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Abstract

The mathematical technique ofrandomizationyielding probabilisticalgorithms is shown, for the first time, through a physical
interpretation based on statistical thermodynamics, to be a basis for energy savings in computing. Concretely, at the fundamental
limit, it is shown that the energy needed to compute a single probabilistic bit orPBIT is proportional to the probabilityp of
computing aPBIT accurately. This result is established through the introduction of an idealizedswitch, for computing aPBIT,
using which anetworkof switches can be constructed. Interesting examples of such networks includingAND, OR andNOT
gates (or as functions, boolean conjunction, disjunction and negation respectively), are constructed and the potential for energy
savings through randomization is established. To quantify these savings, novel measures of “technology independent”energy
complexityare introduced—these parallel conventional machine-independent measures of computational complexity such as the
algorithm’s running time. Networks of switches can be shown to be equivalent to Turing machines and to booleancircuits, both of
which are widely-known and well-understood models of computation. These savings are realized using a novel way of representing
a PBIT in the physical domain through a group of classicalmicrostates. A measurementand thus detection of a microstate yields
the value of thePBIT. While the eventual goal of this work is to lead to the physical realization of these theoretical constructs
through the innovation of randomized (CMOS based) devices, the current goal is to rigorously establish the potential for energy
savings through probabilistic computing at a fundamental physical level, based on the canonical thermodynamic models of idealized
monoatomic gases developed by Boltzmann, Gibbs and Planck.

I. INTRODUCTION

Concerns ofpower(or energy) consumption have become increasingly significant in the context of the design as well as the
use of embedded and high-performance computing systems. To paraphrase Trevor Mudge, “Power (and energy) are first-class
citizens in current considerations of computer system design.” While devices, computer architecture and the layers of software
that reside and execute at higher levels of abstraction (such as operating systems, run-time, compilers and programming
languages) all afford opportunities for beingenergy-aware, the most fundamental limits are truly rooted in the physics of
energy consumption–specifically inthermodynamics. Based on this premise, this paper embodies the innovation of models
of computing for energy-aware algorithm design and analysis, establishing, for the first time, the following thesis central to
this work: the computational technique referred to as randomization, yielding probabilistic algorithms, now ubiquitous to
the mathematical theory of probabilistic algorithm design and analysis, when interpreted as a physical phenomenon through
classical statistical thermodynamics, leads to energy savings that are proportional to the probabilityp with which each primitive
computational step is guaranteed to be correct (or equivalently to the probability of error,(1− p)).

Historically, randomization was viewed as a mathematically very promising approach to algorithmic design and analysis
elegantly stated by Schwartz [1]: “The startling success of the Rabin-Strassen-Solovay (see Rabin [2]) algorithm, together with
the intriguing foundational possibility that axioms of randomness may constitute a useful fundamental source of mathematical
truth independent of, but supplementary to, the standard axiomatic structure of mathematics (see Chaitin and Schwartz [3]),
suggests that probabilistic algorithms ought to be sought vigorously.” Since this prediction, randomization has proliferated in
a range of areas primarily centered around the theoretical foundations of computer science.

At the heart of the new development in this work is the definition of an abstractenergy-aware switch(in Section V-A), which
is thefirst contribution of this work. A switch is a device for realizing computations that are functions of a single bit. While
switches are provably building blocks for constructing boolean gates as well as for describing algorithms, in our context, they
serve as idealizations for modeling energy consumption limited solely by classical thermodynamics. Our basic idealizations of
a “switch” and “switching” are viewed as transformations to thestateof a physical device capable of altering its Boltzmann
(physical) entropy, with a well-defined accompanying expenditure of energy consistent with the laws of thermodynamics. We
note that in realizing computations, switching will be used to alter the current bit or value, say0, to some other value, say
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1. In keeping with traditional idealizations, our switches are dissipationless and switching is always performed at thermal
equilibrium, as detailed in Section VII. All computation will be viewed as being a composition of such elemental one-bit
switching changes.

In this work and for the first time, the characterization of switching is based on (classical) statistical thermodynamics,
referred to asmicrophysics(see Balian [4] for example) in literature. This statistical foundation is essential to proving our
fundamental theorems (in Section VIII-B) which, through thesecondcontribution of this work, show thatthe energy consumed
by deterministic switching is never less than(−κt ln 2) Joules, referred to often as the “fundamental limit”, whereas the energy
consumed by a probabilistic switch with an associated probability of error of (1-p) can be as low as(−κt ln 2p) Joules at
the idealized limit. Here,k is the well-known Boltzmann’s constant,T is the temperatureof the thermodynamic system, and
ln is the natural logarithm. Thus, we show that randomized computing offers the potential for energy savings ofκt ln

(
1
p

)
Joules per primitive switching step. By basing our development on statistical thermodynamics rather than on the more familiar
deterministic models of energy consumption known previously (see Section II below), our switches are naturally randomized;
they do not need an explicit random source, crucial to the development of the theory of probabilistic algorithms (see Vazirani
and Vazirani [5] for example).

All of the energy bounds developed here are based on a novel definition ofvalue—the manner in which a single “bit”0 and
1 is stored in a switch (as detailed by this author in [6] and [7]). In this work, as detailed in Section VI, a bit is represented
in the in a switch through a classicalmicrostate, and the output value of switching is determined through an instantaneous
(classical) “measurement”, that detects the existence of a microstate. An example of an instantaneous measurement is the
detection of the position of a molecule of gas in a cylinder containing it, as described by Szilard [8]. This novel approach
to representing the value represents aprobabilistic bit or (PBIT) for short), constitutes athird contribution of this work. This
novel representation is central to determining the gains of randomization at the fundamental limit, and will be contrasted with
the traditional approach to representingPBIT s as voltages and measured as averages as characterized by Stein [9] and by
Meindl [10]. The relationships between these two approaches will be outlined in Section XIV, and are the subject of the work
developed by this author in collaboration with Cheemalavagu and Korkmaz [11].

Given a switchsw , we show (in Section IX) a systematic method for constructingnetworks of switches, to realize
computations. Each switchsw has aninput value which is either0 or 1 and an explicitenabling signalthat determines
whether a switch is “active” or “inactive”. In turn, output ofsw is a value from the set{0, 1} and possibly, an output enabling
signal to a successor switch. A networkN is central to defining a technology independentenergy complexityof a switch, and
constitutes afourth contribution; these complexity measures are introduced in Section IX-C.

In Section X, and moving to thefifth contribution, we prove that a standard two-inputAND function requires at least two
“energy consuming” switches in the deterministic case and hence itsenergy complexityis bounded below by2. Similarly, we
also show (Section XI-B.1) that the same function can be realized using probabilistic switches such that theexpected energy
complexityis (1 + p) · κt ln(2p), with an associated error probability of(1 − p). Through a straightforward construction, we
show in Section VII that logical negation or theNOT function can be realized through a single switch, and therefore, its
energy behavior in the deterministic and probabilistic cases is identical to those claimed earlier on.

Reminiscent of combinational logic networks whose power has been systematically studied relative to models of computing
such as Turing machines (see early examples due to Pippenger and Fischer [12], Pippenger [13]), the model of a networkN
used in this paper uses an enabling signal in the absence of which a switch is not enabled. In keeping with current convention,
throughout this paper, we will use the termcircuit to denote the more traditional combinational logic “network” wherein
measures such assize, depthandwidth were of concern, whereas energy was not; by contrast, the termnetworkwill be used to
denote a structure built using our switches with enabling signals. In Section XIII, we sketch a relationship between networks
of switches and circuits, as well as models of energy-aware algorithm design and analysis introduced by this author in an
earlier work [6]–therandomizedbit-level randomaccessmachine ( orRaBRAM ).

II. H ISTORICAL REMARKS, COMPARISONS ANDPERSPECTIVES

The energy behavior of switching has its roots in thermodynamics, whose history traces back to the works of Carnot [14]
and Clausius [15] in the early nineteenth century, leading to significant developments in the early part of the twentieth century.
Influenced significantly by Maxwell (see [16] and [17] for example ), the current statistical interpretation of thermodynamics
was first introduced by Boltzmann [18] and was later developed by Gibbs [19] and Planck [20]. In the context of realizing
randomization physically, the work of Boltzmann leading to the definition ofthermodynamic entropyis especially relevant to
us.

The notion of a value such as0 or 1 being modeled in a physical system with a single molecule dates back to 1929 and is
attributed to Szilard [8]. In particular, his work and that of several subsequent physicists was motivated by a need to explain
the celebratedMaxwell’s demon[8] paradox which purported to, through a thought experiment, violate the inviolatesecond
law of thermodynamics. Several subsequent authors credit Szilard with having invented the modern notion of a “bit” and a
machine with two “states”. While other celebrated researchers including von-Neumann [21] are credited with having observed
that the minimum energy needed to compute a bit is−κt ln 2 Joules, it was Landauer [22] who took a very big step towards
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clarifying the Maxwell’s demon paradox in his widely known work. In doing so, he also explicitly laid the foundations for the
(more) modern field of the thermodynamics of computation. At the heart of Landauer’s work is the characterization oflogical
irreversibility, which is also a property of switching in this work.

Bennett [23] had important breakthroughs wherein, by taking advantage of the notion ofthermodynamic reversibility,
constructed conceptually viable and idealized models for reversible computing, wherein computation can proceed through energy
recovery. This is accomplished through logically reversible computations. Subsequently, Fredkin and Toffoli [24] demonstrated
logical gates that exhibit the same property. By contrast, in all of our work, we model switching as being based onnon-
recoveringmodes of execution—energy once expended by a switching step is not recovered, even if such recovery is possible.

Moving closer to realizations of switches based on familiar constructs such as transistors within the context of studying
the inherent energy needed by deterministic switching, Meindl [10] established fundamental limits and derived energy lower-
bounds. The significance of the Meindl’s work, which continues the philosophical tradition set by Szilard, von-Neumann and
Landauer, among others, is the ability for the first time to model a switch in an idealized manner—without dissipation for
example, much as we do—while, at the same time, reconciling the delicate and pragmatic balance needed to model the realities
of modern semiconductor devices. In doing so, novel techniques based on an inductive inverter-chain based argument were
developed, to model distinguishability of a value of0 from a value of1. This technique is a crucial step in bounding the
energy consumed from below. While previous work does so implicitly, Meindl [10] is also the first in this series to provide
an explicit physical construction of a switch as an inverter, within the context of proving a bound on the minimum energy
needed, thus making the bounds rather concrete.

The inherent energy bounds for deterministic switching developed in this work (in Section VIII), while having the same
conceptual goal as Meindl’s approach, are distinct in a three-fold manner. First, our idealizations and hence energy limits are
based on the more fundamental energy behavior of idealized monoatomic gases [18], wherein the energy cost of computing
a deterministic bit is a special case of that computing aPBIT with some associated probabilityp. As a result of this first
difference, our representation of a bit and hence the concomitant energy bounds support randomization naturally; a study of
the energy characteristics of probabilistic switching is an entirely novel contribution of this work. Furthermore, as outlined
in Section XIV, the gas-based idealizations used in this paper yield potentially lower limits to computingPBIT s through
switching, than those using the representations using the previously mentioned conventional approaches following Stein [9]
and Meindl [10].

A consistent theme in all of the previous work is that all computation and hence the value of a bit being computed is
deterministic, and thus its physical instantiation ismacrophysical[4] and not subject to statistical interpretation. Hitherto,
the underlying assumptions preclude the possibility that a switch could be designed to be deliberately erroneous with some
probability sayq, since computation, starting with Turing, was considered to be essentially a deterministic activity. It is not an
exaggeration to say that determinism is deeply ingrained in human intuition in considerations of computing. This is perhaps
the best explanation as to why an alternate style of computing—the counterintuitive notion of probabilistic algorithms that
compute a value that could be sometimes wrong—was not considered until the 1970s from a mathematical perspective by
computer scientists. This despite the readily available statistical interpretation of the value of a bit in Szilard’s own construction
of a molecule defining value, based on its location in a volume of gas.

