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Abstract

The mathematical technique mfndomizationyielding probabilistic algorithms is shown, for the first time, through a physical
interpretation based on statistical thermodynamics, to be a basis for energy savings in computing. Concretely, at the fundamental
limit, it is shown that the energy needed to compute a single probabilistic #sor is proportional to the probabilitp of
computing apPBIT accurately. This result is established through the introduction of an ideadiméédn for computing arBIT,
using which anetworkof switches can be constructed. Interesting examples of such networks incldditig, OR and NOT
gates (or as functions, boolean conjunction, disjunction and negation respectively), are constructed and the potential for energy
savings through randomization is established. To quantify these savings, novel measures of “technology indepeadgnt”
complexityare introduced—these parallel conventional machine-independent measures of computational complexity such as the
algorithm’s running time. Networks of switches can be shown to be equivalent to Turing machines and to biocléanboth of
which are widely-known and well-understood models of computation. These savings are realized using a novel way of representing
a PBIT in the physical domain through a group of classicatrostates A measuremerdnd thus detection of a microstate yields
the value of therBIT. While the eventual goal of this work is to lead to the physical realization of these theoretical constructs
through the innovation of randomized (CMOS based) devices, the current goal is to rigorously establish the potential for energy
savings through probabilistic computing at a fundamental physical level, based on the canonical thermodynamic models of idealized
monoatomic gases developed by Boltzmann, Gibbs and Planck.

|. INTRODUCTION

Concerns ofpower(or energy consumption have become increasingly significant in the context of the design as well as the
use of embedded and high-performance computing systems. To paraphrase Trevor Mudge, “Power (and energy) are first-clas:
citizens in current considerations of computer system design.” While devices, computer architecture and the layers of software
that reside and execute at higher levels of abstraction (such as operating systems, run-time, compilers and programming
languages) all afford opportunities for beiegergy-awargthe most fundamental limits are truly rooted in the physics of
energy consumption—specifically thermodynamicsBased on this premise, this paper embodies the innovation of models
of computing for energy-aware algorithm design and analysis, establishing, for the first time, the following thesis central to
this work: the computational technique referred to as randomization, yielding probabilistic algorithms, now ubiquitous to
the mathematical theory of probabilistic algorithm design and analysis, when interpreted as a physical phenomenon through
classical statistical thermodynamics, leads to energy savings that are proportional to the prohaiiitywhich each primitive
computational step is guaranteed to be correct (or equivalently to the probability of étrer,p)).

Historically, randomization was viewed as a mathematically very promising approach to algorithmic design and analysis
elegantly stated by Schwartz [1]: “The startling success of the Rabin-Strassen-Solovay (see Rabin [2]) algorithm, together with
the intriguing foundational possibility that axioms of randomness may constitute a useful fundamental source of mathematical
truth independent of, but supplementary to, the standard axiomatic structure of mathematics (see Chaitin and Schwartz [3]),
suggests that probabilistic algorithms ought to be sought vigorously.” Since this prediction, randomization has proliferated in
a range of areas primarily centered around the theoretical foundations of computer science.

At the heart of the new development in this work is the definition of an abstreatyy-aware switckin Section V-A), which
is thefirst contribution of this work. A switch is a device for realizing computations that are functions of a single bit. While
switches are provably building blocks for constructing boolean gates as well as for describing algorithms, in our context, they
serve as idealizations for modeling energy consumption limited solely by classical thermodynamics. Our basic idealizations of
a “switch” and “switching” are viewed as transformations to tate of a physical device capable of altering its Boltzmann
(physical) entropy, with a well-defined accompanying expenditure of energy consistent with the laws of thermodynamics. We
note that in realizing computations, switching will be used to alter the current bit or valud), $aysome other value, say
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1. In keeping with traditional idealizations, our switches are dissipationless and switching is always performed at thermal
equilibrium, as detailed in Section VII. All computation will be viewed as being a composition of such elemental one-bit
switching changes.

In this work and for the first time, the characterization of switching is based on (classical) statistical thermodynamics,
referred to asmicrophysics(see Balian [4] for example) in literature. This statistical foundation is essential to proving our
fundamental theorems (in Section VIII-B) which, through sieeondcontribution of this work, show thahe energy consumed
by deterministic switching is never less th@nxt In 2) Joules, referred to often as the “fundamental limit”, whereas the energy
consumed by a probabilistic switch with an associated probability of error of (1-p) can be as I¢wradn 2p) Joules at
the idealized limit Here, k is the well-known Boltzmann’s constarff, is the temperatureof the thermodynamic system, and
In is the natural logarithm. Thus, we show that randomized computing offers the potential for energy sawvimgs ogf
Joules per primitive switching step. By basing our development on statistical thermodynamics rather than on the more familiar
deterministic models of energy consumption known previously (see Section Il below), our switches are naturally randomized;
they do not need an explicit random source, crucial to the development of the theory of probabilistic algorithms (see Vazirani
and Vazirani [5] for example).

All of the energy bounds developed here are based on a novel definitialugt—the manner in which a single “bit) and
1 is stored in a switch (as detailed by this author in [6] and [7]). In this work, as detailed in Section VI, a bit is represented
in the in a switch through a classicalicrostate and the output value of switching is determined through an instantaneous
(classical) “measurement”, that detects the existence of a microstate. An example of an instantaneous measurement is the
detection of the position of a molecule of gas in a cylinder containing it, as described by Szilard [8]. This novel approach
to representing the value representgrababilistic bitor (PBIT) for short), constitutes ¢hird contribution of this work. This
novel representation is central to determining the gains of randomization at the fundamental limit, and will be contrasted with
the traditional approach to representingIT s as voltages and measured as averages as characterized by Stein [9] and by
Meindl [10]. The relationships between these two approaches will be outlined in Section XIV, and are the subject of the work
developed by this author in collaboration with Cheemalavagu and Korkmaz [11].

Given a switchsw, we show (in Section IX) a systematic method for constructirgworks of switches, to realize
computations. Each switchw has aninput value which is either0 or 1 and an explicitenabling signalthat determines
whether a switch is “active” or “inactive”. In turn, output efy is a value from the sef0, 1} and possibly, an output enabling
signal to a successor switch. A netwokk is central to defining a technology independenergy complexitpf a switch, and
constitutes dourth contribution; these complexity measures are introduced in Section 1X-C.

In Section X, and moving to théfth contribution, we prove that a standard two-inpuVv D function requires at least two
“energy consuming” switches in the deterministic case and hen@nésgy complexitys bounded below by. Similarly, we
also show (Section XI-B.1) that the same function can be realized using probabilistic switches such éxaetlied energy
complexityis (1 + p) - ktIn(2p), with an associated error probability ¢f — p). Through a straightforward construction, we
show in Section VII that logical negation or th€OT function can be realized through a single switch, and therefore, its
energy behavior in the deterministic and probabilistic cases is identical to those claimed earlier on.

Reminiscent of combinational logic networks whose power has been systematically studied relative to models of computing
such as Turing machines (see early examples due to Pippenger and Fischer [12], Pippenger [13]), the model of A/network
used in this paper uses an enabling signal in the absence of which a switch is not enabled. In keeping with current convention,
throughout this paper, we will use the temircuit to denote the more traditional combinational logic “network” wherein
measures such &ize, deptrandwidth were of concern, whereas energy was not; by contrast, thertetworkwill be used to
denote a structure built using our switches with enabling signals. In Section XllI, we sketch a relationship between networks
of switches and circuits, as well as models of energy-aware algorithm design and analysis introduced by this author in an
earlier work [6]-therandomizedbit-level randomaccessmachine ( orRaBRAM).

Il. HISTORICAL REMARKS, COMPARISONS ANDPERSPECTIVES

The energy behavior of switching has its roots in thermodynamics, whose history traces back to the works of Carnot [14]
and Clausius [15] in the early nineteenth century, leading to significant developments in the early part of the twentieth century.
Influenced significantly by Maxwell (see [16] and [17] for example ), the current statistical interpretation of thermodynamics
was first introduced by Boltzmann [18] and was later developed by Gibbs [19] and Planck [20]. In the context of realizing
randomization physically, the work of Boltzmann leading to the definitiothefmodynamic entropis especially relevant to
us.

The notion of a value such @sor 1 being modeled in a physical system with a single molecule dates back to 1929 and is
attributed to Szilard [8]. In particular, his work and that of several subsequent physicists was motivated by a need to explain
the celebratedMaxwell’s demor{8] paradox which purported to, through a thought experiment, violate the inviséatend
law of thermodynamics. Several subsequent authors credit Szilard with having invented the modern notion of a “bit” and a
machine with two “states”. While other celebrated researchers including von-Neumann [21] are credited with having observed
that the minimum energy needed to compute a bitig In 2 Joules, it was Landauer [22] who took a very big step towards
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clarifying the Maxwell’s demon paradox in his widely known work. In doing so, he also explicitly laid the foundations for the
(more) modern field of the thermodynamics of computation. At the heart of Landauer’s work is the characteriziaprabf
irreversibility, which is also a property of switching in this work.

Bennett [23] had important breakthroughs wherein, by taking advantage of the notithrerafodynamic reversibility
constructed conceptually viable and idealized models for reversible computing, wherein computation can proceed through energy
recovery. This is accomplished through logically reversible computations. Subsequently, Fredkin and Toffoli [24] demonstrated
logical gates that exhibit the same property. By contrast, in all of our work, we model switching as being baseau on
recoveringmodes of execution—energy once expended by a switching step is not recovered, even if such recovery is possible.

Moving closer to realizations of switches based on familiar constructs such as transistors within the context of studying
the inherent energy needed by deterministic switching, Meindl [10] established fundamental limits and derived energy lower-
bounds. The significance of the Meindl's work, which continues the philosophical tradition set by Szilard, von-Neumann and
Landauer, among others, is the ability for the first time to model a switch in an idealized manner—without dissipation for
example, much as we do—while, at the same time, reconciling the delicate and pragmatic balance needed to model the realities
of modern semiconductor devices. In doing so, novel techniques based on an inductive inverter-chain based argument were
developed, to model distinguishability of a value ®from a value ofl. This technique is a crucial step in bounding the
energy consumed from below. While previous work does so implicitly, Meindl [10] is also the first in this series to provide
an explicit physical construction of a switch as an inverter, within the context of proving a bound on the minimum energy
needed, thus making the bounds rather concrete.

The inherent energy bounds for deterministic switching developed in this work (in Section VIII), while having the same
conceptual goal as Meindl's approach, are distinct in a three-fold manner. First, our idealizations and hence energy limits are
based on the more fundamental energy behavior of idealized monoatomic gases [18], wherein the energy cost of computing
a deterministic bit is a special case of that computingsar with some associated probability As a result of this first
difference, our representation of a bit and hence the concomitant energy bounds support randomization naturally; a study of
the energy characteristics of probabilistic switching is an entirely novel contribution of this work. Furthermore, as outlined
in Section XIV, the gas-based idealizations used in this paper yield potentially lower limits to compating through
switching, than those using the representations using the previously mentioned conventional approaches following Stein [9]
and Meindl [10].

A consistent theme in all of the previous work is that all computation and hence the value of a bit being computed is
deterministic, and thus its physical instantiationm&crophysical[4] and not subject to statistical interpretation. Hitherto,
the underlying assumptions preclude the possibility that a switch could be designed to be deliberately erroneous with some
probability sayg, since computation, starting with Turing, was considered to be essentially a deterministic activity. It is not an
exaggeration to say that determinism is deeply ingrained in human intuition in considerations of computing. This is perhaps
the best explanation as to why an alternate style of computing—the counterintuitive notion of probabilistic algorithms that
compute a value that could be sometimes wrong—was not considered until the 1970s from a mathematical perspective by
computer scientists. This despite the readily available statistical interpretation of the value of a bit in Szilard’s own construction
of a molecule defining value, based on its location in a volume of gas.

