Information Technology Research: Investing in Our Future

President's Information Technology Advisory Committee
Report to the President

Ken Kennedy
PITAC Co-Chair

http://www.cs.rice.edu/~ken/Presentations/PITAC.pdf
Presentation Outline

• About PITAC
 — Charter
 — Membership
 — Activities
 - Fact finding
 - Some difficult issues
 — Reports and responses

• Findings and Recommendations
 — Investment Strategy
 — Research
 — Management

• Conclusions

President’s Information Technology Advisory Committee
Charter

- The Committee shall provide an independent assessment of:
 - Progress made in implementing the High-Performance Computing and Communications (HPCC) Program;
 - Progress in designing and implementing the Next Generation Internet initiative;
 - The need to revise the HPCC Program;
 - Balance among components of the HPCC Program;
 - Whether the research and development undertaken pursuant to the HPCC Program is helping to maintain United States leadership in advanced computing and communications technologies and their applications;
 - Other issues as specified by the Director of the Office of Science and Technology.
 - Review of the entire IT investment strategy — is it meeting the nation’s needs
Committee Membership

• Co-Chairs:
 - Bill Joy, Sun Microsystems
 - Ken Kennedy, Rice

• Members:
 - Eric Benhamou, 3Com
 - Ching-chih Chen, Simmons
 - Vinton Cerf, MCI
 - Steve Dorfman, Hughes
 - David Cooper, LLNL
 - Bob Ewald, SGI
 - David Dorman, PointCast
 - Sherri Fuller, U of Washington
 - David Farber, Penn
 - Susan Graham, UC Berkeley
 - Hector Garcia-Molina, Stanford
 - Danny Hillis, Disney, Inc
 - Jim Gray, Microsoft
 - John Miller, Montana State
 - Robert Kahn, CNRI
 - Raj Reddy, Carnegie Mellon
 - David Nagel, AT&T
 - Larry Smarr, UIUC
 - Ted Shortliffe, Stanford
 - Les Vadasz, Intel
 - Joe Thompson, Miss. State
 - Steve Wallach, Centerpoint
 - Andy Viterbi, Qualcomm
 - Irving Wladawsky-Berger, IBM
History: Phase I

• February 27-28, 1997: First committee meeting
 — Organized into subgroups for review of Federal research investments
 - Began process leading to report
• June 3, 1998: Committee sends letter to President Clinton summarizing major recommendations
• June 5, 1998: Strong IT endorsement in President’s MIT commencement address
 “In the budget I submit to Congress for the year 2000 I will call for significant increases in computing and communications research. I have directed Dr. Neal Lane, my new advisor for Science and Technology, to work with our nation’s research community to prepare a detailed plan for my review.”
• August 6, 1998: Interim report is released
History: Phase I I

- Following release of interim report
 - Established panels to solidify final recommendations
 - Committee members briefed Congressional and professional groups
 - Agencies convened workshops to develop budget requests

- January 24, 1999: Vice-President Gore announces the FY2000 budget initiative - Information Technology for the Twenty-first Century (IT²)
 - $366 million in incremental budget
 - reviewed later in talk

- February 24, 1999: Final Committee report is released

- May 28, 1999: Release of House Networking & IT R&D Act
 - 92% Increase over five years
Methodology

• Evaluation of Federal Research Investment Portfolio
 — Plans reviewed for each of the major areas:
 - High End Computing and Computation
 - Large Scale Networking
 - Human Centered Computer Systems
 - High Confidence Systems
 - Education, Training, and Human Resources

• Review of Balance in Federal Research Portfolio
 — Fundamental versus Applied
 - Based on our own definition of these terms
 — High-Risk versus Low-Risk
 — Long-Term versus Short-Term
Principal Finding

- Drift Away from Long-Term Fundamental Research
Principal Finding

• Drift Away from Long-Term Fundamental Research
 — Agencies pressed by the growth of IT needs
 - IT R&D budgets have grown steadily but not dramatically
 - IT industry has accounted for over 30 percent of the real GDP growth over the past five years, but gets only 1 out of 75 Federal R&D dollars
 - Problems solved by IT are critical to the nation—engineering design, health and medicine, defense
Principal Finding

- Drift Away from Long-Term Fundamental Research
 - Agencies pressed by the growth of IT needs
 - IT R&D budgets have grown steadily but not dramatically
 - IT industry has accounted for over 30 percent of the real GDP growth over the past five years, but gets only 1 out of 75 Federal R&D dollars
 - Problems solved by IT are critical to the nation—engineering design, health and medicine, defense
 - Most IT R&D agencies are mission-oriented
 - Natural and correct to favor the short-term needs of the mission
Principal Finding