In the context of computing, Rabin and Scott’s influential paper [25] introducednon-determinismand broke with this tradition
of determinism definitively. Subsequently, Rabin [26] also took the important step of explicitly introducing probability into
the definition of an automaton [26] and studied its expressive power and relationship to a deterministic finite-state machine.
Attributable perhaps to the deep seated belief in determinism in computing in general, over a decade elapsed before the role of
probability became prevalent in the algorithmic computing domain following the influential work of Karp within the context
of average-case analysis [27], Gill’s characterizations of probabilistic complexity classes [28] as well as the innovation of the
Rabin-Solovay-Strassen algorithm referred to earlier.

Feynman’s exposition of the thermodynamics of computing [29] uses the gas-based model for switching. All of the
developments in this paper are based on a physical system (and a phase-space) akin to that associated with Szilard’s construction
and Feynman’s expositions, although our modeling of a state and aPBIT that it represents is statistical and hence microphysical,
whereas previous approaches interpreted them to be deterministic.

III. ROADMAP AND READING GUIDE

Some essential background facts from thermodynamics will be presented in Section IV. In Section V, we will introduce the
mathematical definition of a switch and introduce the concept of switching. This will be followed in Section VI with a process
of modeling a switch using an idealized microphysical device. Thus, the physical framework in this paper represents a switch
whose thermodynamics are characterized by an idealized monoatomic gas, wherein switching is dissipationless in that it is
achieved by a “quasistatic” process. Continuing, using the physical definition of a switch (from Section VI) in Section VII,
we outline the physics, and the associated energy changes in Section VIII. Using these physical characteristics and results, in
Section IX, we characterize the construction of networks of switches and hence boolean gates. Then, in Section X, we prove a
lowerbound on the energy complexity of any deterministic realization of anAND gate. In Section XI, we introduce networks
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of probabilistic gates, as well as the associated complexity measure ofexpected energy complexityand demonstrate energy
savings for anAND gate construction through randomization. A comprehensive example of a switch construction using an
ideal gas as the physical realization is shown in Section XII. In Section XIII, we characterize the relationship of our networks
to established models of computing such as Turing machines and circuits, as well as traditional complexity measures such
as running time and size. The degree to which a monoatomic gas can be viewed as a naturally ergodic system has serious
implications to the statistical formulations of statistical thermodynamics. To clarify this issue, for completeness, in Section XV,
we briefly review this deeper relationship between the foundations of the theory of idealized gases as outlined in Boltzmann’s
work for example [30], and two celebrated mathematical results—the recurrence paradox and the ergodicity hypothesis.

IV. B RIEF REVIEW OF STATISTICAL THERMODYNAMICS

This section serves as a succinct introduction to the definitions and concepts of thermodynamics, leading to two main
theorems (Theorems 4.5 and 4.6), which establish a relationship between energy, thermodynamic entropy, and the change of
state of a thermodynamic system. Using these, the relationships betweenenergy changeandentropy(both defined below) will
be used to model the energy changes of switching in Section VIII.

Classical thermodynamics is traditionally presented in aphenomenologicalmanner in keeping with the best traditions of
reductionism with observable properties such as pressure, volume and temperature being derived from a few underlying laws.
In this work and perhaps in all of its connection to computing, our interest is in the amount of energyexpendedin making
a certain kind of change to information, with the intention of modeling the change through the notion of physical switching.
Thus, a moretransformationalview of statistical thermodynamics is presented below, with the expectation that it will better
serve the purpose of using it in the context of characterizing switching.

A. Roadmap of this section

In Section IV-B below, several terms are introduced which define the thermodynamic universe of discourse and its attributes.
In Section IV-C, thermodynamic transformationsin this universe are defined. The theorems in Section IV-D establish the
relationship between the change in entropy and energy for a single transformation. In Section IV-E, we generalize this
development to be applicable to entire sequences of transformations. The treatment of this classical material is necessarily
brief and is included here merely for completeness. While an interested reader is invited to peruse all the details, one who is
primarily interested in the computational aspects in the remainder of this paper, can proceed by using Theorem 4.5 and its
re-interpretation as Theorem 8.1 in Section VIII-A. For a more elaborate treatment of the subject, the reader is referred to
standard books by Balian [4], Joos [31], Kittel [32], Boltzmann [30], Hill [33], and Mihalas [34].

B. A Phase Space and Its Microstates

In classical thermodynamics, athermodynamic system, T , is a set ofN identical elements. Attributes of these elements
are called theclassical observables. For a single element, these observables are defined to be itsposition and momentum.
The position of an element can be uniquely represented by its three co-ordinatespx, py, pz in the standard vector spaceR3.
The variablesqx, qy, qz characterize the momenta along these three dimensions, and are represented by the three dimensional
vector spaceΩ. Concisely, all the observables of an element can be represented as a point in the six-dimensional vector space
R

3 × Ω, where each point in this vector space is a six tuple< pxi , pyi , pzi , qxi , qyi , qzi >: 1 ≤ i ≤ N and yields a particular
value for each of the six variables associated with elementi.

As an example [30] consider a box filled with anideal gaswhich forms a thermodynamic systemT . An ideal gas is
defined to be any gas that obeys the laws of the kinetic theory. The individual molecules of the gas form the identical elements
constituting the thermodynamic systemT . (At any time instantτ , the position and momentum of each of the molecules form
the classical observables.)

The entire systemT of N elements is canonically represented by a6N -dimensional vector space called thephase space,
P of T . A point in the phase space, and thus the current positions and momenta of all theN particles at any time instantτ ,
can be uniquely represented by a6N tuple of variables denoted by

< px1 , py1 , pz1 , qx1 , qy1 , qz1 , . . . , pxN , pyN , pzN , qxN , qyN , qzN >

For notational simplicity, let us represent this6N tuple asA =< p1, p2, p3, . . . , p3N , q1, q2, q3, . . . , q3N > wherepi′=3i−2 =
pxi , pi′′=3i−1 = pyi , pi′′′=3i = pzi ; the qi’s are similarly defined. The phase spaceP, where each of the6N dimensions
is finitely bounded by the physical configuration ofT , is theaccessible phase space. By abuse of notation, we will use the
phrase phase space, and the symbolP to denote the accessible phase space.

Referring back to the earlier example, a single point in the phase spaceP corresponding to the (ideal gas) thermodynamic
systemT outlined above, completely characterizes the positions and momenta of each of the constituent molecules. The number
of points in the phase space is uncountable, since the value of each of the variables in the6N tuple characterizing a point
in the phase space can vary continuously within a range along the position and momentum dimensions. However, following
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Boltzmann [30], from the perspective of the statistical analysis of the physics of phase spaces, this vector space is decomposed
to a discrete set of “volume elements”.

At any instant of timeτ , the classical observables of a thermodynamic systemT are uniquely characterized by a single
volume element∆vi. Let p̂i′ = (pi′ , pi′ + ∆pi′), p̂i′′ = (pi′′ , pi′′ + ∆pi′′), p̂i′′′ = (pi′′′ , pi′′′ + ∆pi′′′); the intervalsq̂i′ , q̂i′′ and
q̂i′′′ are defined analogously, and the6N intervals defined above form the sides of the6N dimensional hypercube∆vi. Consider
a partitioning of the phase space into identical, non-overlapping volume elements. Such a partitioning will be referred to as a
Boltzmann partitioning, consisting of finitely many volume elements from an accessible phase space. (Boltzmann considered
∆v → 0 to be very small, to overcome the problem of infinite entropies given a continuous representation of the dimensions
of the phase space.) At timeτ , let the system be at a pointA =< p1, p2, . . . , p3N , q1, q2, . . . , q3N > as before. A volume
element∆v is occupiedat timeτ if and only if for 1 ≤ i ≤ N , p3i−2, p3i−1 andp3i are respectively in the intervalŝpi′ , p̂i′′ ,
and p̂i′′′ ; similarly for elementsq. The system is said to occupy this volume element∆vi or equivalently, the system is said
to be in a classicalmicrostateµi at timeτ if and only if it occupies∆vi at τ . In the sequel, we will use the word microstate
to denote a classical microstate. The setS of all microstates of the accessible phase spaceP is the set offeasiblemicrostates.

Physical Fact 4.1:Given a systemT with at least one element, the accessible phase spaceP has at least one feasible
microstate.

Physical Fact 4.2:Given a systemT with stateS, its entropy is κ ln(|S|), whereκ is the Boltzmann constant, and|S| is
the multiplicity of T .

The above definition of entropy is based on the canonical representation of a thermodynamical systemT in contact with a
thermal reservoir of infinite capacity which is then approximable, at thermal equilibrium, by the multiplicityW ≈ Wmax as
N → ∞, whereWmax is the multiplicity of the “equilibrium macro state” (forN = 1, W = Wmax); see Mihalas [34] for
example. IfT is in isolation, then there can be no energy exchange possible between the system and the rest of the universe in
which caseWmax is the exact multiplicity ofT , determined by the energy ofT at the instant of time when it is first isolated
from U . The reader can proceed to follow the developments in this paper without delving into this detail.

A universeof thermodynamic systems or simply a universeU is defined to be a set ofM thermodynamic systemsTi ∈
U , 1 ≤ i ≤M . The laws of thermodynamics have been used to characterize the interactions of various attributes between the
elements of the universe. This characterization has traditionally been rooted in the operational model of Carnot based on an
idealized heat engine, with a view of determining its efficiency. To model the thermodynamic characteristics of computing,
abstractly presented as switching in Section V, we will now provide a more convenient transformational interpretation of the
laws of thermodynamics below.

C. A Transformational View of Classical Thermodynamics

Let T = R
+ ∪ 0 denote time andτ ∈ T and τ̂ denotes an (open) interval(τ, τ ′) ∈ T. Also q is reused to mean heat

hereafter. The universeU is associated with fivestate vectorsw =< w1, w2, w3, . . . , wM >, q =< q1, q2, q3, . . . , qM >,
u =< u1, u2, u3, . . . , uM >, s =< s1, s2, s3, . . . , sM > and temp =< t1, t2, t3, . . . , tM >, such thatwi, qi, ui, si, ti are
identified with systemTi ∈ U . A thermodynamic processor transformation is represented by a functionTRANSFORMATION :
(U × T) →< W × Q × U × S × T × T >, where,W,Q,U, S, T are the set of all state vectors, respectively ofw, q, u, s
and temp. Let TRANSFORMATION(Ti, τi) = (ŵi, q̂i, ûi, ŝi, ˆtempi, τf ). A transformation takes each element of the universe
at some state at time instantτi, alters its entropy and temperature for some work performed and heat transferred by timeτf ;
this transformation occurs in the intervalτ̂ = (τi, τf ). The variableŵi corresponds to thework performedon (or by)Ti during
τ̂ . In the domain of gases, the work performed results in a change to itsvolumeV due to a change in the appliedpressureP ,
measured in pascals (the volumeV , the pressureP and the temperatureT are referred to aspropertiesor observable properties).
In an idealized gas,̂wi =

∫ Vf
Vi

PidVi, whereVi andVf represent the volume of the gas at timesτi and τf respectively. The
variableq̂i corresponds to theheat transferredinto or out of the system. To be technically precise, in classical thermodynamics,
heat flow is determined as the line integral

∮
δq. For our purposes, it suffices to know thatq̂ represents this quantity over the

interval τ̂ . The variableûi denotes the energy ofTi. Similarly ŝi is the entropy ofTi, and ti is its temperature (noting that
the temperatureti is proportional to the energyui).

We will now use the laws of thermodynamics and derive a set of “physically feasible” transformations. Any transformation
is said to bephysically feasiblewhenever the following conditions hold for1 ≤ i ≤M :

ui, ûi ≥ 0 (1)

si, ŝi ≥ 0 (2)

τf > τi (3)

ûi − ui = ŵi + q̂i (4)
M∑
i=1

ŝi − si ≥ 0 (5)
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The interpretation of constraint( 3) which states thatτf > τi is that time flows forward and is totally ordered. Hawkins [35],
[36] and others [37] discuss this issue and its physical validity. Constraint( 4) is referred to as thefirst law of thermodynamics.
Similarly, constraint( 5) is thesecond lawof thermodynamics.

