
Topic 6
Register Allocation

2

Recap: Structure of an Optimizing Compiler

Source Program
(C, C++, etc)

Assembler/
Linker

Executable Binary
Program

Code
Generation

Low-level
Optimizations Scheduler/Register

Allocation

High-level
Optimizations

Front-End

Intermediate
Representations

(IRs)

3

Rationale for Separating Register
Allocation from Scheduling

Each of Scheduling and Register Allocation are hard
to solve individually, let alone solve globally as a
combined optimization.

So, solve each optimization locally and heuristically
“patch up” the two stages.

4

Why Register Allocation?

Storing and accessing variables from registers is much faster
than accessing data from memory.

The way operations are performed in load/store (RISC)
processors.

Therefore, in the interests of performance—if not by necessity—
variables ought to be stored in registers.
For performance reasons, it is useful to store variables as long
as possible, once they are loaded into registers.
Registers are bounded in number (say 32.)
Therefore, “register-sharing” is needed over time.

5

The Goal

Primarily to assign registers to variables.

However, the allocator runs out of registers quite
often.

Decide which variables to “flush” out of registers to
free them up, so that other variables can be bought
in.
This important indirect consequence of allocation is

referred to as spilling.

6

Register Allocation and Assignment

Allocation: identifying program values (virtual
registers, live ranges) and program points at which
values should be stored in a physical register.

Program values that are not allocated to registers are
said to be spilled.

Assignment: identifying which physical register
should hold an allocated value at each program point.

7

Live Ranges

Live range of virtual
register a = (BB1,
BB2, BB3, BB4, BB5,
BB6, BB7).

Def-Use chain of virtual
register a = (BB1,
BB3, BB5, BB7).

a :=...

:= a

:= a

:= a

T F

BB1

BB2

BB4BB3

BB5

BB6

BB7

8

Computing Live Ranges

Using data flow analysis, we compute for each basic
block:

In the forward direction, the reaching attribute.

A variable is reaching block i if a definition or use of the variable
reaches the basic block along the edges of the CFG.

In the backward direction, the liveness attribute.

A variable is live at block i if there is a direct reference to the
variable at block i or at some block j that succeeds i in the CFG,
provided the variable in question is not redefined in the interval
between i and j.

9

Computing Live Ranges (Contd.)

The live range of a variable is the intersection of basic-
blocks in CFG nodes in which the variable is live, and
the set which it can reach.

10

Local Register Allocation

Perform register allocation one basic block (or super-block or hyper-
block) at a time

Must note virtual registers that are live on entry and live on exit of a
basic block - later perform reconciliation

During allocation, spill out all live outs and bring all live ins from
memory

Advantage: very fast

11

Local Register Allocation - Reconciliation Codes

After completing allocation for all blocks, we need to
reconcile differences in allocation

If there are spare registers between two basic blocks,
replace the spill out and spill in code with register moves

12

Linear Scan Register Allocation

A simple local allocation algorithm

Assume code is already scheduled

Build a linear ordering of live ranges (also called live
intervals or lifetimes)

Scan the live range and assign registers until you run out
of them - then spill

13

Linear Scan RA

live ranges

scan order

sorted
according
to the
start time
of the
first def

may use same physical register!

14

The Linear Scan Algo

Source:
M. Poletto & V. Sarkar.,
“Linear Scan Register
Allocation”, ACM
TOPLAS, Sep 1999.

actual spill

15

Summary of the Linear Scan Register
Allocation(LSR)

LSR can be seen as 4 simple steps
Order the instructions in linear fashion
─ Many have proposed heuristics for finding the best linear order

Calculate the set of live intervals
─ Each temporary is given a live interval

Allocate a register to each interval
─ If a register is available then allocation is possible
─ If a register is not available then an already allocated register is chosen

(register spill occurs)
Rewrite the code according to the allocation
─ Actual registers replace temporary or virtual registers
─ Spill code is generated

16

Example: Applying the LSR Algorithm

Given the following CFG

L1: if t1 > t2 then L3 else L2;

L2: t3 = t1 + 1;
t0 = t3;
return t0;

L3: t1 = t1 - 1;
goto L1;

{t1, t2}

17

Example: Step 1 of LSR

Find a linear ordering of the instructions
The a priori choice of ordering affects performance
Exhaustive search for optimal order is not feasible
Poletto and Sarkar

─ Compare depth-first ordering with ordering found in the IR

0: L1: if t1 > t2 then L3 else L2;
1: L3: t1 = t1 – 1;
2: goto L1;
3: L2: t3 = t1 + 1;
4: t0 = t3;
5: return t0;

The IR ordering

18

Depth-First Ordering

Result: 0, 1, 3, 4, 5, 2, 6
Start

0

1
2

3

4 5
6

1
2

3

4 5
6

1
2

3

4 5
6

Next End

19

Example: The DF Ordering and the IR
Ordering

Applying DF ordering to our CFG

0: L1: if t1 > t2 then L3 else L2;
1: L2: t3 = t1 + 1;
2: t0 = t3;
3: return t0;
4: L3: t1 = t1 – 1;
5: goto L1;

0: L1: if t1 > t2 then L3 else L2;
1: L3: t1 = t1 – 1;
2: goto L1;
3: L2: t3 = t1 + 1;
4: t0 = t3;
5: return t0;

DF Ordering IR Ordering

20

Example: Step 2, Compute Live intervals for
DF ordering

There are 4 temporaries or virtual registers
t0, t1, t2, t3

Live intervals for DF Ordering
t0[2,3]
t1[0,5]
t2[0,5]
t3[1,2]

Shows the t2 and t1 are live over all temporaries

0: L1: if t1 > t2 then L3 else L2;
1: L2: t3 = t1 + 1;
2: t0 = t3;
3: return t0;
4: L3: t1 = t1 – 1;
5: goto L1;