• Drift Away from Long-Term Fundamental Research
 — Agencies pressed by the growth of IT needs
 - IT R&D budgets have grown steadily but not dramatically
 - IT industry has accounted for over 30 percent of the real GDP growth over the past five years, but gets only 1 out of 75 Federal R&D dollars
 - Problems solved by IT are critical to the nation—engineering design, health and medicine, defense
 — Most IT R&D agencies are mission-oriented
 - Natural and correct to favor the short-term needs of the mission

• This Trend Must Be Reversed
 — Continue the flow of ideas to fuel the information economy and society
Remedy

- Increase the Federal IT R&D Investment by 1.4 billion dollars per year
 - Ramp up over five years
 - Focus on increasing fundamental research
Remedy

• Increase the Federal IT R&D Investment by 1.4 billion dollars per year
 — Ramp up over five years
 — Focus on increasing fundamental research

• Invest in Key Areas Needing Attention
 — Software
 — Scalable Information Infrastructure
 — High-End Computing
 — Social, Economic, and Workforce Issues
Remedy

- Increase the Federal IT R&D Investment by 1.4 billion dollars per year
 - Ramp up over five years
 - Focus on increasing fundamental research

- Invest in Key Areas Needing Attention
 - Software
 - Scalable Information Infrastructure
 - High-End Computing
 - Social, Economic, and Workforce Issues

- Develop a Coherent Management Strategy
 - Establish clear organizational responsibilities
 - Diversify modes of support
Software

• Findings:
 – Demand for software far exceeds the nation’s ability to produce it
 - IT workforce shortage
 – The nation depends on fragile software
 - Y2K problem
 – Technologies to build reliable and secure software are inadequate
 - Critical infrastructure is at risk
 – The diversity and sophistication of software systems are growing rapidly
 – More and more common activities of ordinary people are based on software
 - Finance, entertainment, travel, government services
 – The nation is under-investing in fundamental software research
 - Example: HPCC Program
Software

• Recommendations
 — Make fundamental software research an absolute priority
 — Fund fundamental research in software development methods and component technologies
 - Component libraries, integration technologies, tools for integration management, language interoperability
 — Support fundamental research in human-computer interfaces and interaction
 - Build on exciting new technologies, less dependence on text and manual dexterity
 — Support fundamental research in capturing, managing, analyzing, and explaining information and in making it available for its myriad uses
 - Integrate non-text information, knowledge extraction
 — Make software research a substantive component of every major information technology research initiative.
Scalable Information Infrastructure

• Findings:
 – Our Nation’s dependence on the Internet as the basis for its information infrastructure continues to grow at a dramatic rate.
 – The Internet is growing well beyond the intent of its original designers,
 - No longer understand it and cannot confidently continue to extend it
 – Learning how to build and use large, complex, highly-reliable and secure systems requires research
 - Scaling to provide robust, reliable, high-speed access.
 - Scaling to provide assured quality of service.
 - Scaling to provide ubiquitous access.
 - Scaling of services to handle users and requests reliably.
 - Scaling of the security of the infrastructure
 - Scaling to support huge information servers.
Scalable Information Infrastructure

- Recommendations
 - Fund research on understanding the behavior of the global-scale network.
 - Support research on the physics of the network, including optical and wireless technologies such as satellites, and bandwidth issues.
 - Support research to anticipate and plan for scaling the Internet.
 - Support research on middleware that enables large-scale systems.
 - Information management, Information and services survivability
 - Support research on large-scale applications and the scalable services they require.
 - National digital library, Next-generation world-wide web
 - Fund a balanced set of testbeds that serve the needs of networking research, research in enabling information technologies and advanced applications, and Internet research.
High-End Computing

• Findings:
 — High-end computing is essential for science and engineering research
 — High-end computing is an enabling element of the United States national security program
 — New applications of high-end computing are ripe for exploration
 — Suppliers of high-end systems suffer from difficult market pressures
 - High-end market not large
 — Innovations are required in high-end systems and application-development software, algorithms, programming methods, component technologies, and computer architecture
 - Scalable parallel architectures not ideal for every application
 — High-end computing capability for the civilian science and engineering community is falling dangerously behind the state of the art
High-End Recommendations

• Research:
 – Fund research into innovative computing technologies and architectures
 – Fund R&D on software for improving the performance of high-end computing
 – Drive high-end computing research by trying to attain a sustained petaops/petaflops on real applications by 2010 through a balance of hardware and software strategies