In the context of computing, Rabin and Scott’s influential paper [25] introdnoeedeterminisnand broke with this tradition
of determinism definitively. Subsequently, Rabin [26] also took the important step of explicitly introducing probability into
the definition of an automaton [26] and studied its expressive power and relationship to a deterministic finite-state machine.
Attributable perhaps to the deep seated belief in determinism in computing in general, over a decade elapsed before the role of
probability became prevalent in the algorithmic computing domain following the influential work of Karp within the context
of average-case analysis [27], Gill's characterizations of probabilistic complexity classes [28] as well as the innovation of the
Rabin-Solovay-Strassen algorithm referred to earlier.

Feynman’'s exposition of the thermodynamics of computing [29] uses the gas-based model for switching. All of the
developments in this paper are based on a physical system (and a phase-space) akin to that associated with Szilard’s constructic
and Feynman’s expositions, although our modeling of a state @mdTahat it represents is statistical and hence microphysical,
whereas previous approaches interpreted them to be deterministic.

I1l. ROADMAP AND READING GUIDE

Some essential background facts from thermodynamics will be presented in Section IV. In Section V, we will introduce the
mathematical definition of a switch and introduce the concept of switching. This will be followed in Section VI with a process
of modeling a switch using an idealized microphysical device. Thus, the physical framework in this paper represents a switch
whose thermodynamics are characterized by an idealized monoatomic gas, wherein switching is dissipationless in that it is
achieved by a “quasistatic” process. Continuing, using the physical definition of a switch (from Section VI) in Section VII,
we outline the physics, and the associated energy changes in Section VIII. Using these physical characteristics and results, ir
Section IX, we characterize the construction of networks of switches and hence boolean gates. Then, in Section X, we prove a
lowerbound on the energy complexity of any deterministic realization oAldD gate. In Section XI, we introduce networks



TECHNICAL REPORT GIT-CC-03-16 MAY 2003 4

of probabilistic gates, as well as the associated complexity measwsgpetted energy complexiagnd demonstrate energy
savings for anAND gate construction through randomization. A comprehensive example of a switch construction using an
ideal gas as the physical realization is shown in Section XII. In Section Xlll, we characterize the relationship of our networks
to established models of computing such as Turing machines and circuits, as well as traditional complexity measures such
as running time and size. The degree to which a monoatomic gas can be viewed as a naturally ergodic system has seriou:
implications to the statistical formulations of statistical thermodynamics. To clarify this issue, for completeness, in Section XV,
we briefly review this deeper relationship between the foundations of the theory of idealized gases as outlined in Boltzmann’'s
work for example [30], and two celebrated mathematical results—the recurrence paradox and the ergodicity hypothesis.

IV. BRIEF REVIEW OF STATISTICAL THERMODYNAMICS

This section serves as a succinct introduction to the definitions and concepts of thermodynamics, leading to two main
theorems (Theorems 4.5 and 4.6), which establish a relationship between energy, thermodynamic entropy, and the change o
state of a thermodynamic system. Using these, the relationships betweryy changandentropy(both defined below) will
be used to model the energy changes of switching in Section VIII.

Classical thermodynamics is traditionally presented iphenomenologicainanner in keeping with the best traditions of
reductionism with observable properties such as pressure, volume and temperature being derived from a few underlying laws.
In this work and perhaps in all of its connection to computing, our interest is in the amount of engrgydedn making
a certain kind of change to information, with the intention of modeling the change through the notion of physical switching.
Thus, a mordransformationalview of statistical thermodynamics is presented below, with the expectation that it will better
serve the purpose of using it in the context of characterizing switching.

A. Roadmap of this section

In Section IV-B below, several terms are introduced which define the thermodynamic universe of discourse and its attributes.
In Section IV-C,thermodynamic transformationis this universe are defined. The theorems in Section IV-D establish the
relationship between the change in entropy and energy for a single transformation. In Section IV-E, we generalize this
development to be applicable to entire sequences of transformations. The treatment of this classical material is necessarily
brief and is included here merely for completeness. While an interested reader is invited to peruse all the details, one who is
primarily interested in the computational aspects in the remainder of this paper, can proceed by using Theorem 4.5 and its
re-interpretation as Theorem 8.1 in Section VIII-A. For a more elaborate treatment of the subject, the reader is referred to
standard books by Balian [4], Joos [31], Kittel [32], Boltzmann [30], Hill [33], and Mihalas [34].

B. A Phase Space and Its Microstates

In classical thermodynamics, taermodynamic systenT, is a set of N identical elements. Attributes of these elements
are called theclassical observablesFor a single element, these observables are defined to Ip®stson and momentum
The position of an element can be uniquely represented by its three co-ordinatgsp. in the standard vector spade.
The variablesy,, g, ¢. characterize the momenta along these three dimensions, and are represented by the three dimensional
vector spacé). Concisely, all the observables of an element can be represented as a point in the six-dimensional vector space
R? x 2, where each point in this vector space is a Six tuple..,, py., Pz, ¢uss @yi» 4= >: 1 < i < N and yields a particular
value for each of the six variables associated with element
As an example [30] consider a box filled with @feal gaswhich forms a thermodynamic systefi. An ideal gas is
defined to be any gas that obeys the laws of the kinetic theory. The individual molecules of the gas form the identical elements
constituting the thermodynamic system (At any time instantr, the position and momentum of each of the molecules form
the classical observables.)
The entire systen? of N elements is canonically represented bg/d-dimensional vector space called thbase space
P of 7. A point in the phase space, and thus the current positions and momenta of Allgheticles at any time instant,
can be uniquely represented by6 & tuple of variables denoted by

<pwlapylvaNQwNQyUQZla' -+ yPanysPynsPzyr9zn > Qyn s dzn >

For notational simplicity, let us represent tl6id/ tuple asA =< p1,p2,P3,--. , P3N, q1,G2,G3, - - - ,G3N > Wherep;_3; o =
Dasy Pir=3i—1 = Py,, Pir=3i = P»,; the ¢;'s are similarly defined. The phase spagwhere each of thé N dimensions
is finitely bounded by the physical configuration Df is the accessible phase spadBy abuse of notation, we will use the
phrase phase space, and the syn#®db denote the accessible phase space.

Referring back to the earlier example, a single point in the phase $paweresponding to the (ideal gas) thermodynamic
system? outlined above, completely characterizes the positions and momenta of each of the constituent molecules. The number
of points in the phase space is uncountable, since the value of each of the variable$ v thple characterizing a point
in the phase space can vary continuously within a range along the position and momentum dimensions. However, following
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Boltzmann [30], from the perspective of the statistical analysis of the physics of phase spaces, this vector space is decomposec
to a discrete set of “volume elements”.

At any instant of timer, the classical observables of a thermodynamic syslemre uniquely characterized by a single
volume elemenihv;. Let py = (pir, pir + Apir), Dirr = (pirr, parr + Apirr), Pirr = (P, pir + Apgrnr); the intervalsgy, ¢ and
g; are defined analogously, and th& intervals defined above form the sides of &€ dimensional hypercubAuv;. Consider
a partitioning of the phase space into identical, non-overlapping volume elements. Such a partitioning will be referred to as a
Boltzmann partitioningconsisting of finitely many volume elements from an accessible phase space. (Boltzmann considered
Av — 0 to be very small, to overcome the problem of infinite entropies given a continuous representation of the dimensions
of the phase space.) At time let the system be at a poi& =< p1,p2,... ,P3N,q1,92,--- ,q3ny > as before. A volume
elementAw is occupiedat time 7 if and only if for 1 <i < N, ps3;_2, p3;—1 andps; are respectively in the intervafs., p;,
and p;; similarly for elements;. The system is said to occupy this volume elemAnt or equivalently, the system is said
to be in a classicahicrostatey; at timer if and only if it occupiesAw; at 7. In the sequel, we will use the word microstate
to denote a classical microstate. The Satf all microstates of the accessible phase spade the set offeasiblemicrostates.

Physical Fact 4.1:Given a systen7 with at least one element, the accessible phase spabas at least one feasible
microstate.

Physical Fact 4.2:Given a systen? with stateS, its entropy is xIn(|S|), wherex is the Boltzmann constant, and| is
the multiplicity of 7.

The above definition of entropy is based on the canonical representation of a thermodynamicatZSysteantact with a
thermal reservoir of infinite capacity which is then approximable, at thermal equilibrium, by the multiphicity W,,,... as
N — oo, whereW,,,.. is the multiplicity of the “equilibrium macro state” (faN = 1, W = W,,,,.); see Mihalas [34] for
example. If7 is in isolation, then there can be no energy exchange possible between the system and the rest of the universe in
which caselV,,.... is the exact multiplicity of7, determined by the energy af at the instant of time when it is first isolated
from Y. The reader can proceed to follow the developments in this paper without delving into this detail.

A universeof thermodynamic systems or simply a univet$ds defined to be a set af/ thermodynamic systen's;
U,1 <i< M. The laws of thermodynamics have been used to characterize the interactions of various attributes between the
elements of the universe. This characterization has traditionally been rooted in the operational model of Carnot based on an
idealized heat engine, with a view of determining its efficiency. To model the thermodynamic characteristics of computing,
abstractly presented as switching in Section V, we will now provide a more convenient transformational interpretation of the
laws of thermodynamics below.

C. A Transformational View of Classical Thermodynamics

Let T = RT U 0 denote time and- € T and+ denotes an (open) intervét, 7') € T. Also ¢ is reused to mean heat
hereafter. The universd is associated with fivestate vectorsw =< wy, wo, ws, ... ,wy >, 4 =< G1,G2,93,--- s qM >,
u =< uy,Us,U3,..., Uy >, S =< 81,892,83,...,Sy > andtemp =< ty,ts,t3,...,tp >, such thatw;, ¢;, u;, s;, t; are
identified with systeni; € Y. A thermodynamic process transformation is represented by a functitRANSFORMATION :
UXT) =< WxQxUxSxTxT >, where, W,Q,U, S, T are the set of all state vectors, respectivelyofq, u, s
andtemp. Let TRANSFORMATION(Z;, ;) = (Wi,qi,ﬁi,éi,tefnpi,Tf). A transformation takes each element of the universe
at some state at time instany, alters its entropy and temperature for some work performed and heat transferred by ;time
this transformation occurs in the intenvial= (7;, 7). The variablew, corresponds to theork performedodn (or by)7; during
7. In the domain of gases, the work performed results in a change voliilmeV” due to a change in the appligdessureP,
measured in pascals (the volurﬁethe pressuré’ and the temperaturE are referred to agropertiesor observable propertigs
In an idealized gasyp; = fvf P,dV;, whereV; and V; represent the volume of the gas at timesand 7; respectively. The
variableg; corresponds to thieeat transferrednto or out of the system. To be technically precise, in classical thermodynamics,
heat flow is determined as the line integfadq. For our purposes, it suffices to know thatepresents this quantity over the
interval 7. The variablei; denotes the energy ¢f;. Similarly $; is the entropy ofZ;, andt; is its temperature (noting that
the temperature; is proportional to the energy;).

We will now use the laws of thermodynamics and derive a set of “physically feasible” transformations. Any transformation
is said to bephysically feasiblavhenever the following conditions hold far< ¢ < M:

u;, 4y > 0 (1)
si,8 =2 0 (2)
TF > T 3)

U —u; = Wi+ (4)

£{3>
|
&
Y
s}

(®)
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The interpretation of constraint( 3) which states that> 7; is that time flows forward and is totally ordered. Hawkins [35],
[36] and others [37] discuss this issue and its physical validity. Constraint( 4) is referred tofasttlzev of thermodynamics.
Similarly, constraint( 5) is thsecond lawof thermodynamics.