Any physically feasible transformation is defined to bedissipationlessif τf − τi ≥ R whereR is known as therelaxation
time, and is afixedattribute of the particular physical system. If the duration of any thermodynamic transformation is at least
as large as the relaxation time, the system is always in anequilibrium state. Such a transformation is referred to asquasistatic
transformation. Our models for computing and switching involve changing the state of a systemT from one equilibrium state
to another. Thus throughout, the constraintτf − τi ≥ R will be true.

D. Quantifying the Energy Behavior of Feasible Transformations

Let us consider a thermodynamic systemTi from the universeU . We will now quantify the energy changes associated
with Ti affected by specific transformations. A transformationdecreasesa thermodynamic attribute ofTi, say its entropy
si, if and only if ŝi < si. The decrease or increase of other attributes can be similarly represented. To continue, we adopt
terminology dating back to Carnot [14], albeit in transformational terms. Let us fix a thermodynamic systemTi and continue
to characterize attributes of transformations with respect toTi. A transformation isisothermal if and only if ti′ = tj′ for
any τi ≤ τi′ ≤ τj′ ≤ τf . A transformation isadiabatic if and only if q̂i = 0. The following useful properties of these
transformations will be used to deduce associated energy changes. We omit the units such as Joules and Kelvin whenever
convenient.

Lemma 4.1:In any isothermal transformation̂ui = ui
Proof: This follows from the definition of temperaturet = c · u for some positive constantc.

Theorem 4.3:In any isothermal transformation,−ŵi ≤ ti(ŝi − si) whereti is the constant temperature of the isothermal
systemTi.

Proof: Following Clausius’ definition of entropy which is identified at equilibrium with the Boltzmann form of entropy
that we use in this paper, and the Second Law of thermodynamics (5), we have the Clausius inequality

δq

t
≤ ds (6)

Also, for any isothermal transformation, from (4) we have

δq + δw = 0 (7)

and using the definitionδw = PdV in (7),

δq = −PdV (8)

and therefore from (6),

−
∫ V̂i

Vi

PdV ≤
∫ ŝi

si

tds (9)

whereVi and V̂i, si and ŝi are respectively the volumes and entropies of the system at time instantsτi andτf .
Theorem 4.4:In any adiabatic transformation,̂si − si ≥ 0

Proof: Since by definition,δqt ≤ ds, and in any adiabatic transformation,δq = 0, ds ≥ 0.
We are now ready to state our main theorem. LetS and Ŝ denote the states ofT before and after a transformation.
Theorem 4.5:In any isothermal transformation with initial and final statesS and Ŝ respectively, where|Ŝ| = ε · |S| for

0 < ε ≤ 1, wi ≥ −κt ln ε Joules.
Proof: From Physical Fact 4.2, it follows that

κt[ln(ε · |S|)− ln(|S|)] ≥ −ŵi (10)

κt ln(ε) ≥ −ŵi (11)

or equivalently

ŵi ≥ −κt ln(ε) (12)

concluding the proof.
Theorem 4.5 characterizes the fact that in any isothermal transformation, any change in entropy ofTi is necessarily

accompanied by the consumption of mechanical energy from therest of the universe.
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Fig. 1. The inputs to a switch

E. Sequences of Transformations

We now consider a finite sequence of transformationsTRANS applied to specific thermodynamic systemTi ∈ U . Let
TRANSK = < TRANSFORMATION1 ◦ TRANSFORMATION2 ◦ . . . , ◦TRANSFORMATIONK >, where each transformation is either
isothermal or adiabatic, and let the symbol◦ denote the composition of a pair of transformations. We can now claim the
following general theorem about the energy consumed by a sequence of transformations. Themechanical energy consumedby
a TRANSFORMATIONj ∈ TRANSK for 1 ≤ j ≤ K is

wj =
{
ŵj wheneverŵj > 0
0 otherwise.

(13)

Theorem 4.6:Given any sequenceTRANSK , W =
∑

1≤j≤K wj ≥ −κt ln(e), wheree =
∏

1≤j≤K εj , andεj = min( |Ŝj ||Sj | , 1),
the ratio of multiplicities associated withTRANSFORMATIONj ∈ TRANSK .

Proof: If e = 1, we are done. Now lete < 1 and considerTRANSK . UseTRANSK
− to denote the set of transformations

such thatTRANSFORMATIONj′ ∈ TRANSK
− if and only if εj′ < 1. From the definition,e is the product of valuesεj′

associated with allTRANSFORMATIONj′ ∈ TRANSK
−. LetW− equal the sum of̂wj′ associated with allTRANSFORMATIONj′ ∈

TRANSK
−. From Theorem 4.4, everyTRANSFORMATIONj′ ∈ TRANSK

− is isothermal. Therefore, from the definition ofW
and Theorem 4.5,W ≥W− ≥ −κt ln(e).

To interpret this theorem consider a sequence ofλ transformations. Some of them are isothermal whereas the others are
adiabatic. Now, the change in entropy is derived entirely from the isothermal transformations. Therefore, the condition stated
in Theorem 4.3 must be true. Intuitively the goal of Theorem 4.6 is to help characterize the associated energy change in the
context where the energy once expended to compute cannot be recovered, which is the termW. Thus, all the results in this
paper corresponds to the class of non-recovering computations based on computing devices in use today, wherein energy is
consumed by a computer, but not recovered from the computer back to the energy source. The theorem above states that given
a sequence of thermodynamic processes achieving a reduction of multiplicity such thate < 1, the mechanical energy consumed
is at leastκt ln(e) Joules.

F. Statistics of a phase space

The following physical fact will be very useful for characterizing the statistical behavior of microstates. LetPr[µ] be the
probability that a microstateµ exists at timeτ .

Physical Fact 4.7:In any phase space of an ideal monoatomic gas,Pr[µi] = Pr[µj ] for any pair of microstatesµi andµj
from P at any time instantτ .

V. A SWITCH AND SWITCHING

In Section V-A below, we will define the basic elements of a single switch and its behavior. Following this, the notion of
switching will be introduced in Section V-B. This definition will be entirely in “logical” terms without recourse to the physical
interpretation, the latter being the topic of Section VI. This formalism is reminiscent of earlier developments in the classical
switching theory field described in Kohavi [38].



TECHNICAL REPORT GIT-CC-03-16 MAY 2003 8

11

00

outputInput

11

10

outputInput

01

00

outputInput

01

10

outputInput

Identity Function

Constant Function Constant Function

Complement Function

Fig. 2. The four choices for switching functions of whichsw realizes one choice

zout

yenableout

xin

wenablein

SymbolSignal

Fig. 3. Symbols for inputs and outputs of a switch

A. Defining a switch

As shown in Figure 1, each switchsw has (up to) two alternate choices for “input values” as well as “enabling signals”.
Each input value and enabling signal ofsw is in turn the output of a distinct switch (from the set of all switches,SW ), sw ′ and
sw ′′ in the example. The outputs of switchsw ′ are identified with the input valuein1 and the input enabling signalenablein1,
whereas the outputs ofsw ′′ are identified within2 andenablein2. Any switchsw in turn has two possible (mutually exclusive)
enabling signals as output denoted byenableout1 andenableout2, as well a single output valueout.

During the entire lifetime of a switchsw , each of its enabling signalenableini, i ∈ {1, 2}, is “associated with” exactly
one inj , j ∈ {1, 2}. Subsequently, these associations will be formalized as “switching relationships” as shown in the figure,
enablein1 is associated within1 and similarly,enablein2 is associated within2; all four possible associations are allowed. In
any legalswitchingof sw , exactly oneof its two enabling signals will be “active”, indicated by associating with it the value
1. Thus, in this example, switchsw produces an output value as a function ofin1 wheneverenablein1 is active whereas it
produces an output value as a function ofin2 wheneverenablein2 is active.

To further understand switching, let us suppose thatenablein1 = 1. In this case, the output valueout is determined by
some fixed functionf of in1. Recall from Figure 1 that the association or switching relationship betweenenablein1 and in1

implies that wheneverenablein1 = 1, out is determined byin1. In this case,sw now switchesand produces an output using
f , where the functionf is one of the four possible choices shown in Figure 2:identity, complementand the twoconstant
functions.

For convenience, we will use the notation in Figure 3 to denote the various inputs and outputs. Formally, letIsw ,1 and
Isw ,2 be the twoinputs to sw whereinIsw ,i is the ordered pair< w, x >, wherew ∈ {0, 1} is an input enabling signal and
x ∈ {0, 1,Γ} corresponds to the input value, withΓ denoting an undefined value. Thus, each switchsw is associated with
a pair of switching relationshipsof the form< wsw ,i, xsw ,1 > and< wsw ,i′ , xsw ,2 > where i, i′ ∈ {1, 2}: intuitively, these
ordered pairs capture the association between an input value and an enabling signal—as shown in the example in Figure 1,
each of the two distinct enabling signals are in a switching relationship with each of the two inputs. To reiterate, when an
input enabling signal, saywsw ,i = 1, the corresponding valuexsw ,1 is used as the input.

The outputsof a switchsw are defined to be no more than two ordered pairsOsw ,1 andOsw ,2, whereOsw ,j is the pair
< ysw ,j , zsw >, j ∈ {1, 2}. By definition, while a switch can produce two mutually exclusive output enabling signals with
different values as outputs to two possible successor switches, it must always have the same output valuez to all successors.
In what follows, the subscriptsw of w, x, y, z will be omitted whenever the use of the symbols is unambiguous.
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B. The process of switching

Recall from Figure 2 that a switch computes a fixed functionf which is either the identity, complement or one of the two
constant functions. Given a switchsw with an associated functionf , a switching is defined as follows:

1) zsw = Γ andysw ,1 = ysw ,2 = 0 whenever both its input enabling signalswsw ,1 andwsw ,2 have an identical value.
2) Whenever exactly one input enabling signal saywsw,i = 1 andxsw ,j is in a switching relationship< wsw,i, xsw ,j >

a) if xsw,j = 0 thenzsw = f(0), ysw ,1 = zsw andysw ,2 = z̄sw
b) if xsw,j = 1 thenzsw = f(1), ysw,1 = zsw andysw,2 = z̄sw

Let f(x) = z (f(x̄) = z̄) be thedeterministicswitching realized bysw as above. Aprobabilistic switchingwith a probability
parameterp ≥ 1

2 is defined to bef(x) = z with a probabilityp andf(x) = z̄ with probability (1− p).
Consider a switchsw with its inputs defined by the switching relationships< wi, x1 > and< wi′ , x2 > wherei, i′ ∈ {1, 2}.

Consider another switchsw ′ with outputsy′j , y
′
j′ , andz′. Switch sw ′ is composedto the switchsw , denoted bysw ′ ≺ sw if

and only if for all τ > 0 at least one of the following conditions are true:
1) one of the valuesx1 or x2 equalsz′

2) one of the input enabling signalsw1 or w2 of sw is identical to one ofy′j or y′j′ the output enabling signals ofsw ′.
Wheneversw ′ ≺ sw , switch sw ′ is said todrive switch sw , or equivalentlysw is said to bedriven byswitch sw ′. Let

sw ′ ≺ sw . Wheneverxi = z′, the ordered pair< z′, xi > is referred to as awire, andxi is said to beconnectedto z′ through
the wire< z′, xi >. Similarly wheneverwi = y′j , we again say that the wire< y′j , wi > connectssw ′ to sw . Whenever
a switchsw ′ drives sw , sw ′ is defined to be thepredecessorof sw and sw is a successorof sw ′. A switch sw is strongly
connectedif and only if both the elements of at least one of its input switching relationships are connected to a predecessor
switch through wires.