• Facilities
 – Fund the acquisition of the most powerful high-end computing systems to support science and engineering research

• Management
 – Expand the NSTC CIC High End Computing and Computation (HECC) Working Group’s coordination process to include all major elements of the government’s investment in high-end computing
Social, Economic, Workforce Issues

• Findings
 – The use of information technology—the growing popularity of the Internet and the emergence of global commerce—has introduced a series of important and complex policy issues
 – Policy decisions and IT investments are being made on the basis of incomplete data about the effects of IT on our society
 – All of our citizens must have access to information technology
 – Full participation in information technology research requires access to high-bandwidth connectivity
 – The supply of information technology workers does not meet the current demand
 – A diverse workforce literate in information technology is critical for meeting the challenges and opportunities of the Information Age
 – Both K-12 and post-secondary education are inadequate to meet the challenges of the information age
Social, Economic, Workforce Issues

- **Recommendations:**
 - Expand Federal initiatives and government-university-industry partnerships to increase information technology literacy, education, and access
 - Expand Federal research into policy issues arising from information technology
 - Fund information technology research on socioeconomic issues
 - Create programs to remove the barriers to high bandwidth connectivity posed by geographic location, size, and ethnic history of research, educational institutions, and communities
 - Accelerate and expand education in information technology at all levels—K-12, higher education, and lifelong learning
 - Expand the participation of underrepresented minorities and women in computer and information technology careers
 - Strengthen the use of information technology in education
Management

• Recommendations:
 – Strongly encourage NSF to assume a leadership role in basic information technology research
 - Provide NSF the necessary resources to play this role.
 – Designate a Senior Policy Official for Information Technology R&D
 – Establish a senior-level policy and coordination committee to provide strategic planning and management
 - Agency representatives with budget authority
 - Operations committee can handle detailed planning
 – Extend the HPCC program coordination model to the entire Federal information technology R&D endeavor
 - Currently used for HPCC and NGI
 – Annual review of research objectives and funding modes.
 - Involvement of Presidential Advisory Committee
Modes of Support

• Finding:
 – The Federal IT R&D funding profile is incomplete

• Recommendations:
 – Diversify the modes of research support to foster projects of broader scope and longer duration
 – Teams, funding for 3 years or more.
 – Fund collaborations with applications to drive IT research
 – Take measures to ensure that research remains a primary goal
 – Fund virtual centers for Expeditions into the 21st Century
 – Virtual “think tanks” focused on revolutionary IT by living in the future
 – Establish a program of Enabling Technology Centers
 – Centers focused on research driven by a particular application focus (similar to NSF STCs)
Proposed Budget

Basis
- Estimates by individual subpanels
 - Expansion of number of researchers and size of grants

<table>
<thead>
<tr>
<th>Area/FY</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software</td>
<td>112</td>
<td>268</td>
<td>376</td>
<td>472</td>
<td>540</td>
</tr>
<tr>
<td>Scalable II</td>
<td>60</td>
<td>120</td>
<td>180</td>
<td>240</td>
<td>300</td>
</tr>
<tr>
<td>High End</td>
<td>180</td>
<td>205</td>
<td>240</td>
<td>270</td>
<td>300</td>
</tr>
<tr>
<td>HE Facilities</td>
<td>90</td>
<td>100</td>
<td>110</td>
<td>120</td>
<td>130</td>
</tr>
<tr>
<td>SEW</td>
<td>30</td>
<td>40</td>
<td>70</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>472</td>
<td>733</td>
<td>996</td>
<td>1202</td>
<td>1370</td>
</tr>
</tbody>
</table>
Questions

• Can we increase long-term research by rebudgeting?
Questions

• Can we increase long-term research by rebudgeting?
 — No, because the short-term work addresses essential problems
Questions

• Can we increase long-term research by rebudgeting?
 — No, because the short-term work addresses essential problems

• Why doesn’t industry fund this?
Questions

• Can we increase long-term research by rebudgeting?
 — No, because the short-term work addresses essential problems

• Why doesn't industry fund this?
 — Industry research focused on product development
 — Thin margins
Questions

• Can we increase long-term research by rebudgeting?
 — No, because the short-term work addresses essential problems

• Why doesn’t industry fund this?
 — Industry research focused on product development
 — Thin margins

• Can the research community absorb another $1.4B per year?
Questions

- **Can we increase long-term research by rebudgeting?**
 - No, because the short-term work addresses essential problems