Any physically feasible transformation is defined to dissipationlessf 7; — ; > R where R is known as theelaxation
time and is afixed attribute of the particular physical system. If the duration of any thermodynamic transformation is at least
as large as the relaxation time, the system is always iecailibrium state Such a transformation is referred to @sasistatic
transformation. Our models for computing and switching involve changing the state of a Sysiem one equilibrium state
to another. Thus throughout, the constraipt— 7; > R will be true.

D. Quantifying the Energy Behavior of Feasible Transformations

Let us consider a thermodynamic systé&infrom the universe{. We will now quantify the energy changes associated
with 7; affected by specific transformations. A transformatiecreasesa thermodynamic attribute of;, say its entropy
s;, if and only if §; < s;. The decrease or increase of other attributes can be similarly represented. To continue, we adopt
terminology dating back to Carnot [14], albeit in transformational terms. Let us fix a thermodynamic $§séeth continue
to characterize attributes of transformations with respecf;toA transformation isisothermalif and only if ¢;; = ¢;/ for
any , < 7 < 1 < 7¢. A transformation isadiabatic if and only if g; = 0. The following useful properties of these
transformations will be used to deduce associated energy changes. We omit the units such as Joules and Kelvin wheneve
convenient.
Lemma 4.1:In any isothermal transformatiofy; = u;
Proof: This follows from the definition of temperatute= ¢ - u for some positive constarat ]
Theorem 4.3:In any isothermal transformation;w; < ¢;(8; — s;) wheret; is the constant temperature of the isothermal
system7;.
Proof: Following Clausius’ definition of entropy which is identified at equilibrium with the Boltzmann form of entropy
that we use in this paper, and the Second Law of thermodynamics (5), we have the Clausius inequality
oq

- <ds (6)

Also, for any isothermal transformation, from (4) we have

0g+déw = 0 @)
and using the definitiodw = PdV in (7),
0q = —PdV (8)
and therefore from (6),
Vi 8
—/ PdV < / tds 9)
VL' Si
whereV; andV;, s; and §; are respectively the volumes and entropies of the system at time insfaants 7;. [ |
Theorem 4.4:In any adiabatic transformatiod; — s; > 0
Proof: Since by definition,‘%q < ds, and in any adiabatic transformatiofy = 0, ds > 0. [ |

We are now ready to state our main theorem. Eeand S denote the states &f before and after a transformation.
Theorem 4.5:In any isothermal transformation with initial and final stat®sand S respectively, wheréS| = ¢ - |S| for
0<e<1, w; > —rtlne Joules.
Proof: From Physical Fact 4.2, it follows that

kt[ln(e- |S[) —=In(|S))] = —; (10)
rtln(e) = —u (11)
or equivalently
w; > —ktln(e) (12)
concluding the proof. ]

Theorem 4.5 characterizes the fact that in any isothermal transformation, any change in entrBpys afecessarily
accompanied by the consumption of mechanical energy frometsteof the universe
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Switch sw’
<> switching relationship
in, enablein,
v ¥
fffffffffffffff » enableout,
Switch sw F—————» out
”””””””” * enableout,
A 4
in, enablein,
< switching relationship
Switch sw”

Fig. 1. The inputs to a switch

E. Sequences of Transformations

We now consider a finite sequence of transformatioraNs applied to specific thermodynamic systefp € U. Let
TRANSK = < TRANSFORMATION; o TRANSFORMATION; o.... ,oTRANSFORMATIONg >, where each transformation is either
isothermal or adiabatic, and let the symboldenote the composition of a pair of transformations. We can now claim the
following general theorem about the energy consumed by a sequence of transformatiomechaeical energy consuméesg
a8 TRANSFORMATION; € TRANSk for 1 < j < K is

{ w; wheneverd; >0
W =

0 otherwise (13)

Theorem 4.6:Given any sequenceRANSk, W =}, ., w; > —rtln(e), wheree = [], ., €;, ande; = min( Igjl ,1),

the ratio of multiplicities associated Wit RANSFORMATION; € TRANSk.
Proof. If e =1, we are done. Now let < 1 and considemRANSy. USeTRANSk ~ to denote the set of transformations

such thatTRANSFORMATION;» € TRANSk ~ if and only if ¢;; < 1. From the definition,e is the product of values;
associated with alfRANSFORMATION;» € TRANSk ~. Let W™~ equal the sum ofb;, associated with alt RANSFORMATION;, €
TRANSgK ~. From Theorem 4.4, everyRANSFORMATION;, € TRANSg ~ is isothermal. Therefore, from the definition ¥
and Theorem 4.5W > W~ > —xtlIn(e). [ |

To interpret this theorem consider a sequence\ dfansformations. Some of them are isothermal whereas the others are
adiabatic. Now, the change in entropy is derived entirely from the isothermal transformations. Therefore, the condition stated
in Theorem 4.3 must be true. Intuitively the goal of Theorem 4.6 is to help characterize the associated energy change in the
context where the energy once expended to compute cannot be recovered, which is tiéé tEhus, all the results in this
paper corresponds to the class of non-recovering computations based on computing devices in use today, wherein energy i
consumed by a computer, but not recovered from the computer back to the energy source. The theorem above states that give
a sequence of thermodynamic processes achieving a reduction of multiplicity suehthatthe mechanical energy consumed
is at leastxt In(e) Joules.

F. Statistics of a phase space

The following physical fact will be very useful for characterizing the statistical behavior of microstate®r[elt be the
probability that a microstatg exists at timer.

Physical Fact 4.7:In any phase space of an ideal monoatomic gas;.;] = Pr{u;] for any pair of microstateg; and y;
from P at any time instant.

V. A SWITCH AND SWITCHING

In Section V-A below, we will define the basic elements of a single switch and its behavior. Following this, the notion of
switching will be introduced in Section V-B. This definition will be entirely in “logical” terms without recourse to the physical
interpretation, the latter being the topic of Section VI. This formalism is reminiscent of earlier developments in the classical
switching theory field described in Kohavi [38].
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Input | output Input | output

0 0 0 1

1 1 1 0

Identity Function Complement Function

Input | output Input | output

0 0 0 1

1 0 1 1

Constant Function Constant Function

Fig. 2. The four choices for switching functions of whielv realizes one choice

Signal Symbol

enablein | w

in X

enableout |y

out z

Fig. 3. Symbols for inputs and outputs of a switch

A. Defining a switch

As shown in Figure 1, each switchw has (up to) two alternate choices for “input values” as well as “enabling signals”.
Each input value and enabling signalsaf is in turn the output of a distinct switch (from the set of all switct&4/ ), sw’ and
sw” in the example. The outputs of switeh)’ are identified with the input valug:; and the input enabling signahablein,
whereas the outputs efv” are identified within, andenableiny. Any switch sw in turn has two possible (mutually exclusive)
enabling signals as output denoted dubleout; andenableouts, as well a single output valueut.

During the entire lifetime of a switcBw, each of its enabling signanablein;,i € {1,2}, is “associated with” exactly
onein;, j € {1,2}. Subsequently, these associations will be formalized as “switching relationships” as shown in the figure,
enableiny is associated witlin, and similarly,enablein, is associated withins; all four possible associations are allowed. In
any legalswitchingof sw, exactly oneof its two enabling signals will be “active”, indicated by associating with it the value
1. Thus, in this example, switckw produces an output value as a functioniof wheneverenablein, is active whereas it
produces an output value as a functionie$ wheneverenableins is active.

To further understand switching, let us suppose thatblein; = 1. In this case, the output value:t is determined by
some fixed functionf of in,. Recall from Figure 1 that the association or switching relationship betweeblicin, andin,
implies that whenevegnablein, = 1, out is determined byin,. In this casesw now switchesand produces an output using
f» where the functionf is one of the four possible choices shown in Figurad&ntity, complemenand the twoconstant
functions.

For convenience, we will use the notation in Figure 3 to denote the various inputs and outputs. Formally, leind
I, 2 be the twoinputsto sw wherein iy, ; is the ordered paik w,z >, wherew € {0,1} is an input enabling signal and
x € {0,1,T} corresponds to the input value, with denoting an undefined value. Thus, each switehis associated with
a pair of switching relationshipof the form < wgy i, Tsw,1 > aNd < Wy i, Tew,2 > Wherei, i’ € {1,2}: intuitively, these
ordered pairs capture the association between an input value and an enabling signal—as shown in the example in Figure 1
each of the two distinct enabling signals are in a switching relationship with each of the two inputs. To reiterate, when an
input enabling signal, say;,, ; = 1, the corresponding value,, ; is used as the input.

The outputsof a switchsw are defined to be no more than two ordered pélts ; and O, 2, whereO,, ; is the pair
< Ysw,j» Zsw >, J € {1,2}. By definition, while a switch can produce two mutually exclusive output enabling signals with
different values as outputs to two possible successor switches, it must always have the same outpubvallusuccessors.

In what follows, the subscriptw of w, x,y, z will be omitted whenever the use of the symbols is unambiguous.
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‘ Output switch has

Nno successors
\ Compute switch
SW, SW; has predecessors and

\ / successors

Input switch has
SWy no predecessors

Fig. 4. Three types of switches

B. The process of switching

Recall from Figure 2 that a switch computes a fixed functfowhich is either the identity, complement or one of the two
constant functions. Given a switclw with an associated functiofi, a switchingis defined as follows:

1) zsw =T andysy,1 = ysw,2 = 0 whenever both its input enabling signals,, ; andw,, 2 have an identical value.

2) Whenever exactly one input enabling signal say, ; = 1 andx,,_; is in a switching relationship we.y i, sw,j >

a) if Tsw,j = 0 then Rsw = f(0)1 Ysw,1 = Zsw and Ysw,2 = Zsw
b) if Tsw,j = 1 then Zsw = f(l)! Ysw,1 = Zsw and Ysw,2 = Zsw

Let f(z) = z (f(z) = z) be thedeterministicswitching realized byw as above. Aprobabilistic switchingwith a probability
parametep > % is defined to bef(z) = z with a probabilityp and f(z) = z with probability (1 — p).

Consider a switchw with its inputs defined by the switching relationshipsw;, z; > and< w;/, z2 > wherei, i’ € {1, 2}.
Consider another switchw’ with outputsy’, y},, andz’. Switch sw’ is composedo the switchsw, denoted bysw’ < sw if
and only if for all = > 0 at least one of the following conditions are true:

1) one of the values; or z5 equalsz’

2) one of the input enabling signals; or w, of sw is identical to one of/; or ¥, the output enabling signals afv’.

Wheneversw’ < sw, switch sw’ is said todrive switch sw, or equivalentlysw is said to bedriven by switch sw’. Let
sw’ < sw. Wheneverr; = 2/, the ordered paikx 2/, z; > is referred to as avire, andz; is said to beconnectedo 2’ through
the wire < 2/,z; >. Similarly wheneverw; = y;, we again say that the wire: y},w; > connectssuw’ to sw. Whenever
a switch sw’ drives sw, sw’ is defined to be th@redecessoof sw and sw is a successoof sw’. A switch sw is strongly
connectedf and only if both the elements of at least one of its input switching relationships are connected to a predecessor
switch through wires.