To develop structures meant to realize entire computations, we will identify three types of switches:INPUT-SWITCH,
OUTPUT-SWITCH and COMPUTE-SWITCH as shown in Figure 4. AnINPUT-SWITCH sw1 has no predecessors and drives
at least one switch of typeCOMPUTE-SWITCH or OUTPUT-SWITCH. A switch such assw2 in our example, which is a
COMPUTE-SWITCH, is driven by a switchsw1 which is either anINPUT-SWITCH or aCOMPUTE-SWITCH. In turn,COMPUTE-SWITCH

sw2 drives sw4 which is anOUTPUT-SWITCH; an output switch has no successors and is driven by at least one switch of
type INPUT-SWITCH or COMPUTE-SWITCH. Also, when convenient, we use the terminology input-switch, output-switch and
compute-switch to refer to switches of typeINPUT-SWITCH, OUTPUT-SWITCH and COMPUTE-SWITCH respectively.

VI. M ODELING A SWITCH PHYSICALLY

The essential steps of modeling a switch in a physical (thermodynamic) context are outlined in Figure 5. At the most basic
level, the values0 and1, essential to switching, ought to be represented in a physically consistent and meaningful manner. This
will be the topic of Section VI-A. A crucial aspect of this physical realization of a switch involves being able to detect the
outputz of a switch and to drive an enabling signalw from this value. As characterized in Section VI-B, this is accomplished
through aclassical measurement, in a manner consistent with the laws of thermodynamics. The classical physics constructs from
Section IV are used throughout this section to achieve the physical modeling.Given the goal of characterizing probabilistic
switching, and its energy advantages, the contents of Sections VI-A and VI-B are inherently based on the statistical form of
classical thermodynamics.As shown in Figure 5, these models will then form a basis to physically realizing the mathematical
notion of switching (from Section V) culminating in the calculations of energy changes associated with switching. These latter
developments constitute the contents of Sections VII and VIII respectively.

Briefly, at a given instant of timeτ , the currentphysical state(or state for short) of switchsw denoted by the symbols
Ssw ⊆ Psw , is the set of all microstates that are accessible or that can exist atτ wherePsw is its phase space. In the sequel
and when it leads to unambiguous representation, we will omit the subscriptsw and merely use the symbolsS andP to
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respectively denote the set of all legal states, and the phase-space of any switchsw ∈ SW . Also, S ∈ S will denote the
current state at timeτ , of a particular switchsw . Please refer to Section IV for some of the basic background definitions.

A. Representing 0 and 1 physically

A switch is a thermodynamic system with acurrent stateS at time τ characterized by the set of all microstates that can
exist in the physical system at that instant of time. Consider the set of all feasible statesS of the switchsw . A distinguished
stateSΓ ∈ S of the switch denotes the state with maximum entropy across all feasible states. That is given a switchsw at any
time τ ∈ T , there is no stateS whose entropy is greater than the stateSΓ.

Physical Fact 6.1:There exists a unique stateSΓ in the Ssw of a switchsw .
Consider a microstateµi ∈ SΓ. This is defined to be awitnessto a unique symbol0 or 1. ThusSΓ is partitioned into

non-empty subsetsS0 andS1 where aµi ∈ Sj if and only if it is a witness to a valuej ∈ {0, 1}. If the state of the system
is S0, then we say that its value is0, since the only witnesses correspond to the value0; similarly with S1. In the case of
a deterministic switch, if the state of the system isSΓ, by definition, we can say that it represents the undefined valueΓ.
At some timeτ , when the physical realization of switch is in a particular stateSi, its output value and enabling signal are
determined through a specific measurement ofSi.

Let us now use Figure 6 to clarify this concept. Suppose, the current stateS of some switchsw in some (open) interval
of time τ̂ = (τ1, τ2) consists of witnesses to0 and1 as shown in Figure 6. As stated earlier, each microstate is a witness to
exactly one of the values0 or 1. Its existence at timeτ ∈ τ̂ , detected through a measurement, will determine the current values
of the outputz and the output enable signaly of switch sw . Formally, we use characteristic functionsξ0 andξ1 to represent
the existence of a witness (or microstate) at timeτ :

ξ0(S, τ) =
{

1 if and only if there exists a microstateµi ∈ S0 at timeτ
0 otherwise

and similarly,

ξ1(S, τ) =
{

1 if and only if there exists a microstateµi ∈ S1 at timeτ
0 otherwise
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A physical realization of the mathematical notion of switching in Section VII below will involve changing the current
physical state of the switch. The act of switching involves the elimination of the “undesirable” witnesses fromS. After the
switching transformation, ifS consists of witnesses to the value0 only, the state of the “computing element” represented
by S is determined to be0. Similarly, if value consists of witnesses to1 only, then the value is1. However, if witnesses to
both types of values exist, then, depending on the timeτ at which the measurement is made, the value can be “erroneously”
determined to be either0 or 1, thus laying the foundations for a physical interpretation to randomization.

B. The value of a state and its properties

Using the above notions of a witness and its associated characteristic function, we are able to introduce the central definition
of the “value of a state”S at timeτ denoted byV

V(S, τ) =
{

1 iff ξ1(S, τ) = 1
0 iff ξ1(S, τ) = 0

(We note thatξ0 could have been used instead to defineV as well.) We will now interpret this somewhat technical and
deterministicdefinition and use the illustration in Figure 7 to help explain it. Let us suppose for purposes of illustration that
S resides in a phase spaceP. At any instant of timeτ , a single microstateµi from S exists. Equivalently, at any instant of
time τ , a single witness to a value—either0 or 1—exists. Returning to Figure 7, the functionV, which models measurement,
detects the microstateµi at timeτ . Thus, the switchsw is in stateS1, then the functionV (or the associated detector) always
yields a value of1 and vice-versa.

C. An example of representing values through a physically plausible idealized gaseous system

The formal definition of a state and its value described above using microstates is physically meaningful in the context
of a physical system that exhibits this structure. In particular, for this physical behaviour to be demonstrable constructively,
the value determined byV ought to be detected, as mentioned above through a classical measurement. To help establish a
“proof-of-concept” of the physical feasibility of switches as introduced here, as shown in Section VII, throughout this paper,
we will use an idealized monoatomic gas as a basis for constructing switches and switching.

Briefly, let us consider a cylinder as shown in Figure 8 enclosing a single molecule of an idealized monoatomic gas, such
as that studied by Szilard [8]. Let us suppose that occupancy of the left half of the cylinder by the molecule corresponds
to the valueV of 0, whereas it corresponds to a valueV of 1 if the right half is occupied at a time instantτ . Now, as the
molecule moves around in the cylinder (which it will whenever the temperaturet > 0 K), depending on its location at different
instances of time, the value can be interpreted to be either0 or 1. This statement is constructively true whenever a classical
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measurement can distinguish the position of the molecule between the two halves of the cylinder. Numerous simple detectors
can be realized for this unimolecular case, which is one of the motivations for considering examples with a single molecule.
Additionally, in the unimolecular case, it is an easy exercise to verify that any given microstate isuniquelyassociated with
one of the two geometric halvesVL andVR of the cylinder as shown in Figure 8. Equivalently, the partitioning of the cylinder
into partsVL andVR also induces a partitioning of the set of all microstates inSΓ, whereSΓ is determined by the volume of
the entire cylinder.

Thus, a physical volume element< px, py, pz > is uniquely associated with a microstate. The molecule’s presence in a
physical volume element in the left half of the cylinderVL contribute to a value of0 whereas its presence in a volume element
in the right halfVR correspond to the value of1. To detect the output value of the switch whose state is modeled through the
thermodynamic system in Figure 8, a measurement to detect a microstate will involve detecting the presence of the molecule
instantaneouslyat time τ , either in a volume element ofVL or in VR; the former will imply an output valuez of 0 whereas
the latter will imply an output value of1.

While it is important to consider the case ofexplicit switch construction using more than one molecule in general, (for
reasons discussed in Section XV-B referring to the deeper issues connected to the ergodicity of a unimolecular system, and
for the purpose of establishing the results in the sections to follow in contexts beyond switches constructed from a single
molecule), for convenience of explanation, we will use examples that are unimolecular for the most part. A clarification of the
nuances related to extending these “unimolecular switches” to those constructed usingN > 1 molecules will be the subject
of Section XII.

D. Defining value in the probabilistic case

Considering the probabilistic case, let us suppose that the current stateS ≡ S ′0∪S ′1 whereS ′0 andS ′1 are non-empty subsets
of S0 and S1 respectively. In the probabilistic case some of the witnesses to the value0 remain in the current stateS, in
addition to those for the value1. The probability of detecting each individual value through a measurement depends on the
relative proportions of witnesses or precisely, the cardinalities ofS ′0 andS ′1.

Returning to the constructive example of a molecule of gas in a volume, a measurement at timeτ will yield a value that
is either0 or 1. As shown in Figure 9, let the volume be altered such that the ratio of volumes is nowα : 1 as shown for
0 ≤ α ≤ 1. It is easy to see from this example that this corresponds to a partitioning of the microstates yielding the ratio of
the associated set of witnesses to beS

′
0
S′1

= α.

More generally, consider a change to the state of a thermodynamic system representing a switch such thatS′0
S′1

= α from

an initial stateS such thatS0
S1

= 1. Now, following Physical Fact 4.7, a straightforward calculation yields the probability of a
witness to the value0 (or in the constructive example, a the molecule being detected in a volume element fromV0) is α

1+α

whereas that of finding a witness to the value1 (or equivalently, the molecule in volumeV1) is 1
1+α .

Lemma 6.1:Let S ′0 = αS ′1 for 0 ≤ α ≤ 1 andS ′ = S ′0∪S ′1. Then,V(S ′, τ) = 0 with probability α
1+α and1 with probability

1
1+α .

VII. T HE PHYSICS OF SWITCHING

Computation proceeds by switching which involves transforming the current state ofsw characterized byS into a stateS ′.
While several specific physical processes can be invoked to realize these transformations supporting switching,canonically,
these transformations will be characterized by the addition or subtraction of microstates to a current stateS (at timeτ ≥ 0) in
such a way that the result is stateS ′ at timeτ ′ > τ . Informally, a single switching transformation takes the set of microstates
that correspond to the current stateS of sw and either adds or subtracts microstates from the setSIN to deriveSOUT , the
output state. Let̂τ = (τ, τ ′) be the interval in time during which this transformation is realized. As stated in Section IV,
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throughout this paper, we will be concerned with the case wherein the switching intervalτ̂ corresponds to a change that is
quasistatic, and is equal for all of the switches.

Let INT denote the set of all intervals of time. Using the terminology from Section VI, and relating the mathematical
notion of switching from Section V, all the microstates inSIN are witnesses tox wheneverw = 1 and< w, x > is an input
switching relationship. Similarly, the microstates inSOUT are witnesses to a valuez and an output enabling signaly in a
switching relationship withz. As shown in Figure 10, the output ofsw is determined by the current stateS and by the set of
microstates that correspond to the input value selected by one of its (input) enabling signals; this selection is ignored in this
example. It is easy to see that the functionf in this example computes the logical complement of the input.

Formally, the process ofphysical switching(or when there is no ambiguity with its mathematical counterpart, simply
switching) is realized as a functionassociated withswitch sw and is defined to beSWITCHING : S × S → S × INT where
SWITCHING(S,SIN ) = (S ′, τ̂) andS ′ = S ⊗SIN . For a given switchsw , ⊗ is fixed to be the set union (∪) or set difference
(−) operator from standard set theory. Thus, new states of a switch are derived from the current stateS either through its
set-theoretic union or difference with the input value tosw , determined by detection of a witness microstate (as outlined
in Section VI-A) in the state of the physical representation ofsw ′ driving sw . For convenience, let us denoteSIN by the
symbolI andSOUT by the symbolO. Of all points in time, letτf denote the smallest value when the switching operation is
completed, namely there is noτ ′′ < τf for which the current state ofsw is O whereas it isO at τf . To reiterate, for a switch
sw , τ̂ = (τi, τf ) will be referred to as a switching interval.

