is to use the latency weighted depth of the node \([3, 5]\). The depth of a node \(n \) is the length (number of nodes) of the longest path in the \(\text{DPG} \) from \(n \) to some leaf (including \(n \) and the leaf.) The latency weighted depth is computed the same way, but the nodes along the path are weighted using the latency of the operation the node represents. The following formula summarizes the priority computation for a node \(n \):

\[
priority(n) = \max \left(\forall \text{leaves}(\text{DPG}) \forall \text{paths}(n, \ldots, l) \sum_{p_i=n}^{l} \text{latency}(p_i) \right)
\]

Dynamic programming can be used to compute the priorities efficiently, and we take into consideration the anti-edges described above:

\[
priority(n) = \begin{cases}
\text{latency}(n) & \text{if } n \text{ is a leaf.} \\
\max(\text{latency}(n) + \max_{(m, n) \in E}(\text{priority}(m)), \\
\max_{(m, n) \in E'}(\text{priority}(m))) & \text{otherwise.}
\end{cases}
\]

The final phase is the actual list scheduling algorithm that constructs the schedule for the block. Starting at cycle 0, the list scheduler places operations into the schedule cycle by cycle. Any operation that is “ready” at cycle \(X \) (i.e., all its operands have been computed), is a candidate to be scheduled at cycle \(X \). The priorities computed in the previous step are used to determine which ready operation to schedule, by selecting the highest priority operation first. Any tie in the priority of two operations is broken arbitrarily. The algorithm is detailed in Figure 1. Through the rest of the paper we refer to this algorithm as \(\text{ls} \).

4 List Scheduling Alternatives

Here we present two alternatives to the \(\text{ls} \) algorithm discussed in the last section. For a survey of scheduling techniques see [4, 8]. A machine learning approach to scheduling has been developed by Moss and others [7].

4.1 Random Tie Breaking

A traditional list scheduler returns a single solution by breaking any ties in the priority of two or more operations arbitrarily. By running the list scheduler several times and breaking ties randomly, we could potentially generate more and
input: Data Precedence Graph \((N,E,E')\) with priorities assigned to each node. Parameters of machine (instruction latencies, pipelining, number of functional units, etc.)

Output: A schedule containing all nodes in the graph that satisfies the precedence constraints in the DPG and the resource constraints of the machine.

Algorithm:

\[
\begin{align*}
\text{cycle} &= 0 \\
\text{ready-list} &= \text{root nodes in DPG} \\
\text{inflight-list} &= \text{empty list} \\
\text{while} \ (\text{ready-list or inflight-list not empty, and an issue slot is available}) \ &\text{do} \\
\quad \text{for} \ \text{op} = \text{(all nodes in ready-list in descending priority order)} \\
\quad \quad \text{if} \ (\text{a functional unit exists for op to start at cycle}) \\
\quad \quad \quad \text{remove op from ready-list and add to inflight-list} \\
\quad \quad \quad \text{add op to schedule at time cycle} \\
\quad \quad \quad \text{if (op has an outgoing anti-edge)} \\
\quad \quad \quad \quad \text{Add all targets of op's anti-edges that are ready to ready-list} \\
\quad \quad \quad \quad \text{endif} \\
\quad \quad \text{endif} \\
\quad \text{endfor} \\
\quad \text{cycle} = \text{cycle} + 1 \\
\quad \text{for} \ \text{op} = \text{(all nodes in inflight-list)} \\
\quad \quad \text{if} \ (\text{op finishes at time cycle}) \\
\quad \quad \quad \text{remove op from inflight-list} \\
\quad \quad \quad \text{check nodes waiting for op in DPG and add to ready-list} \\
\quad \quad \quad \text{if all operands available} \\
\quad \quad \text{endif} \\
\quad \text{endfor} \\
\text{endwhile} \\
\end{align*}
\]

Fig. 1. List Scheduling algorithm

better solutions. Figure 2 is an example from the tomcatv benchmark. Assume all load immediates (LDI) take one cycle, all add operations (ADD) take two cycles, and the copy (i2i) takes one cycle. Assume we are scheduling on a machine with two identical functional units. The numbers next to the operations are the priority values that list scheduling uses. In this figure we see two different list schedules that could be generated from the DPG. The second one requires one less cycle. The critical decision comes in the second cycle, where the tie between the LDI\text{d} and LDI\text{c} must be broken. Scheduling LDI\text{d} early enough results in a shorter schedule.