21

Example: Step 2, Compute Live intervals for
IR ordering

Can you compute the live intervals?
Live intervals for IR Ordering

t0[4,5]
t1[0,3]
t2[0,2]
t3[3,4]

0: L1: if t1 > t2 then L3 else L2;
1: L3: t1 = t1 – 1;
2: goto L1;
3: L2: t3 = t1 + 1;
4: t0 = t3;
5: return t0;

Shows the only overlap is t2 and t1 with each other

22

Example: Step 3, Allocate Registers to
Intervals

3 lists are maintained during this process
Free : set of available registers
Alloc : set of allocated registers
Active: list of active intervals ordered by increasing end points

Registers are assigned in the following manner
Order the intervals in order of increasing start point
Scan the list of intervals, select the next ti
─ Free all registers assigned to intervals in Active whose interval is

less than or equal to the start of ti
─ If a free register exists in Free, then allocate it
─ If Free is empty, then spill in the following way

• If last interval on the Active list ends beyond the interval for ti, then ti is
given that register, and ti’s interval is added to Active

• If ti’s interval ends at the same point or beyond the last interval in
Active, then ti is given a stack location.

23

Example: Applying Step 3 to the DF ordering

Given 2 regs
List of live

intervals
t1[0,5]
t2[0,5]
t3[1,2]
t0[2,3]

Free ={r1, r2},
Active = {},
Alloc = {}

Looking at t1, Allocate r1
Free ={r2},

Active = {t1:[0,5]},
Alloc = {r1:t1}

Looking at t2, Allocate r2
Alloc = {r2:t2, r1:t1}
Active = {t2:[0,5],t1:[0,5]}
Now Free = {} and there are still more
intervals to process…

Start of interval = 0

Start of interval = 0

24

Example: Applying Step 3 to the DF ordering

Given 2 regs
List of live

intervals
t1[0,5]
t2[0,5]
t3[1,2]
t0[2,3]

Free = {},
Active = {t2:[0,5], t1:[0,5]},
Alloc = {r2:t2, r1:t1}

Looking at t3
Free is empty (spill needed)
End of t1 > end of t3
t3 is allocated r1, t1 on stack

Free = {},
Active = {t3:[1,2], t2:[0,5]} Alloc =

{r1:t3, r2:t2}
Looking at t0,
Free is empty (spill needed)
End of t2 > end of t0
t0 is allocated r2, t2 on stack

Start of interval = 1

Start of interval = 2

25

Example: Step 4, Rewriting the code

Code is rewritten with assigned registers and spill code inserted
Spill code is additional code that may increase cycle time

0: L1: if t1(r1) > t2(r2) then L3 else L2;
1: spill t1(r1) and reassign r1(cond #1)
2: L2: t3(r1) = t1(stk) + 1;
3: spill t0(r2) and reassign r2(cond #1)
4: t0(r2) = t3(r1);
5: return t0(r2);
6: L3: t1(stk) = t1(stk) – 1;
7: goto L1;

• What is the minimum number of registers
needed to guarantee no spills?

26

Second Chance Linear Scan

O. Traub, G. Holloway, and M.D. Smith, “Quality and Speed in Linear-
Scan Register Allocation”, SIGPLAN ‘98

Considers “holes” in live ranges

Considers register allocation as a bin-packing problem

Performs register allocation and spill code generation at the same
time

27

Holes in Live Ranges

28

Bin-packing

The binpacking problem: determine how to put the most objects in the
least number of fixed space bins

More formally, find a partition and assignment of a set of objects such
that constraint is satisfied or an objective function is minimized (or
maximized)

In register allocation, the constraint is that overlapping live ranges
cannot be assigned to the same bin (register)

Another way of looking at linear scan

29

Working with holes

We can allocate two non-overlapping live ranges to the
same physical register

We can assign two live ranges to the same physical
register if one fits entirely into the hole of another

30

Second Chance Linear Scan

Suppose we encounter variable t, and we assigned a register to it by
spilling out variable u currently occupying that register

When u is needed again, it may be loaded into a different register (it
gets a “second chance”)

It will stay till its lifetime ends or it is evicted again

Problem: Can cause inconsistent register allocation across the same
live range

Solution: resolution code has to be inserted

31

Insertion of Resolution Code

resolution code

32

Performance

Appendix A

Global Register Allocation

34

Global Register Allocation

Local register allocation does not store data in registers across
basic blocks.

Local allocation has poor register utilization ⇒ global register
allocation is essential.

Simple global register allocation: allocate most “active” values in
each inner loop.
Full global register allocation: identify live ranges in control flow
graph, allocate live ranges, and split ranges as needed.
Goal: select allocation so as to minimize number of load/store

instructions performed by optimized program.

35

Topological Sorting

Given a directed graph, G = 〈V, E〉, we can define a
topological ordering of the nodes

Let T = {v1, v2, ..., vn} be an enumeration of the nodes of
V, T is a topological ordering if vi → vj ∈ E, then i < j (i.e. vi
comes before vj in T)

A topological order linearizes a partial order

36

Global Linear Scan RA

Ignoring back-edges, perform a topological sort of the basic blocks
using the CFG

Compute the live range over the entire topological order

Treat the blocks in topological order as a single large block and
perform linear scan

37

Global Live Ranges

A ←

A ←

← B
A ←

B ←

B1

B2 B3

B4

B1 B2 B3 B4

A

B

Global Live Ranges

Topological Order

38

Simple Example of
Global Register Allocation

Live range of a = {B1, B3}
Live range of b = {B2, B4}
No interference! a and b can be assigned to the same
register

a =...

b == a

.. = b

T F

B1

B3

B4

B2

Control Flow
Graph