To illustrate the functionSWITCHING, in the deterministic case, consider the example shown in Figure 11. Let< wi, xj > be
the switching relationship of interest wherewi is determined by the wire driven by the predecessor switchsw ′′ whereasxj is
the value determined by the wire driven bysw ′. During the switching interval̂τ = (τ, τ ′), switchsw haswi = 1, determined by
the value of (current state)S ′′ throughV(S ′′, τ) = 1 at the beginning of the switching interval. AlsoV(S ′, τ) yields the input
valuexi. In our example, the current stateS of sw ′ at timeτ is identical toS ′0 and therefore,V(S ′, τ) = xj = 0. Continuing,
let switchsw realize the set difference function namely⊗ = −, and the current state ofsw beSΓ. ThenSOUT = SΓ−S0 = S1.
Thus at timeτ ′ which is the end of the switching intervalτ̂ , a measurement ofSOUT throughz = V(SOUT , τ ′) yields a value
of 1. The switchsw shown in this example is one way of physically realizingnegationor the logical complementoperation.

A. Physical instantiation of deterministic and probabilistic switching

A SWITCHING is deterministicif and only if O ⊆ S0 or O ⊆ S1 wheneverI0 ⊆ S0 or I1 ⊆ S1. Let I0 ⊆ S0 andI1 ⊆ S1

denote the two possible inputs representing values0 and 1, whereasO′ andO′′ denote the output states withI0 andI1 as
the respective inputs. A deterministic switching isnon-obliviousif and only if O′ ∩ O′′ = φ.

Now considering the probabilistic variant, as before, letO′ andO′′ denote the output states withI0 andI1 as the inputs
respectively. LetŜ0 ⊆ SΓ and Ŝ1 ⊆ SΓ denote the maximal set of witnesses respectively to values0 and1. Define

ω′0 = O′ ∩ Ŝ0

ω′1 = O′ ∩ Ŝ1

(ω′′0 andω′′1 can be defined similarly). ASWITCHING function is randomized with probability parameterp ≥ 1
2 if and only

if

1) given inputI0, |ω′0|
|ω′1|+|ω′0|

= p whereas with inputI1
|ω′′1 |

|ω′′1 |+|ω′′0 |
= p wheneverf is an identity function whereas
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2) given inputI0, |ω′1|
|ω′1|+|ω′0|

= p whereas with inputI1, |ω′′0 |
|ω′′1 |+|ω′′0 |

= p wheneverf is the complement function.

In what follows, unless otherwise specified, whenever a switchsw is randomized with probability parameterp, we mean
one that has the above property. The following observation summarizes the probabilistic aspects ofSWITCHING succinctly.

Observation 7.1:Let x ∈ {0, 1} be the output of aSWITCHING function f that is randomized with a probabilityp < 1.
In any probabilistic (physical)SWITCHING implementingf , V(O, τ ′) = x with probability p and x̄ with probability (1− p),
whereas in deterministicSWITCHING, p = 1.

It is easy to verify that the mathematical definition of a randomized switching function (from Section V-A) with probability
parameterp corresponds toSWITCHING realized above physically, so long as the statistical mechanics of the switch as outlined
in Physical Fact 4.7 are true.

B. An important digression to detecting the value of a state and the cost of a classical measurement

In the above definition, during a switching intervalτ̂ , a switchsw was enabled by its input signal and in turn produced an
output enabling signal, as well as an output value based on the functionV; the particular issue of detecting this value in a
switch sw ′ or sw ′′ and using it to drive another switchsw was not specified. To understand this issue better, it is convenient to
consider theRABRAM model, introduced by this author [6]. This energy-aware model of computing is a variant of a random-
access machine whose execution on eachatomic stepis determined by a sequence ofread, executeand write sub-steps as
shown in Figure 12.

Relating this notion of a step of aRABRAM with a single transition of a switch, namelySWITCHING, thereadcorresponds to
determining the value ofV from the current state ofsw ′, which drives switchsw . In our current context, a physical instantiation
of read will be realized through aclassical measurement. Considering switchsw ′, any such measurement detects witnesses
from S ′0 andS ′1 from S ′ the state ofsw ′ at time τ . (More generally, it can be coarser and be based on detecting groups of
witnesses as opposed to single witnesses, so long as the constraints on the energy and the probability of the existence of the
group of witnesses are consistent with the corresponding properties of single witnesses.) Continuing with the execution of a
RABRAM step, by contrast with theread sub-step, an execute sub-step as well as thewrite sub-step correspond to a single
switching step as developed in the previous sections, that changesS to SOUT as shown in Figure 12.
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Throughout, the amount of energy consumed by a (classical) measurement through which anread is realized is considered
to be negligible, when compared with the energy cost of switching. We will now digress from the main theme of this work to
discuss this issue of measurement. Landauer, in addition to taking a significant leap towards resolving the Maxwell’s demon
paradox [22], helped establish the cost ofinherentenergy consumption of a logically irreversible computational step by binding
it to a macroscopic (non-statistical) analog of switching as characterized above (or inRABRAM terminology, with the execute
and write sub-steps), as opposed to the measurement (orread ) sub-step. For the reader familiar with the Maxwell’s demon
paradox, this implies associating the energy cost to the demon’s act of “recording” the molecule’s position and momentum thus
erasingits current state of memory, as opposed to making the measurement itself. Several distinguished researchers including
Szilard [8] and Brillouin [39] studied this issue without making this subtle yet crucial distinction. Further debate as well as
clarification of the cost of measurement assumption continued (see Bennett and Landauer [40]), with Bennett [41] clarifying
this issue conclusively.

Let us now interpret these comments from thermodynamics from the perspective of energy analysis within the switching
andRABRAM models of interest to us. Using theRABRAM for convenience, (while noting the equivalence shown in Figure 12)
the energy consumed by a single step of execution is lumped with theexecuteandwrite sub-steps whereas theread sub-step
has negligible energy cost, which is ignored. With these clarifications, we will continue with a development of the framework
as if a physical measurement process supporting the above conditions and the functionV were to exist, and return to detailing
the issue of demonstrating a plausible construction in in Section XII.

VIII. E NERGY CHARACTERISTICS OF SWITCHING

Using the physical construction of a switch defined above and theSWITCHING function, we will now characterize the energy
consumed in the switching, first in the deterministic case in section VIII-B followed by a consideration of the probabilistic
case in Section VIII-C. Before doing this, in Section VIII-A below, we will rephrase Theorem 4.5 from Section IV-D using
the terminology of a stateS, and of switching, developed in previous section.

A. Characterizing switching through change to state and related properties

Consider a switchsw ∈ SW with a particular current stateS, a particular inputI and a particular outputO, and letτ̂ be
the time interval for this switching. Given switchsw , let EF : (S × S) → Q

+ be theenergy factorrepresenting the change
in entropy of switchsw during an interval̂τ . Using terminology from Section IV, we recall that this is denoted by the term
ln( |S||O| ). As usual, both the index ofsw as well aŝτ are implicit parameters. Recall from Section IV that theenergy consumed
W by a thermodynamic systemTi is related to the change in its entropy through Theorem 4.6.

Define theENERGY : (S×S)→ T of a switching to be the energy consumed bysw , identified withTi equal toW Joules,
where theswitchingof sw is realized using anarbitrary sequence of thermodynamic transformationsdefined in Section IV-
E. Specifically, a single operationSWITCHING(S, I) = (O, τ) is physically realized as a composition of thermodynamic
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transformationsTRANS of finite length K where the state at the beginning of (applying the first element of)TRANS is S
and the state after applyingTRANS is O. Intuitively, a single atomicSWITCHING can be viewed as being “expanded” into a
sequence of thermodynamic transformations of finite length, each of which has a current state determined by its predecessor
in the sequence, and is either adiabatic or isothermal, as stated in Section IV-E. Then, the following convenient restatement of
Theorem 4.6 is useful throughout the sequel.

Theorem 8.1:ENERGY(S, I) = −κtEF(S, I) Joules, whenever|S||O| > 1 and is zero otherwise.
Proof: Restatement of Theorem 4.6 withENERGY(S, I) = W.

The switching energyof a switchsw with initial stateS is max{ENERGY(S, I0), ENERGY(S, I1)}.

B. Lowerbounds on deterministic switching

We consider the deterministic setting here, and state and prove the following theorem about the current state of a switch
sw , leading to a lowerbound on the energy consumed byany deterministic switching in Theorem 8.3 below.

Lemma 8.1:In any non-oblivious deterministic switching,O ⊂ S.
Proof: Suppose not, thenS −O 6= φ. If ⊗ = − then we are done sinceO = S − I. Now if ⊗ = ∪, sinceSWITCHING

is non-oblivious and deterministic, there exist non-empty setsI and Ī where I ∩ Ī = φ, SWITCHING(S, I) = O and
SWITCHING(S, Ī) = O′, where

O = S ∪ I implies S ⊂ O
andO′ = S ∪ Ī implies S ⊂ O′

Combined with the fact that by definitionO ∩O′ = φ, it follows thatS = φ, which contradicts Physical Fact 4.1.
It immediately follows from this proof that
Corollary 8.2: ⊗ = −, in any deterministic non-oblivious switching.
Using these facts, we are now able to bound the energy change in any deterministic non-oblivious switching from below.

As before, letI and Ī denote the input sets corresponding to the two possible input values0 and1.
Theorem 8.3:In any non-oblivious switching, the switching energy ofsw with any initial state≥ −κt ln 2 Joules and is a

minimum when|S0| = |S1|.
Proof: That energy ofSWITCHING(sw) = −κt ln 2 Joules when|S0| = |S1| follows immediately from Theorem 8.1.

Now, if the theorem is false, there exists a switchsw with stateŜ such that|Ŝ0| = α · |Ŝ| and |Ŝ1| = (1−α) · |Ŝ| for α 6= 1
2 ,

such that its switching energy is less than−κt ln 2 Joules.
α < 1

2 : From the definition of a deterministic non-oblivious switch, there exist inputsI, Ī to sw such that the respective
outputs areO andO′. Also from the definition of a deterministic switching, and Lemma 8.1 it follows thatŜ0 ⊃ O and
Ŝ1 ⊃ O′. Now sinceα < 1

2 it follows from Theorem 8.1 and Corollary 8.2 thatENERGY(Ŝ, I) = −κt ln |Ŝ|
α|Ŝ0|

> −κt ln 2
Joules, a contradiction.
α > 1

2 : A similar argument completes the proof witĥS1 replacingŜ0.

C. Energetics of probabilistic switching

Given a probability parameterp ≥ 1
2 , the following theorem characterizes the energy consumed by probabilistic switching.

Theorem 8.4:Given any implementation of the functionV and for any non-oblivious probabilistic switch with probability
parameterp, ENERGY(S, I) can be as low as−κt ln 2p Joules. Therefore the switching energy of a probabilistic switch with
initial stateS and probability parameterp is −κt ln 2p Joules.

Proof: (SKETCH): Given a realization ofV, that the switching energy of a non-oblivious probabilistic switch is−κt ln 2p
Joules is immediate from the definition of value of a stateV(O, τ ′), Observation 7.1 characterizing the probability of value
detected byV and Theorem 8.1. The potential energy savings follow trivially from Theorem 8.3.

From this, we can immediately deduce
Corollary 8.5: The difference in switching energy between deterministic and probabilistic non-oblivious switches isκt ln p

Joules, which is a potential for saving ofκt ln 1
p Joules.