4.2 Backward list scheduling

In addition, there are some blocks for which a backward list scheduler can generate a better solution. A backward list scheduler works by reversing the direction of all edges in DPG, and scheduling the finish times of each operation. (Note that the start time of operations must be used to ensure enough available functional units for a given cycle.) This technique tends to cluster operations toward the end of the schedule instead of the beginning like a forward list scheduler. For
an example of a block that benefits from backward list scheduling see Figure 3, which shows a block from the go benchmark. Assume there are two integer units that can execute the LDI operations (one cycle), the LSL operation (one cycle), the ADD operations (two cycles), ADDI operation (one cycle), and the CMP operation (one cycle). A separate memory unit executes the ST operations (four cycles). All functional units are completely pipelined. A forward list scheduler will schedule the four LDI operations and the the LSL before scheduling any of the ADD operations. This delays the start of the higher latency store operations (ST). A better schedule can be found by a backward list scheduler as shown in the example.

We have developed a new scheduling technique called rnr (randomized backward and forward list scheduling.) rnr schedules each block M times forward and M times backward breaking any ties in the priority heuristic randomly. The shortest schedule over all $2M$ runs is kept. The best value for M should be determined based on the characteristics (e.g. number of operations) of the particular scheduling problem.

4.3 Iterative Repair Scheduling

Here we introduce the application of a repair based scheduling technique called “iterative repair” to the problem of instruction scheduling in a compiler. This algorithm comes from the AI community and is described by Lin and Kernighan [6], and Zweber, et. al. [10, 11]. The technique has shown promise for several scheduling problems including space shuttle mission scheduling.

The generalized algorithm is presented in figure 4. The idea is straightforward. First, create an instruction schedule that begins each operation as early as possible with respect to the precedence constraints of the NPG, but ignores the resource constraints imposed by the limited number of processing elements. Now
“repair” the schedule by moving operations that have a resource conflict to a point later in the schedule. This reduces the number of resource conflicts for the cycle being repaired. A resource conflict is simply a point in the schedule where more operations are scheduled than the available number of functional units. The earliest cycle with a conflict is found, and one of the conflicting operations is selected (line (1) in the algorithm). This operation and all operations that depend on it are removed from the schedule (called unscheduling). The selected operation and its dependent operations are then inserted back into the schedule (called rescheduling) at a later point (line (2) in the algorithm). We continue repairing the schedule until there are no more resource conflicts. The algorithm is run a “user specified” number of times, and the shortest schedule over all the trials is selected as the final schedule.

We have tested several new variations of the iterative repair scheduling algorithm. The most effective one to date we refer to as ir-bias. In ir-bias the selection of which node to move (called the move-node) is not completely random. Rather, operations with lower priority values (the same priority values as used by the list scheduler) are more likely to be moved. The selection is probabilistic; the probability that a node is selected is inversely related to its priority.

The move-node is scheduled one cycle later than its original position. All successor nodes are rescheduled as early-as-possible with respect to this new start time. This could cause additional conflicts to be created later in the schedule,
input: Data Precedence Graph. Parameters of machine (instruction latencies, pipelining, number of functional units, etc.). The number of iterations to perform \(\text{iter} \).

Output: A schedule containing all nodes in the graph that satisfies the precedence constraints in the DPG and the resource constraints of the machine.