To develop structures meant to realize entire computations, we will identify three types of switghes:SwWITCH,
OUTPUT-SWITCH and COMPUTE-SWITCH as shown in Figure 4. AnNPUT-SWITCH sw; has no predecessors and drives
at least one switch of typ€OMPUTESWITCH or OUTPUTSWITCH. A switch such assw, in our example, which is a
COMPUTE-SWITCH, is driven by a switchkw, which is either anNPUT-SWITCH Or aCOMPUTE-SWITCH. In turn, COMPUTE-SWITCH
swo drives sw4 which is anOUTPUT-SWITCH; an output switch has no successors and is driven by at least one switch of
type INPUT-SWITCH or COMPUTESWITCH. Also, when convenient, we use the terminology input-switch, output-switch and
compute-switch to refer to switches of typePUT-SWITCH, OUTPUT-SWITCH and COMPUTESWITCH respectively.

VI. MODELING A SWITCH PHYSICALLY

The essential steps of modeling a switch in a physical (thermodynamic) context are outlined in Figure 5. At the most basic
level, the value® and1, essential to switching, ought to be represented in a physically consistent and meaningful manner. This
will be the topic of Section VI-A. A crucial aspect of this physical realization of a switch involves being able to detect the
outputz of a switch and to drive an enabling signalfrom this value. As characterized in Section VI-B, this is accomplished
through aclassical measuremerib a manner consistent with the laws of thermodynamics. The classical physics constructs from
Section IV are used throughout this section to achieve the physical modélimgn the goal of characterizing probabilistic
switching, and its energy advantages, the contents of Sections VI-A and VI-B are inherently based on the statistical form of
classical thermodynamicé&s shown in Figure 5, these models will then form a basis to physically realizing the mathematical
notion of switching (from Section V) culminating in the calculations of energy changes associated with switching. These latter
developments constitute the contents of Sections VII and VIII respectively.

Briefly, at a given instant of time-, the currentphysical state(or state for short) of switchhw denoted by the symbols
Ssw € Psw, is the set of all microstates that are accessible or that can exiswhereP,,, is its phase space. In the sequel
and when it leads to unambiguous representation, we will omit the subseripind merely use the symbo and P to
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Energetics of switching
Section 8

I

Characterizing the
dynamics of switching
physically
Section 7

I

Detecting the value of
a state
Section 6.2

I

Represent values 0/1
through microstates
Section 6.1

Fig. 5. Roadmap for the steps in realizing a switch and its switching behavior through a physical realization

O Witness to 0

Microstates from a ® Witnessto 1
6N dimensional

phase space State S

Fig. 6. Thecurrent-stateand representing values through witnesses.

respectively denote the set of all legal states, and the phase-space of any swikclsSW . Also, S € S will denote the
current state at time, of a particular switchsw. Please refer to Section IV for some of the basic background definitions.

A. Representing 0 and 1 physically

A switch is a thermodynamic system withcarrrent stateS at timer characterized by the set of all microstates that can
exist in the physical system at that instant of time. Consider the set of all feasible Statebe switchsw. A distinguished
stateSr € S of the switch denotes the state with maximum entropy across all feasible states. That is given awswiteny
time r € T , there is no stat& whose entropy is greater than the stéte

Physical Fact 6.1:There exists a unique staf- in the S, of a switch sw.

Consider a microstatg; € Sr. This is defined to be avitnessto a unique symbol or 1. Thus Sr is partitioned into
non-empty subsets, andS; where au; € S; if and only if it is a witness to a valug € {0,1}. If the state of the system
is Sp, then we say that its value & since the only witnesses correspond to the valusimilarly with S;. In the case of
a deterministic switch, if the state of the systemSis, by definition, we can say that it represents the undefined vElue
At some timer, when the physical realization of switch is in a particular st8feits output value and enabling signal are
determined through a specific measuremensof

Let us now use Figure 6 to clarify this concept. Suppose, the currentStafesome switchsw in some (open) interval
of time 7 = (71, 72) consists of witnesses and1 as shown in Figure 6. As stated earlier, each microstate is a witness to
exactly one of the valuesor 1. Its existence at time € 7, detected through a measurement, will determine the current values
of the outputz and the output enable signalof switch sw. Formally, we use characteristic functiofs and¢; to represent
the existence of a witness (or microstate) at time

1 if and only if there exists a microstaje € Sy at time
0 otherwise

(s, = {

and similarly,

(S, 7) = 1 if and only if there exists a microstaje € S; at timer
UeT)=1 0 otherwise
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Fig. 7. lllustrating the central notion of value of a state modeled in the physical domain

Microstate m
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<0y, 2 Y3 P1, P2, P3>

o

Ignore momenta

VL: VR

Occupied volume
element is unique

Fig. 8. Example of representing (deterministic) value as occupancy of a molecule in a cylinder of gas

A physical realization of the mathematical notion of switching in Section VII below will involve changing the current
physical state of the switch. The act of switching involves the elimination of the “undesirable” witnesses fisfier the
switching transformation, ifS consists of witnesses to the valOGeonly, the state of the “computing element” represented
by S is determined to b®. Similarly, if value consists of witnesses toonly, then the value i§. However, if witnesses to
both types of values exist, then, depending on the tina which the measurement is made, the value can be “erroneously”
determined to be eithdr or 1, thus laying the foundations for a physical interpretation to randomization.

B. The value of a state and its properties

Using the above notions of a witness and its associated characteristic function, we are able to introduce the central definition
of the “value of a state” S at timer denoted by

(1 g, =1
V(S’T)_{ 0 iff £(S,7)=0

(We note that¢, could have been used instead to defihas well.) We will now interpret this somewhat technical and
deterministicdefinition and use the illustration in Figure 7 to help explain it. Let us suppose for purposes of illustration that
S resides in a phase spage At any instant of timer, a single microstate,; from S exists. Equivalently, at any instant of
time 7, a single witness to a value—eith@mr 1—exists. Returning to Figure 7, the functidh which models measurement,
detects the microstate; at timer. Thus, the switchsw is in stateS;, then the functiorV (or the associated detector) always
yields a value ofl and vice-versa.

C. An example of representing values through a physically plausible idealized gaseous system

The formal definition of a state and its value described above using microstates is physically meaningful in the context
of a physical system that exhibits this structure. In particular, for this physical behaviour to be demonstrable constructively,
the value determined by ought to be detected, as mentioned above through a classical measurement. To help establish a
“proof-of-concept” of the physical feasibility of switches as introduced here, as shown in Section VII, throughout this paper,
we will use an idealized monoatomic gas as a basis for constructing switches and switching.

Briefly, let us consider a cylinder as shown in Figure 8 enclosing a single molecule of an idealized monoatomic gas, such
as that studied by Szilard [8]. Let us suppose that occupancy of the left half of the cylinder by the molecule corresponds
to the valueV of 0, whereas it corresponds to a valWeof 1 if the right half is occupied at a time instant Now, as the
molecule moves around in the cylinder (which it will whenever the temperattré K), depending on its location at different
instances of time, the value can be interpreted to be efttmr1. This statement is constructively true whenever a classical
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Fig. 9. Representing ( probabilistic) value as occupancy of a molecule in a cylinder of gas

measurement can distinguish the position of the molecule between the two halves of the cylinder. Numerous simple detectors
can be realized for this unimolecular case, which is one of the motivations for considering examples with a single molecule.
Additionally, in the unimolecular case, it is an easy exercise to verify that any given microstat@igely associated with

one of the two geometric halvég, andVy of the cylinder as shown in Figure 8. Equivalently, the partitioning of the cylinder

into partsV;, andVx also induces a partitioning of the set of all microstatesiin whereSr is determined by the volume of

the entire cylinder.

Thus, a physical volume elemert p,,p,,p. > is uniquely associated with a microstate. The molecule’s presence in a
physical volume element in the left half of the cylindér contribute to a value o whereas its presence in a volume element
in the right halfVz correspond to the value af To detect the output value of the switch whose state is modeled through the
thermodynamic system in Figure 8, a measurement to detect a microstate will involve detecting the presence of the molecule
instantaneoushat time r, either in a volume element df;, or in Vg; the former will imply an output value of 0 whereas
the latter will imply an output value of.

While it is important to consider the case explicit switch construction using more than one molecule in general, (for
reasons discussed in Section XV-B referring to the deeper issues connected to the ergodicity of a unimolecular system, and
for the purpose of establishing the results in the sections to follow in contexts beyond switches constructed from a single
molecule), for convenience of explanation, we will use examples that are unimolecular for the most part. A clarification of the
nuances related to extending these “unimolecular switches” to those constructedVusing molecules will be the subject
of Section XII.

D. Defining value in the probabilistic case

Considering the probabilistic case, let us suppose that the currentSstat&, US; whereS/, andS; are non-empty subsets
of Sy and S; respectively. In the probabilistic case some of the witnesses to the @alemain in the current stat§, in
addition to those for the valugé. The probability of detecting each individual value through a measurement depends on the
relative proportions of witnesses or precisely, the cardinalitieS;ond S .

Returning to the constructive example of a molecule of gas in a volume, a measurement atvithgield a value that
is either0 or 1. As shown in Figure 9, let the volume be altered such that the ratio of volumes isynowas shown for
0 < a <1.Itis easy to see from this example that this corresponds to a partitioning of the microstates yielding the ratio of
the associated set of withesses to‘é@e_

More generally, consider a change to the state of a thermodynamic system representing a switch s%?ch:tbzatrom

an initial stateS such thatgO = 1. Now, following Physical Fact 4.7, a straightforward calculation yields the probability of a
witness to the valu® (or in the constructive example, a the molecule being detected in a volume eIemenVJ)omlja
whereas that of finding a witness to the valuéor equivalently, the molecule in volunig) is ﬁ-

Lemma 6.1:Let Sy = a8 for 0 < o < 1andS’ = S;US]. Then,V(S', 7) = 0 with probability £ and1 with probability

1
14a *

VIl. THE PHYSICS OF SWITCHING

Computation proceeds by switching which involves transforming the current state diaracterized byS into a stateS’.
While several specific physical processes can be invoked to realize these transformations supporting seatobimcglly,
these transformations will be characterized by the addition or subtraction of microstates to a currers ¢ttémer > 0) in
such a way that the result is sta$é at time 7’ > 7. Informally, a single switching transformation takes the set of microstates
that correspond to the current sta&feof sw and either adds or subtracts microstates from theSggtto derive Soyr, the
output state. Lett = (r,7’) be the interval in time during which this transformation is realized. As stated in Section IV,
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Fig. 10. An example switching function determines an output sfate+ from S and Sy using set difference

throughout this paper, we will be concerned with the case wherein the switching infecaalesponds to a change that is
guasistatic, and is equal for all of the switches.

Let INT denote the set of all intervals of time. Using the terminology from Section VI, and relating the mathematical
notion of switching from Section V, all the microstatesSipy are withesses te wheneverw = 1 and < w, z > is an input
switching relationship. Similarly, the microstates $ip;r are witnesses to a value and an output enabling signalin a
switching relationship withe. As shown in Figure 10, the output efv is determined by the current stafeand by the set of
microstates that correspond to the input value selected by one of its (input) enabling signals; this selection is ignored in this
example. It is easy to see that the functipmn this example computes the logical complement of the input.

Formally, the process ophysical switching(or when there is no ambiguity with its mathematical counterpart, simply
switching) is realized as a functicessociated withswitch sw and is defined to b&WITCHING: S X S — S x INT where
SWITCHING(S,Sin) = (8, 7) andS’ = S ® Syn. For a given switchsw, ® is fixed to be the set unionJj or set difference
(—) operator from standard set theory. Thus, new states of a switch are derived from the currefiteitatr through its
set-theoretic union or difference with the input valuesto, determined by detection of a witness microstate (as outlined
in Section VI-A) in the state of the physical representations@f driving sw. For convenience, let us denafgy by the
symbolZ and Soyr by the symbolO. Of all points in time, letr; denote the smallest value when the switching operation is
completed, namely there is nd < 7, for which the current state ofw is O whereas it iSO at 7;. To reiterate, for a switch
sw, T = (7, 77) Will be referred to as a switching interval.