1) Comments on the definition of switching:In all of the above physical characterizations of switching, the output stateO
is related to the current stateS under the⊆ relationship. (Thus, eitherO ⊆ S or vice-versa.) One can consider a definition of
switching whereinS is incomparable toO for example, by the application of both the “-” as well as the “∪” operators during
a single switching step. This raises an interesting issue concerning the atomicity of a single switching operation wherein,
multiple operations from set-algebra can be used to characterize a switching step. An implication of allowing these potentially
more general definitions for switching, wherein the output and the current states are not necessarily restrictions of each other—
contrary to the definitions used in this work— is that the set of witnesses inO need not necessarily be those in the current
stateS. However, it is possible to extend the basic definitions as well as bounds on the energy derived above, to be valid in
the context of a broad range of more general definitions of switching, so long as the witnesses in a given (non-empty) state
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Fig. 13. A deterministic 2-canonical network resolving the AND function where theCOMPUTE-SWITCHes sw3 and sw4 drive theacceptingswitch sw6

and rejecting switchsw5

S, I or O have a fixed meaning—any witness (or microstate) from any of these sets of a given switchsw are permanently
associated with the value0 or with the value1 throughout the life-time ofsw . Furthermore,O ought to be determined as a
function of S andI, within the context of non-recovering computations as characterized in Section IV. The details of such
extensions are beyond the scope of this work.

IX. N ETWORKS FOR DETERMINISTIC COMPUTATIONS

In this section, we will first introduce anetworkof switches for deterministic computation (Section IX-A) and define their
energy complexity (in Section IX-C). In Section X, we will prove a non-trivial lowerbound on the energy consumed by any
deterministic network that can compute the logicalAND function.

A. Defining a Network

A Networkof switches is a connected directed acyclic graphN = (SW,WIRES) such that the vertices are switches, the
edges are wires and the switches that are of the typeOUTPUT-SWITCH as well as those of typeCOMPUTE-SWITCH are all
strongly connected. Each switch has no more than two predecessors and no more than two successors. This assumption of
bounded (two) degree entails no loss of generality in terms of the energy complexity introduced in Section IX-C below. A
switch is defined to beextrinsic if and only if at least one of its inputs is driven by an input switch. It is defined to beintrinsic
otherwise. A network is said to bek-canonicalfor k ≥ 1 whenever it has

1) exactlyk input switches.
2) two output switches, and
3) exactly oneCOMPUTE-SWITCH with one of its input enabling signalswj ≡ yk whereyk is the output enabling signal

of an input switch. For convenience we will refer to this switch as theSTART switch.

From a computer science and automata theory perspective, when the network is used as a basis for (formal) language
recognition, it is convenient to view the two output switches as being either anacceptingswitch or arejectingswitch. Also,
given an input which is a binary string determined by the settings of its input switches at timeτ = 0, the START switch has
input enabling signalwj = 1 thus “triggering” the computation.

In Figure 13(a), a network computing the logicalAND function is sketched. Switchessw1, sw2 are of typeINPUT-SWITCH,
sw3, sw4 are of typeCOMPUTE-SWITCH (implementing the complement function) whereas switchessw5 and sw6 are of
type OUTPUT-SWITCH; sw5 is the rejecting switch andsw6 is the accepting switch. Every switch unless it is of the type
INPUT-SWITCH is strongly connected, and the network is directed and acyclic. Furthermore this network is2-canonical, since
in addition to the above constraints, exactly oneCOMPUTE-SWITCH sw3 has an input enabling signaly1,1 from INPUT-SWITCH

sw1. In Figure 13(b), we show the crucial relationships between the input values tosw3 andsw4, and their output and enabling
signals in a “truth-table-like” structure.

B. Execution of a network

A switch sw is said to have switched by timeτ if and only if its switching interval(τ ′, τ ′′) is such thatτ ′′ ≤ τ . In what
follows, the input switches are all assumed to have switched by timeτ = 0 so that their output values can be determined by
the functionV. Continuing, at timet = 0, ysw ,1 is 1 since the input-switchsw1 has switched by timeτ = 0. (While this
implies possibly negative switching times, this is merely a technicality and can be easily changed.) Thus,τ = 0 is interpreted
to denote the time when the first compute-switch starts switching. In our example of Figure 13, this switch issw3 which is
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Fig. 14. A trace for the deterministic network resolving the AND function

enabled atτ = 0. During the interval̂τ2 as shown in Figure 14, it switches and the associated enabling signal values are shown
in the figure. In the next interval̂τ3, sw4 might undergo aSWITCHING with the associated output and enabling signal values.

Let N = (SW,WIRES) be ak-canonical network. Aninput bindingor input for short, is a functionIN ,k : SWIN → {0, 1}
whereSWIN ⊆ SW is the set of all switches of typeINPUT-SWITCH and IN ,k(sw ∈ SWIN ) is the input value for switch
sw , which by definition is either0 or 1. An executionof N determined by or associated with inputIN ,k is a partial function
E : SW→ INT , andE(sw) = τ̂ is defined for some switchsw whenever

1) one of the input enabling signalsw, of sw is 1 at timeτ , whereτ̂ = (τ, τ ′) and
2) τ is the smallest value for which this is true.

Let SWE ⊆ SW be such thatsw ∈ SWE if and only if E(sw) is defined. Given this fact, let̂τf = (τf , τ ′f ) be the final
interval, that is the interval with the largest starting value of timeτ = τf in an execution ofN ( with input IN ,k) and let
E(swf ) = τ̂f .

Observation 9.1:swf is either an accepting or a rejecting switch.
Consider a finite sequence of intervalst =< τ̂1, τ̂2, τ̂3, · · · , τ̂l > such that̂τ1 = (0, τ ′ > 0) and for anyτ̂i where1 < i ≤ l,

τ ′i−1 = τi where τ̂i = (τi, τ ′i). A sequencet =< τ̂1, τ̂2, τ̂3, · · · , τ̂l > is said to be atrace of a networkN induced by
executionE with input IN ,k wheneverE is a bijection fromSWE to t. In Figure 14, the traces associated with inputs
< 0, 0 >,< 0, 1 >,< 1, 0 > and< 1, 1 > to the network in Figure 13 are shown. Traces will be used to characterize the
execution of a network, given an input. We note in passing that in the deterministic network, each input bindingIN ,k is
associated with a unique executionE .

C. Energy complexity of deterministic networks

We will now introduce the definition of theenergy complexityof a network. An interval̂τ is oblivious in a tracet whenever
switchsw in this interval, determined byE−1(τ̂), is oblivious. It is non-oblivious otherwise. We define theenergy characteristic
of N in an execution represented by the functionEC : (SW×T)→ {0, 1}, where

EC(sw , τ̂) =
{

1 wheneversw is a COMPUTE-SWITCH andE(sw) = τ̂ is a non-oblivious interval
0 otherwise

Let t =< τ̂1, τ̂2, τ̂3, · · · , τ̂l > be a trace induced by executionE of a networkN , corresponding to inputIN ,k. Then the
effective energyof t is

EE(t) =
∑

1≤j≤l

∑
∀sw∈SW

EC(sw , τ̂j)

The deterministic energy complexityE of a network with respect to a family of traces̄T induced by input bindings
Ī ′N ,k, Ī ′′N ,k, · · · is

E(N ) = max
∀t∈T̄

EE(t)

Consider a networkN to be homogeneous if all of its switches of typeCOMPUTE-SWITCH have the same switching energy,
sayβ. Then

Observation 9.2:There exists an input bindingIN ,k and executionE that induces a tracet such that, the energy expended
by the switches of the typeCOMPUTE-SWITCH in N during the tracet is E(N ) · β Joules.
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Fig. 15. Consistent and inconsistent bindings

X. L OWER BOUND FOR THE ENERGY COMPLEXITY OF ANAND NETWORK

In the sections above, the notion of a network and the energy complexity of such a network have been defined. In this
section, we will prove a non-trivial lower bound on the energy complexity of any network that resolves the logicalAND
function.

To generalize the previous example of a network realizing theAND boolean function, formally, we defineB to be a set
of k-vectors from{0, 1}k. Consider a fixed vectorb ∈ B, such thatb =< b1, b2, b3, · · · , bk > wherebi ∈ {0, 1}. Let B be a
k-ary boolean function withB as its domain. Letsw ′1, sw ′2, · · · , sw ′k ∈ SWIN be the input switches of ak-canonical network
N . IN ,k bindsN to b if and only if IN ,k(sw ′j) = bj′ for 1 ≤ j, j′ ≤ k, and it is an onto function.N resolvesb with respect
to B whenever, given a suitableIN ,k andE ,swf in (the corresponding tracet) is an accepting (rejecting) switch,B(b) = 1
(0 respectively). Consider a family of input bindingsI = ĪN ,k, Ī ′N ,k, Ī ′′N ,k, · · · . A family of bindings I bindN to B if and
only if given anyb ∈ B, there exists a uniqueIN ,k ∈ I such thatIN ,k bindsN to b. A networkN resolves a boolean
functionB with an input family of bindingsI (that bindsB to it) provided given anyb ∈ B, N resolvesb with respect to
B. We defineI to be consistentif and only if given any member pair of bindings̄I ′N ,k and Ī ′′N ,k and corresponding vectors,
b andb′ such thatĪ ′N ,k(sw) = bj ∈ b, then Ī ′′N ,k(sw) = b′j ∈ b′. Informally all bindings associate the same index from the
input (assignment)b with the sameINPUT-SWITCH switch sw . In what follows, we will only be concerned with families of
consistent bindingsI. For example the bindings in Figure 15(a) are consistent whereas those in Figure 15(b) are not, since for
example, switchsw1 hasb1 andb2 assigned to it.

Given a tracet =< τ̂1, τ̂2, τ̂3, · · · , τ̂l >, a maximally oblivious subsequence< τ̂j , τ̂j+1, · · · , τ̂j′ > is any subsequence
of intervals such that every interval in the subsequence is oblivious and furthermore wheneverj > 0 τ̂j−1 and, whenever
j′ < l, τ̂j′+1 are non-oblivious intervals. A boolean functionB is non-trivial if and only if there existb,b′ ∈ B such that
B(b) 6= B(b′).

Lemma 10.1:Given N , let t be a trace and̄t =< τ̂j , τ̂j+1, · · · , τ̂j′ > where j′ = j + λ for 1 ≤ j ≤ j′ ≤ l be any
maximally oblivious subsequence oft. Then,N cannot resolve a non-trivial boolean function ifλ = l − 1 for any tracet.
Also let E−1(τ̂j) = sw and E−1(τ̂j′) = sw ′ and z, z′ be their respective outputs int. WheneverE−1(τ̂j) ≡ E−1(τ̂ ′j) ≡
E−1(τ̂ ′′j) · · · and z is constant in tracest,t’,t”, · · · associated with all of the input bindings̄IN ,k, Ī ′N ,k, Ī ′′N ,k, · · · from I ,
E−1(τ̂j′) ≡ E−1(τ̂ ′j′) ≡ E−1(τ̂ ′′j′) · · · andz′ is a constant.

Proof: The first part of the claim is a straight forward induction on the length of the sequence and the definition of an
oblivious function. The second part of the claim additionally follows the definitions of an input, and an output to a switch and
the definition of switching.

Theorem 10.1:E(N ) ≥ 2 for any 2-canonical networkN that resolves theAND boolean function.
Proof: (SKETCH) If the theorem is false for a networkN then, in any tracet induced by an executionE with input

binding IN ,k, there can be no more than one non-oblivious interval. Without loss of generality, let this interval beτj for
1 ≤ j ≤ l wheret =< τ1, τ2, τ3, · · · , τl >. If there is no such interval,N cannot resolve a non-trivial boolean function from
Lemma 10.1. LetE−1(τj) = sw . sw must be extrinsic or else, from Lemma 10.1, once again,N computes a trivial boolean
function. Let INPUT-SWITCH sw ′ drive sw and consider inputsb1 ≡< 1, 1 >,b2 ≡< 0, 1 > andb3 ≡< 1, 0 > to B, which
by hypothesis is anAND function. From pigeon-holing, there exist two inputs in any consistent family of input bindings,b1

andb2 without loss of generality, such that the input value tosw derived fromsw ′, x = 1, andB(b1) 6= B(b2). Then, from
Lemma 10.1 and the fact thatN is 2-canonical, we know that in both cases the corresponding traces have the same accepting
or rejecting switchsw , in their final interval, whereasB(b1) 6= B(b2).

