HPF: Language, Compilers and Environments

Ken Kennedy
Center for Research on Parallel Computation
Rice University

1. HPF Status Report
2. Problems with HPF 1
 performance, missing features, tools
3. Responses
 HPF enhancement activities
 Language, compiler, and tool research
4. Future Directions
Status of Scalable Parallelism

• Dream
 - virtually limitless computing power at low cost
 - performance scalable from one to thousands of processors
 - easy portable programming

• Reality
 - successful at only moderate levels of scalability
 - modest progress in programmability and scalability
 - limited penetration in industry
 independent software vendors (ISVs) still reluctant
 limited protection of programming investment

• Remedy: Architecture-Independent Programming
 - a programming language and its compilers support
 architecture-independent parallel programming if
 compiled code ≅ hand code for same algorithm
 for each target architecture
HPF Goals

• Support for Scalable Parallel Systems
 - scaling from one to thousands of processors

• Focus on Data Parallelism
 - parallelism through subdivision of data domain

• Machine Independent Programming Support
 - object program achieves performance comparable to hand-coded MPI on each target machine on the same algorithm

• High Level of Abstraction
 - more accessible programming model
 - single thread of control
 - shared memory
 - implicit generation of communication
HPF Strategy

Fortran 90
Sequential Machine

Data Distribution Directives
Free

CM-2
IBM SP-2

HPF
HP/Convex SPP2000
HPF Language

- Fortran 90 + Data Distribution
 - !HPF$ TEMPLATE D(256,256)
 - !HPF$ ALIGN A(I,J) WITH D(I+1,J)
 - !HPF$ DISTRIBUTE D(BLOCK,CYCLIC)
 - virtual processor array
 - align data elements
 - map to processors

- Explicit and Implicit Parallelism
 - Fortran 90 array statements, DO loops
 - "owner computes"

- Extended looping and aggregate assignment
 - FORALL (single-statement and block)
 - DO INDEPENDENT

- HPF Library
 - scatter, gather, reduction, segmented scan

- Extrinsic Interface
 - permits calls to message passing, other languages
(Block, Cyclic) Distribution

Processors

Template Elements
REAL A(1023,1023), B(1023,1023), APRIME(511,511)

!HPF$ TEMPLATE T(1024,1024)
!HPF$ ALIGN A(I,J) WITH T(I,J)
!HPF$ ALIGN B(I,J) WITH T(I,J)
!HPF$ ALIGN APRIME(I,J) WITH T(2*I-1,2*J-1)
!HPF$ DISTRIBUTE T(BLOCK,BLOCK)

!HPF$ INDEPENDENT, NEW(I)
DO J = 2, 1022 ! Multigrid Smoothing Pass (red-black relaxation)
!HPF$ INDEPENDENT
DO I = MOD(J,2), 1022, 2
 A(I,J) = 0.25*(A(I+1,J) + A(I+1,J) + A(I,J-1) + A(I,J+1)) + B(I,J)
END DO
END DO

!HPF$ INDEPENDENT, NEW(I)
DO J = 2, 510 ! Multigrid Restriction
!HPF$ INDEPENDENT
DO I = 2, 510
 APRIME(I,J) = 0.05*(A(2*I-2,2*J-2) + 4*A(2*I-2,2*J-1) + &
 & A(2*I-2,2*J) + 4*A(2*I-1,2*J-2) + 4*A(2*I-1,2*J) + &
END DO
END DO

! Multigrid convergence test
ERR = MAXVAL(ABS(A(:, :) - B(:, :)))
• Bad News
 - Acceptance of language has been slow in coming
 MPI has achieved penetration much faster
 compilers complex and not yet mature
 performance was initially disappointing
 additional features needed

• Good News
 - Compilers now available for every HPC platform
 - Applications beginning to emerge
 - Promising benchmark results
HPF Commercial Interest

• Announced HPF Products
 - Applied Parallel Research
 - CDAC
 - Cray Research
 - Digital Equipment
 - Fujitsu
 - Hitachi
 - HP
 - IBM
 - Intel
 - Meiko
 - Motorola
 - NA Software
 - NEC
 - Pacific Sierra Research
 - Portland Group
 - Sun
 - Transtech