To illustrate the functiorswITCHING, in the deterministic case, consider the example shown in Figure 1X kgtz; > be
the switching relationship of interest wheug is determined by the wire driven by the predecessor switeh whereas; is
the value determined by the wire driven by’. During the switching intervat = (7, 7’), switch sw hasw; = 1, determined by
the value of (current statej”’ throughV(S”,7) = 1 at the beginning of the switching interval. AlI3§S’, 7) yields the input
valuez;,. In our example, the current stafeof sw’ at timer is identical toS;, and therefore)(S’, 7) = z; = 0. Continuing,
let switch sw realize the set difference function namely= —, and the current state ofv be Sp. ThenSpyr = Sr—S9 = Si.
Thus at timer’ which is the end of the switching interva] a measurement &y throughz = V(Sour, 7’) yields a value
of 1. The switchsw shown in this example is one way of physically realizimggationor the logical complemenbperation.

A. Physical instantiation of deterministic and probabilistic switching

A SWITCHING is deterministicif and only if O C Sy or O C §; wheneverZy, C Sp orZ; € S;. LetZy C Sg andZ; C &
denote the two possible inputs representing valuesid 1, whereas®’ and ©” denote the output states wiffy andZ; as
the respective inputs. A deterministic switchingnisn-obliviousif and only if O’ N 0" = ¢.

Now considering the probabilistic variant, as before,@¥tand O” denote the output states wiffy andZ; as the inputs
respectively. Let§0 C Sr andS; C Sp denote the maximal set of witnesses respectively to valuasd 1. Define

UJ(/) = O0'n 30
w/1 = O/ N 31
(wg andw! can be defined similarly). AWITCHING function is randomized with probability parametet- 3 if and only
if
1) given inputZ,, —-%—~ = p whereas with inpufZ; o | =D wheneverf is an identity function whereas

|| |wy
| [+lwp] 1 l+lw
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Fig. 11. Switching ofsw to realize negation

2) given inputZ, % = p whereas with inpuf, % = p wheneverf is the complement function.
In what follows, unless otherwise specified, whenever a swiichis randomized with probability parametgr we mean
one that has the above property. The following observation summarizes the probabilistic assetsafING succinctly.
Observation 7.1:Let = € {0,1} be the output of &wITCHING function f that is randomized with a probability < 1.
In any probabilistic (physicalywITCHING implementingf, V(O, ') = = with probability p and z with probability (1 — p),
whereas in deterministiswITCHING, p = 1.
It is easy to verify that the mathematical definition of a randomized switching function (from Section V-A) with probability
parametep corresponds t@WITCHING realized above physically, so long as the statistical mechanics of the switch as outlined

in Physical Fact 4.7 are true.

B. An important digression to detecting the value of a state and the cost of a classical measurement

In the above definition, during a switching intervigla switchsw was enabled by its input signal and in turn produced an
output enabling signal, as well as an output value based on the furiétitime particular issue of detecting this value in a
switch sw’ or sw” and using it to drive another switchwv was not specified. To understand this issue better, it is convenient to
consider therRaABRAM model, introduced by this author [6]. This energy-aware model of computing is a variant of a random-
access machine whose execution on eatdmic stepis determined by a sequence mefad, executeand write sub-steps as
shown in Figure 12.

Relating this notion of a step of@ABRAM with a single transition of a switch, namebwITCHING, theread corresponds to
determining the value of from the current state ofw’, which drives switchsw. In our current context, a physical instantiation
of read will be realized through &lassical measuremen€onsidering switchsw’, any such measurement detects witnesses
from §; and S] from &’ the state ofsw’ at time 7. (More generally, it can be coarser and be based on detecting groups of
witnesses as opposed to single witnesses, so long as the constraints on the energy and the probability of the existence of th
group of witnesses are consistent with the corresponding properties of single witnesses.) Continuing with the execution of a
RABRAM step, by contrast with theead sub-step, an execute sub-step as well asvitige sub-step correspond to a single
switching step as developed in the previous sections, that chahtesoyr as shown in Figure 12.
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Fig. 12. The execution of a single atomic step ak@BRAM and its relationship to switching

Throughout, the amount of energy consumed by a (classical) measurement through widal iarrealized is considered
to be negligible, when compared with the energy cost of switching. We will now digress from the main theme of this work to
discuss this issue of measurement. Landauer, in addition to taking a significant leap towards resolving the Maxwell's demon
paradox [22], helped establish the cosirdferentenergy consumption of a logically irreversible computational step by binding
it to a macroscopic (non-statistical) analog of switching as characterized aboveRaBinm terminology, with the execute
and write sub-steps), as opposed to the measurememntddr) sub-step. For the reader familiar with the Maxwell's demon
paradox, this implies associating the energy cost to the demon’s act of “recording” the molecule’s position and momentum thus
erasingits current state of memory, as opposed to making the measurement itself. Several distinguished researchers including
Szilard [8] and Brillouin [39] studied this issue without making this subtle yet crucial distinction. Further debate as well as
clarification of the cost of measurement assumption continued (see Bennett and Landauer [40]), with Bennett [41] clarifying
this issue conclusively.

Let us now interpret these comments from thermodynamics from the perspective of energy analysis within the switching
andRABRAM models of interest to us. Using tmaBRAM for convenience, (while noting the equivalence shown in Figure 12)
the energy consumed by a single step of execution is lumped witexeuteand write sub-steps whereas thead sub-step
has negligible energy cost, which is ignored. With these clarifications, we will continue with a development of the framework
as if a physical measurement process supporting the above conditions and the funetoa to exist, and return to detailing
the issue of demonstrating a plausible construction in in Section XII.

VIIl. ENERGY CHARACTERISTICS OF SWITCHING

Using the physical construction of a switch defined above andgwheCcHING function, we will now characterize the energy
consumed in the switching, first in the deterministic case in section VIII-B followed by a consideration of the probabilistic
case in Section VIII-C. Before doing this, in Section VIII-A below, we will rephrase Theorem 4.5 from Section IV-D using
the terminology of a staté, and of switching, developed in previous section.

A. Characterizing switching through change to state and related properties

Consider a switchsw € SW with a particular current stats§, a particular inputZ and a particular outpub, and let7 be
the time interval for this switching. Given switchw, let EF : (S x S) — Q™ be theenergy factorrepresenting the change
in entropy of switchsw during an intervalr. Using terminology from Section IV, we recall that this is denoted by the term
1n(%). As usual, both the index ofw as well ast are implicit parameters. Recall from Section IV that grergy consumed
W by a thermodynamic systeff is related to the change in its entropy through Theorem 4.6.

Define theENERGY: (S x S) — T of a switching to be the energy consumed day, identified with7; equal toW Joules,
where theswitchingof sw is realized using amrbitrary sequence of thermodynamic transformaticiefined in Section V-

E. Specifically, a single operatio8wITCHING(S,Z) = (O, 7) is physically realized as a composition of thermodynamic
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transformationstRANS of finite lengthk where the state at the beginning of (applying the first elementrefins is S
and the state after applyimRrANS is O. Intuitively, a single atomicSwITCHING can be viewed as being “expanded” into a
sequence of thermodynamic transformations of finite length, each of which has a current state determined by its predecessol
in the sequence, and is either adiabatic or isothermal, as stated in Section IV-E. Then, the following convenient restatement of
Theorem 4.6 is useful throughout the sequel.

Theorem 8.1:ENERGY(S,Z) = —~tEF(S,T) Joules, wheneve% > 1 and is zero otherwise.

Proof: Restatement of Theorem 4.6 WiIHNERGY(S,Z) = W. [ |
The switching energyof a switchsw with initial stateS is maz{ENERGY(S,Z), ENERGY(S,Z1)}.

B. Lowerbounds on deterministic switching

We consider the deterministic setting here, and state and prove the following theorem about the current state of a switch
sw, leading to a lowerbound on the energy consumediydeterministic switching in Theorem 8.3 below.
Lemma 8.1:In any non-oblivious deterministic switchind} C S.
Proof: Suppose not, the§ — O # ¢. If ® = — then we are done sind® =S — Z. Now if ® = U, SINCESWITCHING
is non-oblivious and deterministic, there exist non-empty §etand Z whereZ NZ = ¢, SWITCHING(S,Z) = O and
SWITCHING(S,Z) = O’, where

o SUZ impliesS Cc O
and®’ = SUZTimpliesS c O’

Combined with the fact that by definitio® N O’ = ¢, it follows thatS = ¢, which contradicts Physical Fact 4.1. =

It immediately follows from this proof that

Corollary 8.2: ® = —, in any deterministic non-oblivious switching.

Using these facts, we are now able to bound the energy change in any deterministic non-oblivious switching from below.
As before, letZ andZ denote the input sets corresponding to the two possible input valaes 1.

Theorem 8.3:In any non-oblivious switching, the switching energy «af with any initial state> —«xt1n2 Joules and is a
minimum when|Sy| = |S1].

Proof: That energy ofSWITCHING(sw) = —«tIn2 Joules whenSy| = |S1| follows immediately from Theorem 8.1.
Now, if the theorem is false, there exists a switeh with stateS such thaiSo| = a - |S| and|S;| = (1 — a) - [S] for a # 3,
such that its switching energy is less thartIn 2 Joules.

a < %: From the definition of a deterministic non-oblivious switch, there exist in@utg to sw such that the respective
outputs are® and 0. Also from the definition of a deterministic switching, and Lemma 8.1 it follows thato © and

S1 D O'. Now sincea < 3 it follows from Theorem 8.1 and Corollary 8.2 thaNERGY(S,7) = —kt 1n% > —ktln2
alSo
Joules, a contradiction. X )
o > 31 A similar argument completes the proof with replacings,. ]

C. Energetics of probabilistic switching

Given a probability parameter > 1, the following theorem characterizes the energy consumed by probabilistic switching.

Theorem 8.4:Given any implementation of the function and for any non-oblivious probabilistic switch with probability
parametep, ENERGY(S,Z) can be as low as-«t In 2p Joules. Therefore the switching energy of a probabilistic switch with
initial stateS and probability parameter is —«xt In 2p Joules.

Proof: (SKETCH): Given a realization oV, that the switching energy of a non-oblivious probabilistic switch-ig In 2p

Joules is immediate from the definition of value of a sti{€, r’'), Observation 7.1 characterizing the probability of value
detected byy and Theorem 8.1. The potential energy savings follow trivially from Theorem 8.3. ]

From this, we can immediately deduce

Corollary 8.5: The difference in switching energy between deterministic and probabilistic non-oblivious switchids js
Joules, which is a potential for saving efln 1 Joules.

1) Comments on the definition of switchinigr all of the above physical characterizations of switching, the output Slate
is related to the current stafe under theC relationship. (Thus, eithe® C S or vice-versa.) One can consider a definition of
switching whereinS is incomparable t@ for example, by the application of both the “-” as well as the€ bperators during
a single switching step. This raises an interesting issue concerning the atomicity of a single switching operation wherein,
multiple operations from set-algebra can be used to characterize a switching step. An implication of allowing these potentially
more general definitions for switching, wherein the output and the current states are not necessarily restrictions of each other—
contrary to the definitions used in this work— is that the set of withess&3 ireed not necessarily be those in the current
stateS. However, it is possible to extend the basic definitions as well as bounds on the energy derived above, to be valid in
the context of a broad range of more general definitions of switching, so long as the witnesses in a given (non-empty) state
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Fig. 13. A deterministic 2-canonical network resolving the AND function wherecth®PUTE-SWITCHes sw3z and sw4 drive theacceptingswitch sweg
andrejecting switchsws

S, T or O have a fixed meaning—any witness (or microstate) from any of these sets of a given switrke permanently
associated with the valu@ or with the valuel throughout the life-time okw. Furthermore© ought to be determined as a
function of S andZ, within the context of non-recovering computations as characterized in Section IV. The details of such
extensions are beyond the scope of this work.