From this theorem and Theorem 8.3, it follows that
Observation 10.2:There exist inputs to any 2-canonical network that resolves the AND boolean function such that the

energy consumed is at least−2κt ln 2 Joules.
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XI. N ETWORKS FOR RANDOMIZED COMPUTATIONS

In Section IX above, the notion of adeterministicnetwork that can resolve a boolean function was introduced, and its
energy complexity defined. Implicit in the definition is the fact that every switchsw in networkN is a deterministic switch.
In Section V-B the notion of a probabilistic switch was introduced. We will now use this definition to construct probabilistic
networks.

A. Probabilistic networks and their execution

A k-canonical probabilistic networkR is any network with the property that aCOMPUTE-SWITCH can either be deterministic
or probabilistic. A randomized executionis Ê : SW → T as before, where the individual switches are randomized with
some probability parameterp. Given ak-canonical probabilistic networkR and an input bindingIR,k, by contrast with the
deterministic case, we now have a family ofrandomized executionŝE1, Ê2, Ê3, · · · , Êl each inducing tracesρ1, ρ2, ρ3, · · · , ρl,
with respective probabilitiesr1, r2, r3, · · · , rl. Let Êj(sw) = τ̂ as before and letsw ′ be the switch in interval̂τ ′ immediately
precedingτ̂ in ρi, that is τ̂ ′ and τ̂ are of the form(τ ′′, τ) and (τ, τ ′) respectively. Also, letx′ be its input value at time
τ ′′. (We recall that in any legal execution, the input value to a switch is defined, and one of its input enabling signals is
asserted.) Now, the conditional probabilityqi associated witĥτ , is the probability that the output enabling signal fromsw ′

driving sw equals one at timeτ , given the input tosw ′ is x′. Informally, each member of this family of traces is generated
due to the probabilistic or randomized nature of the output of the probabilistic switchesR in the network. This is in contrast
to a deterministic networkN which has a unique trace given an input bindingIN ,k.

Observation 11.1:By definition, ri =
∏

1≤j≤l′ qj whereρi =< τ̂1, τ̂2, τ̂3, · · · , τ̂l′ >. Furthermore,
∑

1≤j′≤l rj′ = 1.
Given a single input, a probabilistic network can, depending on the execution, invoke different switches with varying

probability parameters each leading to a distinct trace. Thus, whereas a fixed input is associated with a unique trace in the
deterministic case, it is associated with a family of traces whose relative probabilities are as stated in Observation 11.1.

B. Energy complexity of probabilistic networks

We will now introduce the notion of theenergy complexityof a probabilistic network. Letρ =< τ̂1, τ̂2, τ̂3, · · · , τ̂l′ > be a
trace from thefamily of tracesF induced by executionE . Then theexpected effective energyof F is

REE(F) =
∑
ρi∈F

ri · EE(ρi)

whereri is the probability of traceρi. An example of an AND network will help illustrate this notion in Section XI-B.1
below. These definitions are an adaptation of the measure oflogical work introduced by Palem [6] in the context of aRABRAM.
The randomized energy complexityRE of a network is

RE(R) = max
∀F∈F

REE(F)

whereF is theset of all trace familiesinduced by executions associated with all the consistent input bindingsĪR,k, Ī ′R,k, Ī ′′R,k, · · · .
Let a probabilistic networkR ber-homogeneous if and only if it is homogeneous and all switches of the typeCOMPUTE-SWITCH

are randomized. Then,
Observation 11.2:There exists a bindingIR,k such that the energy in Joules consumed by theCOMPUTE- SWITCHes of

R, averaged over all the traces induced by associated executionsÊ1, Ê2, · · · , is RE(R) · ENERGY(sw), where sw is any
probabilisticCOMPUTE-SWITCH in R.

1) Upperbound on the energy complexity of the AND network:In Figure 16, we show a probabilistic networkR that
can resolve the logicalAND function. The details of its construction are identical to those in the deterministic case from
Figure 13. Switchessw3 and sw4 are of typeCOMPUTE-SWITCH and are randomized, with a probability parameterp, they
compute complement function. The output signals of these switches as a function of the inputs are shown in the table in
Figure 16. Recall from Theorem 8.4 that in any switching, a probabilistic switch with probability parameterp consumes
−κt ln 2p Joules. Thus, using this fact andRE = (1 + p), from Observation 11.2, we have the expected energy consumed by
switches of typeCOMPUTE-SWITCH in the example probabilistic network to be(1 + p)κt ln(2p) Joules. This is less than its
deterministic counterpart, which is a minimum of2κt ln(2) Joules, following the lowerbound established in Theorem 10.1 and
Observation 10.2.

XII. A PLAUSIBLE CONSTRUCTION OF A SWITCH AND SWITCHING

A mechanicaldescription of a switchsw as well as its realization in a manner consistent with the principles of statistical
thermodynamics was presented in Section VI-A and Section VII above. We will now provide an interpretation of the abstract
switch construction (from Section VII) through a mechanical-pneumatic device which serves as a plausible physical realization
of the switch. For convenience of explanation and to establish the physical validity of the theoretical framework and results
derived in the previous sections, following Szilard [8], we will first consider a cylinder with a single molecule in it.
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A. Device Construction

As shown in Figure 17(a), the device consists of twoassemblies, denoted as themeasurement assemblyand thetransformation
assembly. Recall (from Section VII-B) that a switching operation consists of read step followed by an execute-write step in
that order. The measurement assembly performs the physical equivalent of a “read” whereas the transformation assembly is
equivalent to an integrated “execute-write” portion of the execution of a switch. In the sequel, we will describe these two
assemblies and their interactions to realize switching, starting with the transformation assembly. The nature of this description
will be analogous to a thought experiment in physics.

B. The transformation assembly

The transformation assembly of a switchsw consists of a rigid masslessBAR, balanced over a masslessPIVOT. In practice,
these could be physical components of negligible mass. ThePIVOT rests on a horizontal frictionless surface and is free to move
as shown in Figure 17(b). A (perfectly) sphericalBALL with massM is balanced on the pivot, so that the entire assembly is
static and balanced at physical equilibrium. Let switchsw ′ be a predecessor to switchsw such that an enabling signal from
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sw ′ initiatessw into switching. (In this example, switchsw realizes the negation operation. A similar construction can be used
to illustrate the realization of the identity function.) Whensw ′ enablessw — an action resulting from measuring the state of
sw ′, which, in this example, yields a value1 as detailed in Section XII-C below in the context ofsw . As a result, thePIVOT

moves to the right as shown in Figure 17(b). This in turn (eventually) causes theBAR to tilt as shown, caused by theBALL

rolling to the left. The following elementary fact from classical mechanics helps understand the dynamics of this assembly
once thePIVOT is displaced by a small distanceδ in either direction.

Observation 12.1:For anyδ > 0, once the pivot has moved and the bar has tilted, subsequent measurements cannot move
the pivot in the opposite direction since the horizontal component of the force generated by the bar on the pivot prevents it
from doing so.

Returning to the example of Figure 17, the movement of the bar in turn moves a piston through the three frictionless
pulleys labeleda,b,c and d. The piston is in a cylinder enclosing, for purpose of example, a single molecule of an ideal
mono-atomic gas, and the cylinder has perfectly conducting frictionless walls , and is in an isothermal bath (not shown).
Thus, the movement of the piston (isothermally) compresses the gas. In the deterministic case, the piston is pushed to the
position markedD (as shown in Figure 17(d)) in the context of a deterministic switch, which is at a point corresponding to
half of the cylinder’s volumeV as shown. For simplicity, let us assume that that the underlying gaseous system is ergodic–the
unimolecular assumption has important implications to the ergodicity of the gaseous system and influences the measurement
to yield a particular probabilityp; the discussion in Section XV-B below will address this point in greater detail. Given this
assumption, the volume elements and hence microstates leading to the definition ofV (modeling measurement) in Section VI-B,
are associated with the Euclidean coordinates of the volume enclosed within the cylinder.

Observation 12.2:In the case of the uncompressed gas occupying the whole of the cylinder when pistonsP1 and P2 are
fully retracted, the probability of the gas molecule occupying the left or the right half is equal representing the stateSΓ before
switching. Also, the probability of the gas molecule existing in one of the halves is unity when either pistonsP1 of P2 are at
point markedD, while the other piston is fully retracted, respectively denoting the statesS1 or S0.

In the general probabilistic case, the piston stops at the point markedP in Figure 17(a) with an associated probability
parameterp. It is easily seen (Figure 17(b)) that withx = V

2 , and the occupancy of all physical (Euclidean) volume elements

in the cylinder being of equal probability,q =
(

1
p − 1

)
for 1

2 ≤ p ≤ 1. In each case, the witnesses to the values0 and1 are
as shown in Figure 17(d). Now, the following observation coupled with Theorem 8.1 clarifies the energy changes associated
with compressing the gas as characterized by Theorem 4.3.

Observation 12.3:The change in potential energy of the ball equals the mechanical work done on the gas by the piston.

C. The Measurement Assembly

Let switchsw have switchŝw as one of its successors. Also, let the function being realized bysw be such that if its input
value is0 (activated by an appropriate enabling signal specified as part of a switching relationship), then it enables switchŝw
with an output value of1, and vice-versa. For convenience, let us additionally consider that the input enabling signals, and the
input values to switchŝw are both derived from switchsw as part of a single switching relationship. Now, the mechanism for
switching ŝw based on thePIVOT-BALL construction is identical to that described in the context of switchsw in Section XII-B
above.

The process of measurement is a collision detector at the granularity of a molecule, one detector per (Euclidean) surface
element such that the ratio of detectors to volume elements is1 : 1. Now, the arrangement in Figure 17(b) will cause a (minute)
movement to the pivot corresponding to a successor of switchsw , triggering a switching. In greater detail, when a collision
occurs with the sensor, a miniscule amount of work associated with the measurement is done to transmit this and move the
“pivot” of successor switchŝw of sw .

1) The restraining mechanism:Considering the deterministic case, the enabling signal is defined (in Section VII) to be
valid only at the end of the switching interval; if not, false values can be detected. In order to ensure that the result of the
measurement be transmitted tôsw from sw after switchsw has fully switched, namely its pistonP2 is in positionD, we
introduce a particular restraining mechanism shown in Figure 17(c). In our example this corresponds to the point in time
when pistonP2 is completely in positionD. To realize this mechanism, the piston, as it moves, also shifts a restrainingROD

(Figure17(c)) which prevents the measurement assembly from transmitting the value encoded bysw to ŝw till piston P2 reaches
position D. From the time instantτ when thePIVOT of switch sw starts moving, to the instantτ ′ > τ when pistonP2 reaches
position D forms the switching interval̂τ . This mechanism can be easily extended to the case of a switch with any associated
probability parameterp. Thus from Theorem 8.4

Observation 12.4:Not accounting for the cost of measurement, the work done on the gas is exactly−κt ln 2 to reach
position D, whereas it is−κt ln 2p to reach positionP, and is derived from the potential energy stored in the ball prior to the
switching.

D. Comments on extensions to the multimolecular case

While the preceding discussion is adequate to establish the energetics and energy savings achieved through probabilistic
switching at the fundamental limit (from Section VIII), for completeness, we will now outline an approach to extending the
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above mechanism to the case of a switch usingN > 1 molecules. Briefly, in this case, the system in question is designed in
exactly the same way as above with a few additional constraints. Thus, in this case, the detection devices along the walls of
the cylinder need to satisfy the following additional property:the first collision in time is detected by one of the detectors after
which all further detection is suspended through restraining mechanisms.Simple extension of the restraining mechanism to the
measurement assembly from Section XII-C satisfy this additional condition. Once this condition is satisfied, a straightforward
calculation can be used to show that as before, withx = V

2 , and the occupancy of all physical (Euclidean) volume elements

in the cylinder being of equal probability,q =
(

1
p − 1

)
for 1

2 ≤ p ≤ 1.
Now, the energy needed in the deterministic and probabilistic cases withN molecules need to be multiplied by the factor

N compared to those presented in Section VIII, bound from below in the deterministic case and above in the probabilistic
case. Thus, in the probabilistic case for example, the energy consumed would be−Nκt ln 2p Joules whereas it would be
−Nκt ln 2 Joules in the deterministic case—this deterministic switching energy can be shown to be a lowerbound using the
techniques from Section VIII-B so long as a consistent definition of witness and measurement is used in the deterministic and
probabilistic cases—which warrants the following restatement of the energy savings at the limit stated as Corollary 8.5 and
observation 12.4.