• Announced HPF Efforts
 - ACE
 - Lahey
 - NAG
 - nCUBE

• Interested
 - EPC
 - SGI
 - Tera
HPF Usage

- Installations
 - PGI reports over 125 site licenses
 - NCSA: PGI on SGI is migration platform for CM-5

- Benchmarks
 - NAS Benchmarks: PGI compiler within factor of 2 (or better) of MPI

- Real Applications
 - NOAA, Princeton: Modular Ocean Model (100K lines)
 - Amoco: Falcon Reservoir Model (20K lines)
 - MATRA BAe Dynamics: AEROLOG (10K lines)
 - Quetzal: EPIC Crash Model (125K lines)
 - NCSA, UIUC: RIEMANN TVD and ENO Flow Code (50K lines)
 - U New Mexico: DFT Density Function Theory Code (6K lines)
 - MIT Earth Atmospheric and Planetary Science: Eulerian Ocean Model (3K lines)
 - Delft Univ TNO: Wish3D CFD code (125K lines, in progress)
 - U Houston: N-body Simulation (4K lines)
 - UIUC, Civil Eng: Nonlinear Multigrid Code (1K lines)
 - CRS4: GeoComp Seismic Migration Code
Problems for HPF

• Compilers slow to mature
 - Fortran 90 features supported inconsistently
 - compilation for highest efficiency complex
 - initially, efficiency of object programs unsatisfactory
 - early users may become discouraged

• Library support lacking
 - no CMSSL equivalent

• Needed features are missing
 - support for irregular problems
 - task parallelism
 - high performance input/output

• Complex relationship between program and performance
 - explanatory and diagnostic tools are needed
HPF Enhancement Activities

• HPF 2 Language Standard
 - Core Language: emphasis on implementable performance
 redistribution and realignment moved
 - Approved Extensions: future features
 support for irregular distributions
 computation distribution via ON clause
 task parallelism
 new extrinsic modules and interoperability components

• Library Development
 - effort to build interfaces to scientific libraries
 linear algebra (Dongarra) and FFT (J ohnsson)
 definition effort underway, implementation funding sought

• HPF User Group
 - First meeting: February 24-26, 1997 in Albuquerque
Specific Language Changes

• Changes in HPF 2 from HPF 1.1
 - Explicit interfaces **required** if remapping.
 - Intrinsic, commutative reductions.
 - Pointers cannot be mapped or point to mapped objects.
 - Mapping of aggregate covers **eliminated** from the language.
 - DYNAMIC and related features (REALIGN, REDISTRIBUTE) moved to Approved Extensions.

• Approved Extensions
 - DYNAMIC and related features (REALIGN, REDISTRIBUTE).
 - Extrinsic: HPF_SERIAL, HPF_LOCAL.
 - Pointer mapping.
 - All other new features passed in second reading.

irregular support, computation partitioning with ON clause, task parallelism.
D System Research Responses

• Compiler Optimization Research
 - dHPF research compiler
 new optimizations, new machine targets (e.g., DSM)
 - collaboration with Portland Group

• New Features
 - support for irregular problems
 collaboration with Joel Saltz
 - scalable I/O
 part of SIO initiative

• D System Tools
 - support for construction of efficient HPF programs
 intelligent editor displaying compiler feedback
 display of run-time information from Pablo (Dan Reed)
Future Research Areas

• Support for Heterogeneous Parallelism
 - language extensions for specification of task/object parallelism
 - automatic load balancing

• Java Compilation
 - compilation for high-performance servers
 freedom from portable Java restrictions
 - interprocedural analysis framework
 - autoparallelization

• Compiler Support for Problem-Solving Environments
 - PSE Toolkit: front-end plus interprocedural analysis

• Petaflops Computing
 - emphasis on 10 M-way parallelism and latency management
Summary

• HPF compilers emerging
 - language available on nearly every parallel system

• HPF 1 has some problems
 - performance
 - missing features
 - irregular support, task parallelism, I/O
 - programming tools and libraries needed

• HPF 2 addresses language issues
 - focus on implementable language for performance
 - advanced features as Approved Extensions

• CRPC research is developing new HPF technologies
 - advanced compiler optimization
 - support for new language features
 - libraries and programming tools
 - technology transfer to compiler vendors and end users