IX. NETWORKS FOR DETERMINISTIC COMPUTATIONS

In this section, we will first introduce aetworkof switches for deterministic computation (Section 1X-A) and define their
energy complexity (in Section 1X-C). In Section X, we will prove a non-trivial lowerbound on the energy consumed by any
deterministic network that can compute the logigaV D function.

A. Defining a Network

A Networkof switches is a connected directed acyclic grayh= (SW, WiRES) such that the vertices are switches, the
edges are wires and the switches that are of the tyerPuUTswITCH as well as those of typeOMPUTE-SWITCH are all
strongly connected. Each switch has no more than two predecessors and no more than two successors. This assumption c
bounded (two) degree entails no loss of generality in terms of the energy complexity introduced in Section IX-C below. A
switch is defined to bextrinsicif and only if at least one of its inputs is driven by an input switch. It is defined tmtrmsic
otherwise. A network is said to Hecanonicalfor £ > 1 whenever it has

1) exactlyk input switches.

2) two output switches, and

3) exactly oneCOMPUTE-SWITCH with one of its input enabling signaks; = y, wherey; is the output enabling signal

of an input switch. For convenience we will refer to this switch asgmerT switch.

From a computer science and automata theory perspective, when the network is used as a basis for (formal) language
recognition, it is convenient to view the two output switches as being eithecesptingswitch or arejecting switch. Also,
given an input which is a binary string determined by the settings of its input switches at tim@ the START switch has
input enabling signalv; = 1 thus “triggering” the computation.

In Figure 13(a), a network computing the logicdN D function is sketched. Switchesv,, sw, are of typeINPUT-SWITCH,
sws, swy are of typeCOMPUTE-SWITCH (implementing the complement function) whereas switches and swg are of
type OUTPUT-SWITCH; sws is the rejecting switch andwg is the accepting switch. Every switch unless it is of the type
INPUT-SWITCH is strongly connected, and the network is directed and acyclic. Furthermore this netWecknsnical, since
in addition to the above constraints, exactly @@mPUTESWITCH sw3 has an input enabling signgf ; from INPUT-SWITCH
swy. In Figure 13(b), we show the crucial relationships between the input valuesstand sw4, and their output and enabling
signals in a “truth-table-like” structure.

B. Execution of a network

A switch sw is said to have switched by time if and only if its switching interval(7’,7"") is such thatr” < 7. In what
follows, the input switches are all assumed to have switched by time) so that their output values can be determined by
the functionV. Continuing, at timef = 0, y.,,1 IS 1 since the input-switchsw; has switched by time- = 0. (While this
implies possibly negative switching times, this is merely a technicality and can be easily changeds Fhuss interpreted
to denote the time when the first compute-switch starts switching. In our example of Figure 13, this switghwhich is



TECHNICAL REPORT GIT-CC-03-16 MAY 2003 18

Inputs

0.0 = = = = ‘ » reject
sw; y;; =1 sw,z,, =0 SW3Y3, =1,Y5,=0 | > ]

0.1 ISW. =1 = =1 =0 ‘ » reject

1Y11 =1 sw,2,, =1 SW3Y31 =L, Y3, = | d |

1,0 _ _ _ _ — _ i
le yl,l _1 SWZ 22,1 - O ‘ ’ SW3 y3.1 - 0’ y3,2 - 1 ‘ ’ SW4 y4,1 - 1' y4.2 - 0 ‘» reJECt

b1 le Y11 =1 sw,2,, =1 ‘ ’ SW3¥31 =05, =1 ‘ ’ SW, Y, =0,Y,,=1 H accept

>

— f, £, R |

t

0

Fig. 14. A trace for the deterministic network resolving the AND function

enabled at- = 0. During the interval» as shown in Figure 14, it switches and the associated enabling signal values are shown

in the figure. In the next interval;, sw, mMight undergo eswITCHING with the associated output and enabling signal values.
Let /' = (SW, WIRES) be ak-canonical network. Annput bindingor input for short, is a functiod 5 : SW;y — {0,1}

where SW;ny C SW is the set of all switches of typesPUT-SWITCH and Iy (sw € SW;y) is the input value for switch

sw, which by definition is eithet or 1. An executionof A/ determined by or associated with inpli 1, is a partial function

E:SW — INT, and€&(sw) = 7 is defined for some switckw whenever

1) one of the input enabling signals, of sw is 1 at timer, where7 = (7,7') and
2) 7 is the smallest value for which this is true.

Let SWg C SW be such thatw € SW¢ if and only if £(sw) is defined. Given this fact, let; = (77, 7'f) be the final
interval, that is the interval with the largest starting value of time- 7, in an execution of\/ ( with input I ;) and let
E(S'wf) = 7A'f.

Observation 9.1:swy is either an accepting or a rejecting switch.

Consider a finite sequence of intervals-< 1, 72, 73, -+ ,7; > such thatf; = (0,7' > 0) and for any7; wherel < i </,

7/, = 7 where7; = (7;,7]). A sequencet =< 7,72,73,---,7; > is said to be arace of a network N induced by
execution& with input Ix, wheneverf is a bijection fromSWe to t. In Figure 14, the traces associated with inputs
< 0,0 >,<0,1><1,0>and< 1,1 > to the network in Figure 13 are shown. Traces will be used to characterize the
execution of a network, given an input. We note in passing that in the deterministic network, each input Bjagirig
associated with a unique executién

C. Energy complexity of deterministic networks

We will now introduce the definition of thenergy complexitpf a network. An interval is oblivious in a trace whenever
switch sw in this interval, determined by —!(7), is oblivious. It is non-oblivious otherwise. We define #eergy characteristic
of A/ in an execution represented by the functiBn’ : (SW x T) — {0, 1}, where

. 1 wheneversw is a COMPUTE-SWITCH and&(sw) = 7 is a non-oblivious interval
EC(sw,7) = i
0 otherwise
Let t =< 7y,72,73, -+ ,7;, > be a trace induced by executighof a network\, corresponding to inpufy ;. Then the

effective energyf t is

EE(t)= > > EC(sw,%)

1<j<lvsweSW

_ The deterministic energy complexitZ of a network with respect to a family of tracés induced by input bindings
I/N,ka II/N,ka .- s

E(N) = max EE(t)
vteT
Consider a networlV" to be homogeneous if all of its switches of typemMPUTE-SwITCH have the same switching energy,
say 3. Then
Observation 9.2:There exists an input binding\ -, and executiorf that induces a trace such that, the energy expended
by the switches of the typeoMPUTESWITCH in A/ during the trace is E(N) - 3 Joules.
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Network Input Bindings Network Input Bindings
<b,,b, > <b,, b, >
sw, SW, sSwy SW,
0,0 0(b,) | 0(b,) 0,0 0(by) | 0(by)
0.1 0(b) | 1(by) 0.1 0(by) | 1(by)
10 1(by) | 0(by) 10 0(by) | 1(by)
1,1 1(b,) | 1(by 1,1 1(by) | 1(by)
(@) (b)

Fig. 15. Consistent and inconsistent bindings

X. LOWER BOUND FOR THE ENERGY COMPLEXITY OF ANMAN D NETWORK

In the sections above, the notion of a network and the energy complexity of such a network have been defined. In this
section, we will prove a non-trivial lower bound on the energy complexity of any network that resolves the ladgidal
function.

To generalize the previous example of a network realizingAéD boolean function, formally, we definB to be a set
of k-vectors from{0, 1}*. Consider a fixed vectds € B, such thatb =< by, bo, b3, --- , b, > Whereb; € {0,1}. Let B be a
k-ary boolean function witfB as its domain. Letw’, swh, - - - , sw) € SW;y be the input switches of &-canonical network
N. Iy bindsN to b if and only if Iy k(sw’) = by for 1 < j, " < k, and it is an onto functionV resolvesb with respect
to B whenever, given a suitablgy , and&,swy in (the corresponding tracg is an accepting (rejecting) switcif(b) = 1
(0 respectively). Consider a family of input bindin®s= In k., I'ark, I Ak, - - - - A family of bindings!| bind A/ to B if and
only if given anyb € B, there exists a uniquéy ; € I such thatly , binds A to b. A network N resolves a boolean
function B with an input family of bindingd (that bindsB to it) provided given anyb € B, N resolvesb with respect to
B. We definel to be consistentf and only if given any member pair of binding?wC and fj(/,k and corresponding vectors,

b andb’ such thatl}, , (sw) = b; € b, thenI}; ,(sw) = b}; € b’. Informally all bindings associate the same index from the
input (assignmentp with the samaNpPUT-SwITCH switch sw. In what follows, we will only be concerned with families of
consistent binding¥. For example the bindings in Figure 15(a) are consistent whereas those in Figure 15(b) are not, since for
example, switchsw; hasb; andb, assigned to it.

Given a tracet =< 7,7»,73,--- ,7; >, @ maximally oblivious subsequenee 7;,7;41,---,7;; > is any subsequence
of intervals such that every interval in the subsequence is oblivious and furthermore whgnever7;_; and, whenever
j' <1, 7,41 are non-oblivious intervals. A boolean functighis non-trivial if and only if there exisb,b’ € B such that
B(b) # B(b’).

Lemma 10.1:Given N, let t be a trace and =< 7;,7;41,--- ,7;» > Wherej’ = j+ X for 1 < j < j/ < be any
maximally oblivious subsequence ©f Then, N/ cannot resolve a non-trivial boolean function)if= [ — 1 for any tracet.

Also let £71(7;) = sw and £~'(7;;) = sw’ and z, 2’ be their respective outputs in Whenevere~'(7;) = £-1(7/;) =
E-1(r";)--- andz is constant in tracest’,t”, --- associated with all of the input bindings &, I’ xr x, I a7k, - -~ from 1,
ENty)=ENr)) =€ (7))~ and 2 is a constant.

Proof: The first part of the claim is a straight forward induction on the length of the sequence and the definition of an
oblivious function. The second part of the claim additionally follows the definitions of an input, and an output to a switch and
the definition of switching. ]

Theorem 10.1:E(N) > 2 for any 2-canonical network\" that resolves thed N D boolean function.

Proof: (SkeTcH) If the theorem is false for a network then, in any trace induced by an executiod with input
binding I, there can be no more than one non-oblivious interval. Without loss of generality, let this intervalfbe
1< j <lwheret =< 7,m,73, -+ ,71 >. If there is no such interval\/ cannot resolve a non-trivial boolean function from
Lemma 10.1. Le€ ~!(7;) = sw. sw must be extrinsic or else, from Lemma 10.1, once agAingomputes a trivial boolean
function. LetINPUT-SWITCH sw’ drive sw and consider inputb; =< 1,1 >,bs =< 0,1 > andbs =< 1,0 > to B, which
by hypothesis is all N D function. From pigeon-holing, there exist two inputs in any consistent family of input bindings,
andb, without loss of generality, such that the input valuesto derived fromsw’, x = 1, andB(b1) # B(bz). Then, from
Lemma 10.1 and the fact thaAf is 2-canonical, we know that in both cases the corresponding traces have the same accepting
or rejecting switchsw, in their final interval, wherea$(b) # B(bz). [ |

From this theorem and Theorem 8.3, it follows that

Observation 10.2:There exist inputs to any 2-canonical network that resolves the AND boolean function such that the
energy consumed is at leas®xtIn 2 Joules.
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XI. NETWORKS FOR RANDOMIZED COMPUTATIONS

In Section I1X above, the notion of deterministicnetwork that can resolve a boolean function was introduced, and its
energy complexity defined. Implicit in the definition is the fact that every switehin network N is a deterministic switch.
In Section V-B the notion of a probabilistic switch was introduced. We will now use this definition to construct probabilistic
networks.