Algorithm:

\[
\begin{align*}
\text{min} &= \text{largest integer} \\
\text{shortest} &= \text{a schedule initially empty} \\
\text{for } i = (1 \text{ to } \text{iter}) \\
&\quad \text{Create an initial } \text{schedule} \text{ by scheduling all operations as early as possible subject to precedence constraints}. \\
&\quad \text{while (there exist resource conflicts in } \text{schedule}) \\
&\quad &\quad \text{conflict} \text{time} &= \text{the cycle of the first resource conflict in the schedule} \\
&\quad &\quad (1) &\quad \text{select an operation that has a resource conflict at } \text{conflict} \text{time} \\
&\quad &\quad &\quad \text{unschedule operation and all its successors in DPG} \\
&\quad &\quad (2) &\quad \text{reschedule operation and its successors later in } \text{schedule}. \\
&\quad \text{endwhile} \\
&\quad \text{if length of } \text{schedule} \text{ is less than } \text{min} \\
&\quad &\quad \text{then } \text{min} &= \text{length of } \text{schedule} \\
&\quad &\quad \text{shortest} &= \text{schedule} \\
&\quad \text{endif} \\
\end{align*}
\]

Fig. 4. Basic Iterative Repair Scheduling algorithm

but a future repair will correct any new conflicts. After each repair we compare the length of the new schedule to that of the old schedule. If the new length is greater, the repair is ignored, the state of the previous schedule is restored, and a new move-node is selected. A new schedule with a greater length than the previous schedule is kept ten per cent of the time to avoid local minima. For more information on iterative repair algorithms please see our technical report [9].

5 Metrics Used in Experiments

In this section we define several metrics that help us to characterize scheduling problems. The first is used to help us assess the quality of a schedule generated for a particular graph. The second and third metrics are used to assess the difficulty of a particular scheduling problem instance.

5.1 Minimum Schedule Length

We would like to be able to evaluate the performance of our scheduling algorithms on particular problem instances. One way to do this is to estimate the minimum possible schedule length for the problem. Of course finding the minimum length is NP-complete but we use several observations to develop a lower bound on the minimum schedule length. If our scheduler returns a schedule whose length is equal to this metric we are guaranteed that the solution is optimal.
The first part of our estimate is the critical path length of the nrg denoted by \(cpl(G) \) where \(G \) is the nrg. This is the length (in cycles) of the longest (latency weighted) path from any leaf in the nrg to any root. Since any schedule must ensure all dependences in the nrg are followed, there exists no valid schedule whose length is less than the critical path length. Thus, if a scheduling algorithm finds a schedule whose length equals the critical path length for a particular problem, no more work on that problem will result in a better schedule.

Since critical path length does not take hardware constraints into account, we refine this minimum schedule length estimate in the following way. Assume we schedule every operation in the nrg as early as possible without regard to hardware constraints (i.e. the starting point for iterative repair.) The length of this schedule is equal to the critical path length \(cpl(G) \). Next we find all nodes on some critical path. These nodes are important because if any one of them gets scheduled later than its as-early-as-possible position, the final schedule length will be greater than the critical path length. Finally, we examine the schedule cycle by cycle and record the maximum number of critical operations scheduled to start at any one cycle (call this value \(N' \).) Let \(p \) be the number of processing elements on the machine. If \(N' \) is greater than \(p \), then the minimum schedule length must be at least \(cpl(G) + \lceil N'/p \rceil - 1 \).

One final measure we use for the minimum schedule length is simply the number of operations \(N \) in the nrg divided by the number of available processing elements \(p \). The following equation summarizes our estimate for minimum schedule length of a nrg \(G \).

\[
\text{minlength}(G) = \max(cpl(G) + \lceil N'/p \rceil - 1, N/p)
\]

5.2 Available Parallelism

This metric is a measure of how much parallelism is available in a piece of code. It is similar to the available speedup measure described by Rau and Fisher [8], except that we compute the value during compilation.

Different nrg’s have differing amounts of parallelism available in them. To quantify this notion we define a metric called the available parallelism or \(ap \) of a nrg. This value is equal to the length of the worst possible schedule (i.e. the sum of the latencies of all operations in the nrg) divided by the length of the best possible schedule (i.e. the critical path length). Of course this value is dependent on the latencies of the various operations as determined by the architecture.

There is an interesting correlation between available parallelism and the difficulty of a particular scheduling problem. This relationship is explored in section 7. Intuitively, the lower the \(ap \) the fewer decisions any scheduling algorithm needs to make, while higher \(ap \) values lead to more decisions.