Observation 12.5:The difference in switching energy between deterministic and probabilistic non-oblivious switches is
−Nκt ln p Joules and thus, the potential for energy savings is−Nκt ln 1

p Joules.
1) Relationship between volume elements and microstates whenN > 1: With N > 1 molecules, a detection of a molecule in

a physical volume element does not correspond to a “pure” microstate. However, the outline above is meant to demonstrate the
possibility of using an approximate form of measurement, whose statistical behavior is identical to that of detecting individual
(microstate) witnesses—thus, the probability parameterp is preserved in going fromN = 1 to N > 1 molecules; however, the
energy bounds as outlined above are different from those based on detecting “pure” witnesses. We also note in passing that it
is possible to construct significantly more complicated measurement and restraining assemblies such that the energy consumed
is independent of the number of moleculesN and thus is identical to the unimolecular case; in such a way that, the switching
energy at the fundamental limit is characterized by observation 12.4 rather than by observation 12.5. Since this section is aimed
at establishing the physical viability of energy savings at the fundamental limit as characterized in the previous sections rather
than being focussed on the construction of gas-based switches, we will not go into these constructions here.

XIII. C OMPLEXITY THEORETIC CHARACTERIZATION OF THE POWER OF NETWORKS

As shown earlier, a switchsw can be used to realizeAND as well asNOT “gates”. Disjunction orOR gates can be
similarly realized, whose energy complexity in the deterministic and probabilistic cases are identical to those established for
AND gates. It will be useful to extend these foundational constructs and results to the broader scope of realizing entire
computations and designing energy-aware algorithms, using these switch constructs as building blocks. To accomplish this
goal, we will sketch relationships below, between a networkN and established models of computation such Turing machines
and circuits, from the theory of computation. Papadimitriou [42] and Sipser [43] provide introductions to this topic. Our goal
in providing this characterization is primarily to help place the notion of a network and its associated energy complexity in
the context of familiar terrain.

A. Switching and theRABRAM model of computing

In an earlier paper [6], this author introduced theRABRAM model for energy-aware algorithm analysis and design. Akin
to the standard random access machine (orRAM) model of computing, its relationship to a switching step was the subject
of Section VII-B which implies an immediate reduction between the two models—in theRABRAM the address decoder is
abstracted away and is a potential source of additional computational power. A central contribution of this earlier work ([6])
is the demonstration of asymptotic energy savings in the RaBRAM model, in the context of the basic question of detecting
whether a given vector ofn elements which are drawn from the set{0, 1}, contains at least one element which is equal to 0. This
problem is referred to as thedistinct vector problem, for variants of which the following results are established (in [6]). Using
lower bounds for the deterministic case and upper bounds for the probabilistic case which has a probability of error bound from
above by 1

nc , asymptotic energy savingsare show to grow asΩ(n) using arandomized value amplificationtechnique [6]. An
interesting aspect of this result is that (as far as can be determined), it is the first asymptotic demonstration of energy savings
derived from a probabilistic algorithm when compared to any deterministic counterpart, wherein the complexity of the running
time is identical to (Θ(n)) in both cases. This result demonstrated that the energy savings are due to probabilistic “switching”
as opposed to the (trivial) case of being a by-product of an improvement to the running time achieved by randomization since
intuitively, a lower running time may imply lower energy consumption. Similar results have also been obtained by this author
for variants of the well-known string-matching problem using randomizedfingerprinting-based approaches due to Karp and
Rabin [44].
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Fig. 18. Canonical realization of aPBIT using voltages

B. Networks and Circuit Complexity

We will use the termcircuit to refer to the form of boolean circuits that have become ubiquitous in the study of the
complexity of computing, andnetworksto refer to the particular model for computing introduced in this paper. Thus, a crucial
point of reference for circuits, using this terminology, is embodied in the early work of Pippenger and Fischer [12]; we will
use this paper as a basis for definitions. We recognize that since this early characterization, significant strides have been made
in circuit complexity, notably in clarifying the power of “monotonicity” as embodied in the work of Razborov [45], [46].

Following Pippenger and Fischer [12], two Turing machinesM,M ′ simulateeach other, if when they are started with the
same string of symbols on their input tapes, they produce the same string of symbolson-lineon their output tapes; two machines
that simulate each other do so on-line if the shifts of the input and output heads occur in the same order (but not necessarily
at the same steps) for both machines. This notion of simulation can be naturally extended to involveintersimulationbetween
Turing machines, networks, and circuits, viewed as language recognizers within stated resource bounds. As in the case of
circuits, a potentially infinite set of networksN1,N2, . . . correspond to a single Turing machine, in one-one correspondence
with each distinct input size1, 2, . . . , M . In the context of on-line simulation, the energy complexity of networks are related to
the number of steps taken by any Turing machine, whereas the size of a circuit is related to the number of steps of anoblivious
Turing machine. Thus, the energy complexity of a network and the size of a circuit are separated by a gap determined by the
separation between oblivious and non-oblivious Turing machines using time-complexity as a measure.

XIV. PHYSICAL REPRESENTATION OF PBITS AND ENERGY SAVINGS

All of the energy bounds developed here are based on a novel approach to representingPBITs as detailed by this author
in [47] and [6]. Recall that in all of this work, the value of aPBIT is detected through an instantaneous “measurement” of
the existence of amicrostatefrom classical thermodynamics. An example of an instantaneous measurement is the detection
of the position of a single molecule of gas in a cylinder containing it, as explained by Feynman [29] (and in Section XII).
By contrast with this representation, conventional representations of aPBIT would use a value such as voltage, whosemeanis
the value of thePBIT as shown in Figure 18. Following Stein [9]—the mean, a normally distributed noise signal denotes the
PBIT value. Thus, the probability of detecting a particular voltage—assuming an arbitrarily precise instantaneous measurement
device—is determined by the normal distribution, and the actual value will be a function of the current mean. The overlap area
A shown in the figure represents the region where a measurement can lead to an erroneous measurement. Quantitatively, the
area of overlap between the two density functions,A, represents the two-sided error of aPBIT value of 0 being erroneously
detected to be1 and vice-versa. Thus, using the notation from this paper, the one-sided error(1− p) = A

2 .
Comparisons between the energy savings using randomization, between the canonical realization of aPBIT and its novel

counterpart were determined in collaboration with Cheemalavagu and Korkmaz [11]; for a detailed discussion, the reader is
referred there. As shown in Figure 19, while energy savings are possible in both realizations, for a fixed probabilityp, the
novel realization requires lower energy than the canonical representation.

XV. QUESTIONS, CAVEATS AND DIGRESSIONS

In this section, we will address various topics, somewhat germane to the central thesis of this paper; an interested reader
might find them useful.
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A. Dissipation

A significant issue in modern computing devices, largely based on CMOS semiconductor material, isdissipation. Feyn-
man [29], in Chapter 7, discusses this topic and its impact on the idealized devices that he describes in the earlier chapters.
The switching energy today tends to be several orders of magnitude above the ideal dissipationless limiting value ofκt ln 2
and the idealized models used in this paper. To factor in some of these pragmatic concerns and relate our work to the domain
of dissipative switches, we will now clarify the relationship to the context of computing with dissipation, using projections
from thenational semiconductor roadmap.

In Figure 20, we show the trends in energy consumed by switcheswith dissipationby extrapolating theITRS 2002 roadmap.
The non-idealization, or the model for dissipation that we use follows Meindl’s “lumped parameter”γ [10]. The projected
switching energy in femto Joules for the deterministic as well as the probabilistic switching cases with probability parameters
p = 0.6 andp = 0.8 respectively, are shown. For example, the switching energy associated with deterministic switching in 2006
is achieved in 2002 by a probabilistic switch withp = 0.6. Thus, using accepted engineering approximations for switching,
probabilistic switches, as shown in Figure 20, accelerate Moore’s law by about two generations. All of the above predictions
are empirical; for those interested in a theoretical approach to modeling and analyzing dissipation, the reader is referred to
Gupta’s work [48].

In Figure 21, we have shown the rate at which deterministic switching energy drops with progress in CMOS technology.
As shown there,static energy consumedin the year 2013 is comparable to that consumed by switching. Thus, switching
energy tends to be the dominant issue till that point in time, and the improvements projected by randomization shown in
Figure 20 will be a significant factor till then. Based on current projection, after 2016, additional improvements to overcome
static energy consumption—efforts underway by technologists in the semiconductor arena now—become necessary to glean
further improvements from probabilistic switches.
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B. Assumptions underlying the idealization

An important mathematical conundrum that emerged from the postulates guiding the development of the kinetic theory
of gases is the celebratedrecurrence paradox. Following Newton’s success in providing a (deterministic) mechanistic view
of the universe, and Laplace’s influence, there was a significant interest in providing a similar framework to explaining the
essentialirreversibility, experimentally noticed in thermodynamics: flow of heat from hot to cold bodies, and not vice-versa.
While Boltzmann’s statistical approach helped provide an accepted explanation of irreversibility, statistical methods and the
concomitant framework of randomness were not universally appealing as part of scientific discourse at the time, with Boltzmann
vigorously defending his views against the approaches and criticisms of the determinists.

The recurrence paradox was an important approach aimed at settling this issue mathematically, and the discussion was led
significantly by Poincare [49] and his student Zermelo [50]. Ultimately, these debates led to the use of statistical methods and
randomness in providing an explanation to physical phenomenon—eventually inspiring Planck to characterize energy as being
quantized[20] and laying the foundations to modern quantum mechanics. The role of randomness, and more significantly
ergodicity, remained an issue that was at the heart of the debate towards the end of the nineteenth century. It finally led to
a mathematical characterization ofergodicity itself! This concept is especially relevant in the context of our unimolecular
assumption in earlier sections, and we will briefly outline some of the relevant issues below.

Based largely on an encyclopedia article of the Ehrenfests [51], it came to be believed that Maxwell and Boltzmann both
assumed theergodic hypothesisas part of their development of the theory of gases. It suffices to say that in the switch
constructions used here with the walls of a cylinder having irrational angles suffices following the arguments put forward
by Boltzmann himself to justify the challenges to ergodicity. Leaping forward to the next century, based respectively on the
work of Lebesgue and Brauer, Plancherel [52] and Rosenthal [53] proved the impossibility of systems that satisfy the ergodic
hypothesis. In fact, a careful analysis of the Ehrenfests article shows that a weaker form of the ergodic hypothesis—thequasi-
ergodic hypothesiswill suffice from the standpoint of the the Maxwell-Boltzmann developments and we rely on this hypothesis
as well.

Abstractly, following Boltzmann (and Maxwell), we will assume all initial states with the same energy to be equally likely;
subsequently, Gibbs used this notion formally in the definition of a thermodynamic system using averages over ensembles
and defined themicrocanonical ensemble[19]. In our modeling of a switch, for example in Section XII, we will adopt this
strategy of assuming that the initial conditions or Gibbs’ “complexions” of the molecule(s) follow these postulates from classical
thermodynamics. Specifically the statistical viability of a unimolecular switch follows from a consideration ofN →∞ switches,
which, following Gibbs, can be also achieved byN switching steps of a small number (say2 in theAND gate construction)
of switches. However following Boltzmann [18] all possible initial states are equally probable for each of the switching steps.
The fact that all volume elements are traversed then follows from the weaker quasi-ergodic hypothesis following Boltzmann’s
arguments of introducing a cylinder into the volume of gas [54], for example.
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