A. Probabilistic networks and their execution

A k-canonical probabilistic networR is any network with the property that@oMPUTE-SWITCH can either be deterministic
or probabilistic. Arandomized executiois £ : SW — T as before, where the individual switches are randomized with
some probability parameter. Given ak-canonical probabilistic networlk and an input binding'z 5, by contrast with the
deterministic case, we now have a family rahdomized execution$,, &, &, - - - , & each inducing traces:, ps, ps, - - - , pi,
with respective probabilities;, ry,r3, -+, ;. Let éj(sw) = 7 as before and letw’ be the switch in intervat’ immediately
preceding? in p;, that is7’ and 7 are of the form(7”,7) and (,7’) respectively. Also, let’ be its input value at time
7”. (We recall that in any legal execution, the input value to a switch is defined, and one of its input enabling signals is
asserted.) Now, the conditional probability associated with, is the probability that the output enabling signal frem’
driving sw equals one at time, given the input tosw’ is z’. Informally, each member of this family of traces is generated
due to the probabilistic or randomized nature of the output of the probabilistic swiltheghe network. This is in contrast
to a deterministic networR/” which has a unique trace given an input bindihg .

Observation 11.1:By definition, r; = nggl, g; Wherep;, =< 71,7o, 73, , Ty >. Furthermore,zlgj,g ry = 1.

Given a single input, a probabilistic network can, depending on the execution, invoke different switches with varying
probability parameters each leading to a distinct trace. Thus, whereas a fixed input is associated with a unique trace in the
deterministic case, it is associated with a family of traces whose relative probabilities are as stated in Observation 11.1.

B. Energy complexity of probabilistic networks

We will now introduce the notion of thenergy complexitypf a probabilistic network. Lep =< 71, 79,73, , 7 > be a
trace from thefamily of tracesF induced by executiog. Then theexpected effective energy F is

REE(F)=Y_ ri- EE(p;)
piE€EF
wherer; is the probability of trace;. An example of an AND network will help illustrate this notion in Section XI-B.1
below. These definitions are an adaptation of the measuogizfal workintroduced by Palem [6] in the context oRABRAM.
The randomized energy complexiBE of a network is

RE(R) = max REE(F)
VFEF

whereF is theset of all trace familiesnduced by executions associated with all the consistent input bindingsl’ 1, I =k, - - -
Let a probabilistic networlR ber-homogeneous if and only if it is homogeneous and all switches of thedgpgUTE SWITCH
are randomized. Then,

Observation 11.2:There exists a bindindr , such that the energy in Joules consumed bydb®PUTE swiTCHes of
R, averaged over all the traces induced by associated execifio8s, - -, is RE(R) - ENERGY(sw), where sw is any
probabilisticCOMPUTESWITCH in R.

1) Upperbound on the energy complexity of the AND netwdrkFigure 16, we show a probabilistic netwofR that
can resolve the logicak N D function. The details of its construction are identical to those in the deterministic case from
Figure 13. Switchesws and sw, are of typeCOMPUTE-SWITCH and are randomized, with a probability parametethey
compute complement function. The output signals of these switches as a function of the inputs are shown in the table in
Figure 16. Recall from Theorem 8.4 that in any switching, a probabilistic switch with probability parametmisumes
—rtIn 2p Joules. Thus, using this fact aRIE = (1 + p), from Observation 11.2, we have the expected energy consumed by
switches of typeCOMPUTE-SWITCH in the example probabilistic network to & + p)xt1In(2p) Joules. This is less than its
deterministic counterpart, which is a minimum ft In(2) Joules, following the lowerbound established in Theorem 10.1 and
Observation 10.2.

XIl. A PLAUSIBLE CONSTRUCTION OF A SWITCH AND SWITCHING

A mechanicaldescription of a switchsw as well as its realization in a manner consistent with the principles of statistical
thermodynamics was presented in Section VI-A and Section VIl above. We will now provide an interpretation of the abstract
switch construction (from Section VII) through a mechanical-pneumatic device which serves as a plausible physical realization
of the switch. For convenience of explanation and to establish the physical validity of the theoretical framework and results
derived in the previous sections, following Szilard [8], we will first consider a cylinder with a single molecule in it.
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Switch (Input) Input | Output enabling signals
Rejecting Accepting switching
relationship
SWy <VY111211> Z11 Y31 Y32
0 1=z, (p) 0=2;, (p)
0=2,, (I-p)|l=2z, (1-p)
1 0 :33,1 (p) 1=2;, (p)
1=2,, (1-p) | 0=2,, (1-p)
SW, <V¥321 251> Z1 Yaa Ya2
0 1=z,, (M |0=2Z,, (p)
0=z,, p|l=2, (1-p)
1 0=2,, () [1=2,; (M)
l:Z4,1 (l'p) 02241 (l'p)
Fig. 16. A probabilistic 2-canonical network resolving the AND function
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Fig. 17. A plausible pneumatic device that realizes switching

A. Device Construction

As shown in Figure 17(a), the device consists of aggembliesdenoted as thmeasurement assemialgd thetransformation
assembly Recall (from Section VII-B) that a switching operation consists of read step followed by an execute-write step in
that order. The measurement assembly performs the physical equivalent of a “read” whereas the transformation assembly is
equivalent to an integrated “execute-write” portion of the execution of a switch. In the sequel, we will describe these two
assemblies and their interactions to realize switching, starting with the transformation assembly. The nature of this description
will be analogous to a thought experiment in physics.

B. The transformation assembly

The transformation assembly of a switela consists of a rigid masslesaRr, balanced over a massless/oOT. In practice,
these could be physical components of negligible mass.PTWieT rests on a horizontal frictionless surface and is free to move
as shown in Figure 17(b). A (perfectly) spherieLL with massM is balanced on the pivot, so that the entire assembly is
static and balanced at physical equilibrium. Let switefi be a predecessor to switely such that an enabling signal from
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sw’ initiates sw into switching. (In this example, switchw realizes the negation operation. A similar construction can be used

to illustrate the realization of the identity function.) Whem’ enablessw — an action resulting from measuring the state of

sw’, which, in this example, yields a valueas detailed in Section XII-C below in the context@b. As a result, theeivoT

moves to the right as shown in Figure 17(b). This in turn (eventually) causesathdo tilt as shown, caused by theaLL

rolling to the left. The following elementary fact from classical mechanics helps understand the dynamics of this assembly
once therpivorT is displaced by a small distandein either direction.

Observation 12.1:For anyd > 0, once the pivot has moved and the bar has tilted, subsequent measurements cannot move
the pivot in the opposite direction since the horizontal component of the force generated by the bar on the pivot prevents it
from doing so.

Returning to the example of Figure 17, the movement of the bar in turn moves a piston through the three frictionless
pulleys labeleda,b,c and d. The piston is in a cylinder enclosing, for purpose of example, a single molecule of an ideal
mono-atomic gas, and the cylinder has perfectly conducting frictionless walls , and is in an isothermal bath (not shown).
Thus, the movement of the piston (isothermally) compresses the gas. In the deterministic case, the piston is pushed to the
position markedd (as shown in Figure 17(d)) in the context of a deterministic switch, which is at a point corresponding to
half of the cylinder's voluméd/ as shown. For simplicity, let us assume that that the underlying gaseous system is ergodic—-the
unimolecular assumption has important implications to the ergodicity of the gaseous system and influences the measurement
to yield a particular probability; the discussion in Section XV-B below will address this point in greater detail. Given this
assumption, the volume elements and hence microstates leading to the definitigmodeling measurement) in Section VI-B,
are associated with the Euclidean coordinates of the volume enclosed within the cylinder.

Observation 12.2:In the case of the uncompressed gas occupying the whole of the cylinder when pstansi P2 are
fully retracted, the probability of the gas molecule occupying the left or the right half is equal representing tkte statere
switching. Also, the probability of the gas molecule existing in one of the halves is unity when either pistohe2 are at
point markedD, while the other piston is fully retracted, respectively denoting the sttes Sy.

In the general probabilistic case, the piston stops at the point markadrigure 17(a) with an associated probability
parametep. It is easily seen (Figure 17(b)) that with= % and the occupancy of all physical (Euclidean) volume elements

in the cylinder being of equal probability, = 117 — 1) for % < p < 1. In each case, the witnesses to the valuesd1 are
as shown in Figure 17(d). Now, the following observation coupled with Theorem 8.1 clarifies the energy changes associated
with compressing the gas as characterized by Theorem 4.3.

Observation 12.3:The change in potential energy of the ball equals the mechanical work done on the gas by the piston.

C. The Measurement Assembly

Let switch sw have switchsiw as one of its successors. Also, let the function being realizeskiblge such that if its input
value is0 (activated by an appropriate enabling signal specified as part of a switching relationship), then it enablesuswitch
with an output value of, and vice-versa. For convenience, let us additionally consider that the input enabling signals, and the
input values to switchsw are both derived from switckw as part of a single switching relationship. Now, the mechanism for
switching s based on th@IvoT-BALL construction is identical to that described in the context of switchn Section XII-B
above.

The process of measurement is a collision detector at the granularity of a molecule, one detector per (Euclidean) surface
element such that the ratio of detectors to volume elemerits is Now, the arrangement in Figure 17(b) will cause a (minute)
movement to the pivot corresponding to a successor of switchtriggering a switching. In greater detail, when a collision
occurs with the sensor, a miniscule amount of work associated with the measurement is done to transmit this and move the
“pivot” of successor switchyw of sw.

1) The restraining mechanismConsidering the deterministic case, the enabling signal is defined (in Section VII) to be
valid only at the end of the switching interval; if not, false values can be detected. In order to ensure that the result of the
measurement be transmitted & from sw after switchsw has fully switched, namely its pistop2 is in positionD, we
introduce a particular restraining mechanism shown in Figure 17(c). In our example this corresponds to the point in time
when pistonP2 is completely in positiorp. To realize this mechanism, the piston, as it moves, also shifts a restr&oing
(Figure17(c)) which prevents the measurement assembly from transmitting the value encedeid by till piston P2 reaches
positionDd. From the time instant when thePIvoT of switch sw starts moving, to the instant > = when pistonp2 reaches
positionD forms the switching intervat. This mechanism can be easily extended to the case of a switch with any associated
probability parametep. Thus from Theorem 8.4

Observation 12.4:Not accounting for the cost of measurement, the work done on the gas is exagtlyi2 to reach
position D, whereas it is—«t In 2p to reach positiorp, and is derived from the potential energy stored in the ball prior to the
switching.

D. Comments on extensions to the multimolecular case

While the preceding discussion is adequate to establish the energetics and energy savings achieved through probabilistic
switching at the fundamental limit (from Section VIII), for completeness, we will now outline an approach to extending the
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above mechanism to the case of a switch usig- 1 molecules. Briefly, in this case, the system in question is designed in
exactly the same way as above with a few additional constraints. Thus, in this case, the detection devices along the walls of
the cylinder need to satisfy the following additional propethe first collision in time is detected by one of the detectors after
which all further detection is suspended through restraining mechaniSmmple extension of the restraining mechanism to the
measurement assembly from Section XII-C satisfy this additional condition. Once this condition is satisfied, a straightforward
calculation can be used to show that as before, with % and the occupancy of all physical (Euclidean) volume elements
in the cylinder being of equal probability,= (5 —1) for 3 <p <1.