- **Why doesn’t industry fund this?**
 - Industry research focused on product development
 - Thin margins

- **Can the research community absorb another $1.4B per year?**
 - Yes: $600M in unused capacity, $350M in facilities, $450M in expanded capacity (2500 new researchers over 5 years)
Questions

• Can we increase long-term research by rebudgeting?
 — No, because the short-term work addresses essential problems

• Why doesn't industry fund this?
 — Industry research focused on product development
 — Thin margins

• Can the research community absorb another $1.4B per year?
 — Yes: $600M in unused capacity, $350M in facilities, $450M in expanded capacity (2500 new researchers over 5 years)

• What is the right balance between research and facilities?
Questions

• Can we increase long-term research by rebudgeting?
 — No, because the short-term work addresses essential problems

• Why doesn’t industry fund this?
 — Industry research focused on product development
 — Thin margins

• Can the research community absorb another $1.4B per year?
 — Yes: $600M in unused capacity, $350M in facilities, $450M in expanded capacity (2500 new researchers over 5 years)

• What is the right balance between research and facilities?
 — Our guideline: < 25 percent of the increase in any given year should go to facilities
Questions

• Can we increase long-term research by rebudgeting?
 — No, because the short-term work addresses essential problems

• Why doesn’t industry fund this?
 — Industry research focused on product development
 — Thin margins

• Can the research community absorb another $1.4B per year?
 — Yes: $600M in unused capacity, $350M in facilities, $450M in expanded capacity (2500 new researchers over 5 years)

• What is the right balance between research and facilities?
 — Our guideline: < 25 percent of the increase in any given year should go to facilities

• Is NSF the right agency to lead in coordination?
Questions

- Can we increase long-term research by rebudgeting?
 - No, because the short-term work addresses essential problems

- Why doesn’t industry fund this?
 - Industry research focused on product development
 - Thin margins

- Can the research community absorb another $1.4B per year?
 - Yes: $600M in unused capacity, $350M in facilities, $450M in expanded capacity (2500 new researchers over 5 years)

- What is the right balance between research and facilities?
 - Our guideline: < 25 percent of the increase in any given year should go to facilities

- Is NSF the right agency to lead in coordination?
 - Its mission is fundamental research, but is it too conservative?
Good News

• Administration Budget
 – Additional $366 million in FY 2000
 - NSF: $146 million, with $35 million for facilities
 - DoD: $100 million, with $70 million for DARPA
 - DOE: $70 million for SSI
 - NASA: $38 million
 - NOAA: $6 million, NIH: $6 million
 – Prospects for successive years unclear

• Congress
 – Funding Bill from House Science Committee (Sensenbrenner)

• Coordination Mechanisms Established
 – Two committees: strategic committee chaired by President’s Science Advisor and operations coordination led by NSF
IT² Preliminary Plan I

• Fundamental information technology research
 —Software
 - software engineering, end-user programming, component-based software development, active software, autonomous software
 —Human-computer interaction and information management
 - computers that speak, listen, and understand human language
 - information visualization
 —Scalable information infrastructure
 - deeply networked systems; anytime, anywhere connectivity; network modeling and simulation
 —High-end computing
 - improving the performance and efficiency of supercomputers
 - creating a computational grid
 - revolutionary computing
IT² Preliminary Plan II

- Advanced computing for science, engineering, and the Nation
 - Advanced infrastructure
 - Advanced science and engineering computation
 - Computer science and enabling technology
 - National information infrastructure applications

- Research on the economic and social implications of the Information Revolution
 - Economic and social impacts of information technology
 - Information technology workforce
Proposed Budget for IT²

<table>
<thead>
<tr>
<th>Agency</th>
<th>IT Research</th>
<th>Advanced Computing Sci.&Eng.</th>
<th>Ethical, Legal, Social</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOD¹</td>
<td>100M</td>
<td>--</td>
<td>--</td>
<td>100M</td>
</tr>
<tr>
<td>DOE²</td>
<td>6M</td>
<td>62M</td>
<td>2M</td>
<td>70M</td>
</tr>
<tr>
<td>NASA</td>
<td>18M</td>
<td>19M</td>
<td>1M</td>
<td>38M</td>
</tr>
<tr>
<td>NIH</td>
<td>2M</td>
<td>2M</td>
<td>2M</td>
<td>6M</td>
</tr>
<tr>
<td>NOAA</td>
<td>2M</td>
<td>4M</td>
<td>--</td>
<td>6M</td>
</tr>
<tr>
<td>NSF</td>
<td>100M</td>
<td>36M</td>
<td>10M</td>
<td>146M</td>
</tr>
<tr>
<td>Total</td>
<td>228M</td>
<td>123M</td>
<td>15M</td>
<td>$366M</td>
</tr>
</tbody>
</table>