5.3 Number of List Schedules

This metric is another attempt to quantify the number of decisions made by l.s. In this metric we estimate the number of possible list schedules caused by ties
in the priority heuristic. Consider an architecture with two identical functional
units. Assume the list scheduler is at a point where four operations are tied for
the highest priority value and are data ready. There are 4 choose 2 or 6 possible
schedules that could result from this tie. If there are no ties to be broken by
either forward or backward list schedulers, then RBF will yield no improvement.

The metric num\text{list_estimate} is an estimate of the number of possible list
schedules and is computed while running \texttt{ls}. It’s initial value is one, and it
is updated every time a tie is encountered while scheduling. Let \text{max} be the
number of nodes in the ready list with highest priority, and \text{p} be the number of
processing elements still available this cycle. To update num\text{list_estimate} we
do the following:

\[
\text{num\text{list_estimate}} = \text{num\text{list_estimate}} \times \left(\frac{\text{max}}{\text{p}}\right)
\]

6 Experimental Results on Real Code

In this section we discuss the effectiveness of the various schedulers on benchmark
codes. A summary of the benchmark codes is presented in table 1. In the table
we show the number of \texttt{roc} operations, average number of operations per basic
block, the average available parallelism per block, and the maximum available
parallelism over all blocks. All available parallelism numbers are rounded to the
nearest tenth. Notice that most of the blocks are small. Over all benchmarks,
about 56 per cent (11412 of 20561) of basic blocks had available parallelism values
equal to 1. About 6.8 per cent (131 of 20561) had available parallelism values
greater than 5.0. The distribution of available parallelism for the remainder of
the blocks is shown in figure 5. Notice that on the average there is little available
parallelism, although a few blocks do have very high available parallelism values.

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>operations</th>
<th>ops per block</th>
<th>avg. \text{ap}</th>
<th>max \text{ap}</th>
</tr>
</thead>
<tbody>
<tr>
<td>adpcm</td>
<td>339</td>
<td>4.1</td>
<td>1.3</td>
<td>6.0</td>
</tr>
<tr>
<td>clean</td>
<td>7902</td>
<td>5.5</td>
<td>1.3</td>
<td>5.5</td>
</tr>
<tr>
<td>compress</td>
<td>1281</td>
<td>5.6</td>
<td>1.4</td>
<td>8.6</td>
</tr>
<tr>
<td>fft</td>
<td>1544</td>
<td>6.4</td>
<td>1.5</td>
<td>6.5</td>
</tr>
<tr>
<td>go</td>
<td>50401</td>
<td>5.0</td>
<td>1.2</td>
<td>12.5</td>
</tr>
<tr>
<td>gzip</td>
<td>10264</td>
<td>4.9</td>
<td>1.4</td>
<td>7.5</td>
</tr>
<tr>
<td>jpeg</td>
<td>13029</td>
<td>6.6</td>
<td>1.3</td>
<td>11.4</td>
</tr>
<tr>
<td>shorten</td>
<td>2746</td>
<td>4.2</td>
<td>1.2</td>
<td>9.5</td>
</tr>
<tr>
<td>water</td>
<td>3509</td>
<td>11.6</td>
<td>1.7</td>
<td>23.6</td>
</tr>
<tr>
<td>applu</td>
<td>9799</td>
<td>16.6</td>
<td>1.9</td>
<td>25.1</td>
</tr>
<tr>
<td>cg</td>
<td>580</td>
<td>6.6</td>
<td>1.4</td>
<td>3.5</td>
</tr>
<tr>
<td>deduc</td>
<td>19430</td>
<td>12.4</td>
<td>1.9</td>
<td>74.9</td>
</tr>
<tr>
<td>fpppp</td>
<td>8627</td>
<td>27.5</td>
<td>2.2</td>
<td>46.6</td>
</tr>
<tr>
<td>mg</td>
<td>1789</td>
<td>11.1</td>
<td>1.8</td>
<td>16.9</td>
</tr>
<tr>
<td>tomcatv</td>
<td>684</td>
<td>13.4</td>
<td>2.3</td>
<td>10.6</td>
</tr>
</tbody>
</table>
Available Parallelism for Benchmark Codes

![Available Parallelism vs. Number of Blocks](image)

Fig. 5. Available Parallelism vs. Number of Blocks

Table 2 shows a lower bound on the percentage of basic blocks that l.s was able to schedule optimally on the various architectures. That is, the percentage of basic blocks for which l.s found a schedule whose length equaled \(\text{min} \) length\((G)\), where \(G \) is the \(dpg \) constructed for the basic block. These numbers are quite high and indicate that l.s is very often finding the optimal schedule.