Now, the energy needed in the deterministic and probabilistic casesNvittolecules need to be multiplied by the factor
N compared to those presented in Section VIII, bound from below in the deterministic case and above in the probabilistic
case. Thus, in the probabilistic case for example, the energy consumed wouldVheln 2p Joules whereas it would be
—NktIn2 Joules in the deterministic case—this deterministic switching energy can be shown to be a lowerbound using the
techniques from Section VIII-B so long as a consistent definition of witness and measurement is used in the deterministic and
probabilistic cases—which warrants the following restatement of the energy savings at the limit stated as Corollary 8.5 and
observation 12.4.

Observation 12.5:The difference in switching energy between deterministic and probabilistic non-oblivious switches is
—Nktlnp Joules and thus, the potential for energy savings Mkt 1n% Joules.

1) Relationship between volume elements and microstates Wheri: With N > 1 molecules, a detection of a molecule in
a physical volume element does not correspond to a “pure” microstate. However, the outline above is meant to demonstrate the
possibility of using an approximate form of measurement, whose statistical behavior is identical to that of detecting individual
(microstate) witnesses—thus, the probability parametsrpreserved in going fronV = 1 to N > 1 molecules; however, the
energy bounds as outlined above are different from those based on detecting “pure” witnesses. We also note in passing that it
is possible to construct significantly more complicated measurement and restraining assemblies such that the energy consume
is independent of the number of molecul¥sand thus is identical to the unimolecular case; in such a way that, the switching
energy at the fundamental limit is characterized by observation 12.4 rather than by observation 12.5. Since this section is aimed
at establishing the physical viability of energy savings at the fundamental limit as characterized in the previous sections rather
than being focussed on the construction of gas-based switches, we will not go into these constructions here.

XIIl. COMPLEXITY THEORETIC CHARACTERIZATION OF THE POWER OF NETWORKS

As shown earlier, a switchw can be used to realizd ND as well asNOT “gates”. Disjunction orOR gates can be
similarly realized, whose energy complexity in the deterministic and probabilistic cases are identical to those established for
AND gates. It will be useful to extend these foundational constructs and results to the broader scope of realizing entire
computations and designing energy-aware algorithms, using these switch constructs as building blocks. To accomplish this
goal, we will sketch relationships below, between a netwdtland established models of computation such Turing machines
and circuits, from the theory of computation. Papadimitriou [42] and Sipser [43] provide introductions to this topic. Our goal
in providing this characterization is primarily to help place the notion of a network and its associated energy complexity in
the context of familiar terrain.

A. Switching and th&@ABRAM model of computing

In an earlier paper [6], this author introduced theBRAM model for energy-aware algorithm analysis and design. Akin
to the standard random access machineR@®K) model of computing, its relationship to a switching step was the subject
of Section VII-B which implies an immediate reduction between the two models—irrRHBERAM the address decoder is
abstracted away and is a potential source of additional computational power. A central contribution of this earlier work ([6])
is the demonstration of asymptotic energy savings in the RaBRAM model, in the context of the basic question of detecting
whether a given vector of elements which are drawn from the 46t 1}, contains at least one element which is equal to 0. This
problem is referred to as thdistinct vector problemfor variants of which the following results are established (in [6]). Using
lower bounds for the deterministic case and upper bounds for the probabilistic case which has a probability of error bound from
above by#, asymptotic energy savingse show to grow a8)(n) using arandomized value amplificatiorechnique [6]. An
interesting aspect of this result is that (as far as can be determined), it is the first asymptotic demonstration of energy savings
derived from a probabilistic algorithm when compared to any deterministic counterpart, wherein the complexity of the running
time isidenticalto (©(n)) in both cases. This result demonstrated that the energy savings are due to probabilistic “switching”
as opposed to the (trivial) case of being a by-product of an improvement to the running time achieved by randomization since
intuitively, a lower running time may imply lower energy consumption. Similar results have also been obtained by this author
for variants of the well-known string-matching problem using randomibegerprintingbased approaches due to Karp and
Rabin [44].
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Fig. 18. Canonical realization of @BIT using voltages

B. Networks and Circuit Complexity

We will use the termcircuit to refer to the form of boolean circuits that have become ubiquitous in the study of the
complexity of computing, andetworksto refer to the particular model for computing introduced in this paper. Thus, a crucial
point of reference for circuits, using this terminology, is embodied in the early work of Pippenger and Fischer [12]; we will
use this paper as a basis for definitions. We recognize that since this early characterization, significant strides have been mads
in circuit complexity, notably in clarifying the power of “monotonicity” as embodied in the work of Razborov [45], [46].

Following Pippenger and Fischer [12], two Turing machidds)’ simulateeach other, if when they are started with the
same string of symbols on their input tapes, they produce the same string of symbinis on their output tapes; two machines
that simulate each other do so on-line if the shifts of the input and output heads occur in the same order (but not necessarily
at the same steps) for both machines. This notion of simulation can be naturally extended toimessmulationbetween
Turing machines, networks, and circuits, viewed as language recognizers within stated resource bounds. As in the case of
circuits, a potentially infinite set of network§;, V3, ... correspond to a single Turing machine, in one-one correspondence
with each distinct input sizé, 2, ..., M. In the context of on-line simulation, the energy complexity of networks are related to
the number of steps taken by any Turing machine, whereas the size of a circuit is related to the number of stepkvaiusn
Turing machine. Thus, the energy complexity of a network and the size of a circuit are separated by a gap determined by the
separation between oblivious and non-oblivious Turing machines using time-complexity as a measure.

XIV. PHYSICAL REPRESENTATION OF PBITS AND ENERGY SAVINGS

All of the energy bounds developed here are based on a novel approach to represemntings detailed by this author
in [47] and [6]. Recall that in all of this work, the value ofrBIT is detected through an instantaneous “measurement” of
the existence of anicrostatefrom classical thermodynamics. An example of an instantaneous measurement is the detection
of the position of a single molecule of gas in a cylinder containing it, as explained by Feynman [29] (and in Section XII).
By contrast with this representation, conventional representationsBftawould use a value such as voltage, whaseanis
the value of therBIT as shown in Figure 18. Following Stein [9]—the mean, a normally distributed noise signal denotes the
PBIT value. Thus, the probability of detecting a particular voltage—assuming an arbitrarily precise instantaneous measurement
device—is determined by the normal distribution, and the actual value will be a function of the current mean. The overlap area
A shown in the figure represents the region where a measurement can lead to an erroneous measurement. Quantitatively, th
area of overlap between the two density functioAs represents the two-sided error ofPaIT value of 0 being erroneously
detected to bé and vice-versa. Thus, using the notation from this paper, the one-sided erqys) = %.

Comparisons between the energy savings using randomization, between the canonical realizatenTcdral its novel
counterpart were determined in collaboration with Cheemalavagu and Korkmaz [11]; for a detailed discussion, the reader is
referred there. As shown in Figure 19, while energy savings are possible in both realizations, for a fixed prohabidity
novel realization requires lower energy than the canonical representation.

XV. QUESTIONS CAVEATS AND DIGRESSIONS

In this section, we will address various topics, somewhat germane to the central thesis of this paper; an interested reader
might find them useful.
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A. Dissipation

A significant issue in modern computing devices, largely based on CMOS semiconductor matetis$jpgation Feyn-
man [29], in Chapter 7, discusses this topic and its impact on the idealized devices that he describes in the earlier chapters.
The switching energy today tends to be several orders of magnitude above the ideal dissipationless limiting aalu@ of
and the idealized models used in this paper. To factor in some of these pragmatic concerns and relate our work to the domain
of dissipative switches, we will now clarify the relationship to the context of computing with dissipation, using projections
from the national semiconductor roadmap

In Figure 20, we show the trends in energy consumed by switeftbslissipationby extrapolating theTrRs 2002 roadmap.

The non-idealization, or the model for dissipation that we use follows Meindl’'s “lumped parame{é@]. The projected
switching energy in femto Joules for the deterministic as well as the probabilistic switching cases with probability parameters
p = 0.6 andp = 0.8 respectively, are shown. For example, the switching energy associated with deterministic switching in 2006
is achieved in 2002 by a probabilistic switch with= 0.6. Thus, using accepted engineering approximations for switching,
probabilistic switches, as shown in Figure 20, accelerate Moore’s law by about two generations. All of the above predictions
are empirical; for those interested in a theoretical approach to modeling and analyzing dissipation, the reader is referred to
Gupta’s work [48].

In Figure 21, we have shown the rate at which deterministic switching energy drops with progress in CMOS technology.
As shown therestatic energy consumeith the year 2013 is comparable to that consumed by switching. Thus, switching
energy tends to be the dominant issue till that point in time, and the improvements projected by randomization shown in
Figure 20 will be a significant factor till then. Based on current projection, after 2016, additional improvements to overcome
static energy consumption—efforts underway by technologists in the semiconductor arena now—become necessary to glean
further improvements from probabilistic switches.
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B. Assumptions underlying the idealization

An important mathematical conundrum that emerged from the postulates guiding the development of the kinetic theory
of gases is the celebratedcurrence paradoxFollowing Newton'’s success in providing a (deterministic) mechanistic view
of the universe, and Laplace’s influence, there was a significant interest in providing a similar framework to explaining the
essentialrreversibility, experimentally noticed in thermodynamics: flow of heat from hot to cold bodies, and not vice-versa.
While Boltzmann’s statistical approach helped provide an accepted explanation of irreversibility, statistical methods and the
concomitant framework of randomness were not universally appealing as part of scientific discourse at the time, with Boltzmann
vigorously defending his views against the approaches and criticisms of the determinists.

The recurrence paradox was an important approach aimed at settling this issue mathematically, and the discussion was lec
significantly by Poincare [49] and his student Zermelo [50]. Ultimately, these debates led to the use of statistical methods and
randomness in providing an explanation to physical phenomenon—eventually inspiring Planck to characterize energy as being
guantized[20] and laying the foundations to modern quantum mechanics. The role of randomness, and more significantly
ergodicity, remained an issue that was at the heart of the debate towards the end of the nineteenth century. It finally led to
a mathematical characterization efgodicity itself! This concept is especially relevant in the context of our unimolecular
assumption in earlier sections, and we will briefly outline some of the relevant issues below.

Based largely on an encyclopedia article of the Ehrenfests [51], it came to be believed that Maxwell and Boltzmann both
assumed theergodic hypothesiss part of their development of the theory of gases. It suffices to say that in the switch
constructions used here with the walls of a cylinder having irrational angles suffices following the arguments put forward
by Boltzmann himself to justify the challenges to ergodicity. Leaping forward to the next century, based respectively on the
work of Lebesgue and Brauer, Plancherel [52] and Rosenthal [53] proved the impossibility of systems that satisfy the ergodic
hypothesis. In fact, a careful analysis of the Ehrenfests article shows that a weaker form of the ergodic hypothgsiasi-the
ergodic hypothesiwiill suffice from the standpoint of the the Maxwell-Boltzmann developments and we rely on this hypothesis
as well.

Abstractly, following Boltzmann (and Maxwell), we will assume all initial states with the same energy to be equally likely;
subsequently, Gibbs used this notion formally in the definition of a thermodynamic system using averages over ensembles
and defined thenicrocanonical ensemblg9]. In our modeling of a switch, for example in Section XIl, we will adopt this
strategy of assuming that the initial conditions or Gibbs’ “complexions” of the molecule(s) follow these postulates from classical
thermodynamics. Specifically the statistical viability of a unimolecular switch follows from a consideratddr-ebo switches,
which, following Gibbs, can be also achieved byswitching steps of a small number (s2yn the AN D gate construction)
of switches. However following Boltzmann [18] all possible initial states are equally probable for each of the switching steps.
The fact that all volume elements are traversed then follows from the weaker quasi-ergodic hypothesis following Boltzmann’s
arguments of introducing a cylinder into the volume of gas [54], for example.
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