¹ $70M for DARPA
² Strategic Simulation Initiative
House Networking and IT R&D Act

- Full Five Years of Funding for IT R&D
 - 92 percent over 5 years

- Substantive Increases for NSF
 - $130 million for large grants of up to $1 million for research into high-end computing, software, and networking
 - $220 million for information technology research centers;
 - $385 million for terascale computing hardware
 - Includes some funds redirected from DOE
 - $95 million for universities to establish internship programs for research at private companies
 - $111 million through fiscal year 2002 for the completion of the Next Generation Internet program.

- Permanent R&D Tax Credit for Industry
Implications for Research

• There will be new resources
 – Software will be a primary concern
 - Not just software engineering
 – Information Infrastructure will continue to increase in importance
 - Not just networking
 – Renewed concerns for high-end computing
 - Software and architecture, driving toward Petaops/Petaflops

• Focus will be longer-term
 – Planning and vision will be emphasized
 – Interdisciplinary projects will be important
 - Application-driven research will continue to be prominent
 - Goal of generating IT results will get equal billing
 – Opportunities for large-scale collaborations (Centers, Expeditions)
Conclusions

• U. S. leadership in Information Technology provides an essential foundation for commerce, education, health care, environmental stewardship, and national security in the 21st century.
 — Dramatically transform the way we communicate, learn, deal with information and conduct research
 — Transform the nature of work, nature of commerce, product design cycle, practice of health care, and the government itself

• Assessment:
 — The total Federal IT R&D investment is inadequate and overly focused on the short term

• Remedy:
 — Create a strategic initiative in long-term IT R&D
 - Will require doubling the IT R&D Budget
 - Diversify support to foster risk-taking
Final Observations

• Is the money here yet?
Final Observations

- Is the money here yet?
 - No! Congress must fund it (appropriators skeptical)
Final Observations

• Is the money here yet?
 — No! Congress must fund it (appropriators skeptical)

• Is there a plan for further IT² increases after FY 2000?
Final Observations

• Is the money here yet?
 — No! Congress must fund it (appropriators skeptical)

• Is there a plan for further IT² increases after FY 2000?
 — Not by the administration. Saving Social Security takes priority
Final Observations

• Is the money here yet?
 – No! Congress must fund it (appropriators skeptical)

• Is there a plan for further IT² increases after FY 2000?
 – Not by the administration. Saving Social Security takes priority

• What can I do to help?
Final Observations

- Is the money here yet?
 - No! Congress must fund it (appropriators skeptical)

- Is there a plan for further IT² increases after FY 2000?
 - Not by the administration. Saving Social Security takes priority

- What can I do to help?
 - Do no harm: It is essential that the community provide unequivocal public support and a unified front.
 - “Don’t circle the wagons and shoot inward”
Final Observations

• Is the money here yet?
 — No! Congress must fund it (appropriators skeptical)

• Is there a plan for further IT² increases after FY 2000?
 — Not by the administration. Saving Social Security takes priority

• What can I do to help?
 — Do no harm: It is essential that the community provide unequivocal public support and a unified front.
 — “Don’t circle the wagons and shoot inward”
 — Be proactive: Make it clear to your Congressional delegation that this is important to their constituency
Final Observations

• Is the money here yet?
 — No! Congress must fund it (appropriators skeptical)

• Is there a plan for further IT² increases after FY 2000?
 — Not by the administration. Saving Social Security takes priority

• What can I do to help?
 — Do no harm: It is essential that the community provide unequivocal public support and a unified front.
 - “Don’t circle the wagons and shoot inward”
 — Be proactive: Make it clear to your Congressional delegation that this is important to their constituency

• Are there other pitfalls?
Final Observations

• Is the money here yet?
 — No! Congress must fund it (appropriators skeptical)

• Is there a plan for further IT² increases after FY 2000?
 — Not by the administration. Saving Social Security takes priority

• What can I do to help?
 — Do no harm: It is essential that the community provide unequivocal public support and a unified front.
 - “Don’t circle the wagons and shoot inward”
 — Be proactive: Make it clear to your Congressional delegation that this is important to their constituency

• Are there other pitfalls?
 — The program must be managed well.
 - NSF must lead effectively, modify the way it does business