Each benchmark was scheduled using rbf and ir-bias, on architectural models with one, two, and three identical processing elements. rbf was run 50 times backward and forward, and ir-bias was run 100 times. The runtime performance of the resulting code was compared to that of the code scheduled with l.s. Very few improvements were observed. *tomcat* improved by .6 per cent on one processing element and .4 per cent on three processing elements. *doduc* improved by .1 per cent on one processing element. All other codes were sped up by less than .1 per cent when the more powerful scheduling algorithms were used. In roughly 55 per cent of the experiments no speed up was observed.

Clearly l.s performs quite well on real codes when scheduling is performed at the basic block level. Few improvements were observed when using more powerful scheduling techniques. The next section presents further evidence as to why that is the case.

7 Experimental Results on Random Graphs

In this section we present some experimental results for instruction scheduling on randomly generated basic blocks with different numbers of operations. Each nloc operation was randomly assigned a latency between 1 and 4 cycles with uniform distribution. Each operation had two source registers and a single destination register. Each register number was chosen randomly.
Table 2. Percentage of Basic Blocks Optimally Scheduled by ls

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>one</th>
<th>two</th>
<th>three</th>
</tr>
</thead>
<tbody>
<tr>
<td>adpcm</td>
<td>97.6</td>
<td>96.3</td>
<td>98.8</td>
</tr>
<tr>
<td>clean</td>
<td>91.4</td>
<td>97.7</td>
<td>99.2</td>
</tr>
<tr>
<td>compress</td>
<td>89.0</td>
<td>93.4</td>
<td>97.8</td>
</tr>
<tr>
<td>fft</td>
<td>91.7</td>
<td>95.6</td>
<td>98.3</td>
</tr>
<tr>
<td>go</td>
<td>93.9</td>
<td>97.5</td>
<td>99.3</td>
</tr>
<tr>
<td>gzip</td>
<td>91.3</td>
<td>95.7</td>
<td>98.9</td>
</tr>
<tr>
<td>jpeg</td>
<td>94.2</td>
<td>97.1</td>
<td>99.1</td>
</tr>
<tr>
<td>shorten</td>
<td>96.3</td>
<td>96.4</td>
<td>99.3</td>
</tr>
<tr>
<td>water</td>
<td>85.8</td>
<td>94.1</td>
<td>96.7</td>
</tr>
<tr>
<td>applu</td>
<td>86.8</td>
<td>87.1</td>
<td>92.5</td>
</tr>
<tr>
<td>cg</td>
<td>91.0</td>
<td>95.5</td>
<td>97.8</td>
</tr>
<tr>
<td>deduc</td>
<td>82.1</td>
<td>92.2</td>
<td>97.9</td>
</tr>
<tr>
<td>fpppp</td>
<td>85.0</td>
<td>92.7</td>
<td>96.8</td>
</tr>
<tr>
<td>mg</td>
<td>91.3</td>
<td>93.8</td>
<td>97.5</td>
</tr>
<tr>
<td>tomcatv</td>
<td>88.2</td>
<td>70.6</td>
<td>80.4</td>
</tr>
</tbody>
</table>

Each graph was first scheduled using ls. The resulting schedule length was compared against the `minlength` metric described in section 5. If the schedule length was greater than `minlength` the graph was scheduled with `rbf` run 50 times backward and forward and `ir-bias` run 1000 times. The results for scheduling on one processing element are shown in figure 6. The left-hand graphs plot available parallelism on the x-axis and the percentage of experiments where either `rbf` or `ir-bias` found a shorter schedule than `ls` on the y-axis. Blocks with 10, 20 and 50 operations are shown. This value is a lower bound on the percentage of times `ls` failed to find the optimal schedule. A minimum of 2000 graphs were scheduled at each parallelism level. The right-hand graph shows the percentage of experiments in which `ir-bias` found a shorter schedule than both `rbf` and `ls`.

Note the interesting shape of the graphs. Clearly list scheduling performs better at certain levels of available parallelism than others. It is easy to explain list scheduling’s success at low levels of available parallelism. When the list scheduler has very few choices to make, its probability of making an incorrect tie-breaking decision is low. One might then expect that with the exponential increase in the number of scheduling decisions at higher levels of available parallelism, list scheduling would have a greater probability of making incorrect decisions. Interestingly that is not the case; list scheduling performs well at high levels of available parallelism.

A possible explanation for the phenomenon is that most of the tie-breaking choices at high levels of available parallelism yield schedules that have the same length. Thus, the choices are really equivalent and do not contribute to list scheduling making incorrect tie-breaking choices. To test this potential explanation we experimentally determined the average number of distinct schedule
Fig. 6. Results for 1 processing element

lengths\(^1\) for each value of available parallelism for 20 operations and a single functional unit. The results are in Figure 7. We see that the number of distinct schedule lengths peaks at an available parallelism of about 2.7, corresponding closely to the observed peak in the percentage of times list scheduling is non-optimal. Note further that the number of distinct schedule lengths falls rapidly to 1, indicating that all the different choices of breaking ties yield schedules of the same length. Loosely speaking, we can paraphrase this result as follows — when the available parallelism is high, any decision will do, and thus the probability of list scheduling making an error is again low.

Substantial improvements over list scheduling are however possible at a range of parallelism levels with the peak appearing to be around 2.5 to 2.7. Notice further that as the number of operations is increased t.s has a more difficult

\(^1\) We used RBF running 5000 time backward and forward to compute the results.
time finding the best solution. Also notice that most of the improvements were found by \textit{rnf} with $M = 50$.

The picture changes slightly when we increase the number of processing elements as seen in figure 8. As we increase the number of processing elements the graphs “spread out”. For two processing elements the peak appears around 5 to 5.2, about double what it was for one processing element. We are conducting further experiments to explain this near-linear shift in the peaks of the graphs as the number of processing elements increases.

Figure 9 plots available parallelism on the x-axis, number of list schedules (see Section 5.3) on the y-axis and the percentage of experiments where \textit{rnf} or \textit{ir-bias} beat \textit{ls} on the z-axis (20 operations, two processing elements). The graph shows that even at low levels of available parallelism if the list scheduler is breaking a lot of ties, it may find a non-optimal schedule.

8 Conclusions

In this paper, we have studied the effectiveness of list scheduling on real codes and on randomly generated graphs. Our observations showed that, in general, list scheduling performs very well on real codes, and there appears to be little opportunity for improving its performance when scheduling over basic blocks taken from these codes.

Our experiments on randomly generated blocks provide deeper insight into the conditions where list scheduling is most likely to produce less than optimal schedules. We found that \textit{ls} has difficulty finding optimal schedules for codes with a moderate amount of available parallelism—the peak difficulty varies with both the number of processing elements and the schedule length. This answers our third question: we have characterized the set of blocks where the compiler writer may want to try other scheduling methods. This suggests a multi-level approach to scheduling, where the compiler uses statistical information about the \textit{dpf} to choose between \textit{ls} and other methods like the iterative repair schedulers.
(The curves for available parallelism depend heavily on specific details of both the processor and the operation mix. To use this approach, the compiler writer would need to compute appropriate data for the target machine.)

However, as the number of processing elements in a single microprocessor rises, the compiler will need more available parallelism to achieve a reasonable fraction of peak performance. The measurements shown in Figure 5 suggest that the compiler needs high-level transformations to increase available parallelism before it can generate code to keep a large number of processing elements busy. As these high-level transformations increase available parallelism, they can make the code harder to schedule. Our results suggest a way of detecting when that happens, as well as a set of alternative techniques to schedule those blocks.

On small basic blocks, with little available parallelism, the compiler should use list scheduling. As the length of the scheduled region grows, and its available parallelism increases, a window of opportunity for other techniques opens and then closes. Our findings show that this opportunity exists, and our metrics suggest a simple technique for capitalizing on it.

Fig. 8. Results for 2 processing elements
Fig. 9. Number of List Schedules Results

References