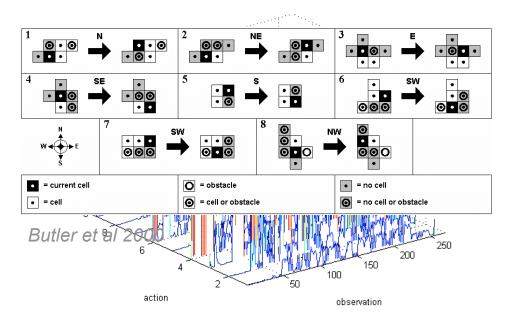
On Scalability Issues in Reinforcement Learning for Modular Robots

Paulina Varshavskaya, Leslie Pack Kaelbling and Daniela Rus

- motivate reinforcement learning (RL)
- larger modular system challenges
- a specific solution
- a general solution
- experiments in simulation
- related current work

RL for self-reconfigurable robots

1. automated controller design



MTRAN-II controller: genetic algorithms (Kamimura et al 2004)

Molecube controller: genetic algorithms (Mytilinaios et al 2004)

Telecube primitives and controller: genetic programming (Kubica and Rieffel 2002)

RL for self-reconfigurable robots

1. automated controller design

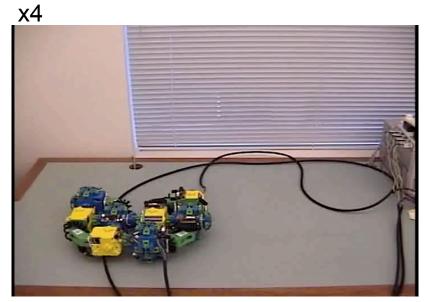
2. online adaptation

- from the point of view of each robot or module
- limited knowledge and resources

moving from 1. to 2.

Task: locomotion in modular robots

lattice-based robots



Molecule Kotay & Rus 2005

simulated generalized latticebased robot

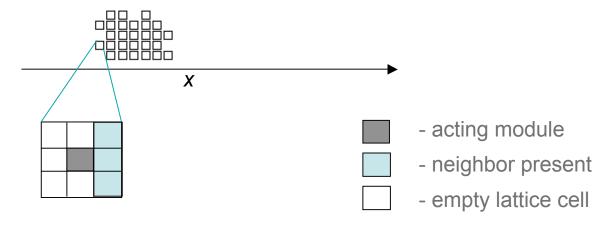
From each agent's point of view

state: global configuration of robot **unknown**

local observation: Moore neighborhood

actions: 8 directions + NOP

reward: Eastward displacement along x axis



assumptions: primitive "physics", no disconnections, failed actions don't execute, synchronous execution

Large modular sytem challenges

partial observability

cannot use Markov-assuming "nice" algorithms

large observation-action spaces

28 observations without obstacles x 9 actions

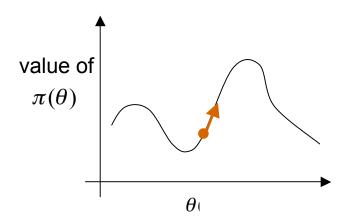
38 observations with obstacles x 9 actions

Partial observability

in a multi-agent partially observable Markov Decision Process (POMDP)

direct policy search using gradient ascent in policy space (GAPS)

Peshkin 2001



8

Value $V(\theta)$ of policy $\pi(\theta)$

$$V(\theta) = E_{\theta}[R]$$

$$R = \sum_{t=1}^{T} \gamma^{t} r_{t}$$

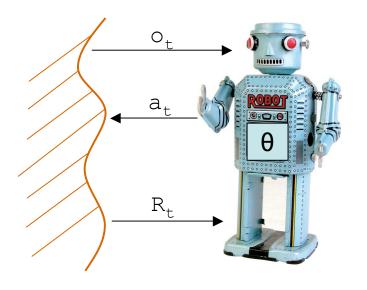
GAPS

each agent executes a parameterized policy

$$\pi(\theta) = P(a_t \mid o_t, \theta) = \frac{e^{\beta_t \theta(o_t, a_t)}}{\sum_{a'} e^{\beta_t \theta(o_t, a')}}$$

update parameters θ

 β_t is "temperature"



at time t:

observe o_t select a_t according to policy execute a_t receive reward r_t keep an execution trace at end of episode:

Large modular sytem challenges

- partial observability
- large observation-action spaces

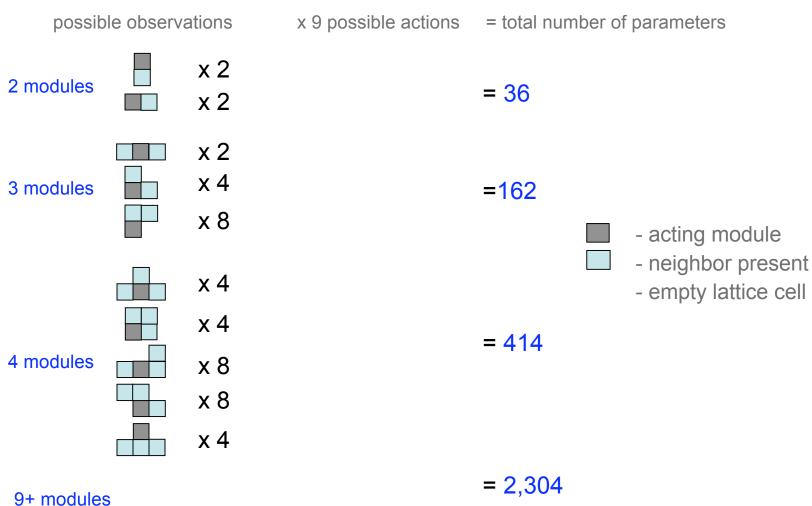
28 observations without obstacles

38 observations with obstacles

2,304 parameters 59,049 parameters

10

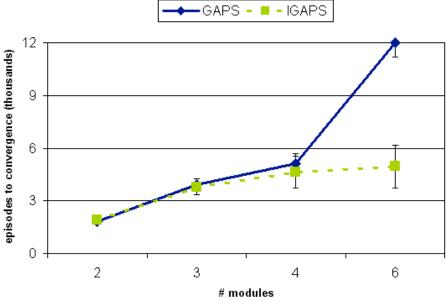
Specific solution: incremental learning



IT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATORY

Incremental GAPS (IGAPS) performance

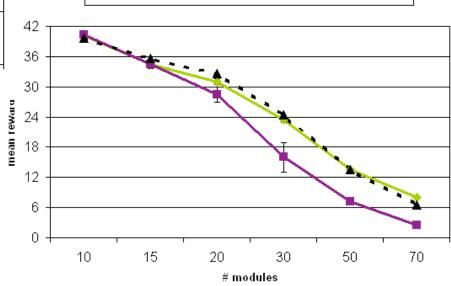
Mean convergence times comparison



Varshavskaya et al 2004

Mean average reward comparison

IGAPS — 10 mods test - A - hand-coded



MIT COMPLITER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATORS

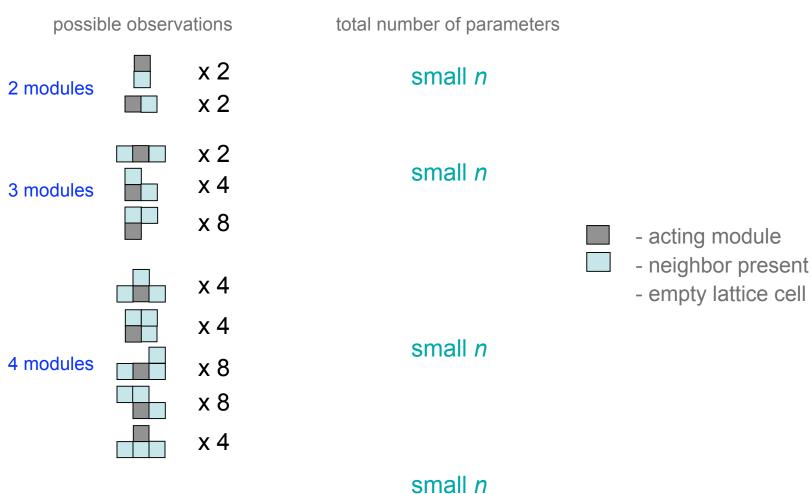
A specific solution

additive nature of modular robots

unclear applicability to other tasks and systems

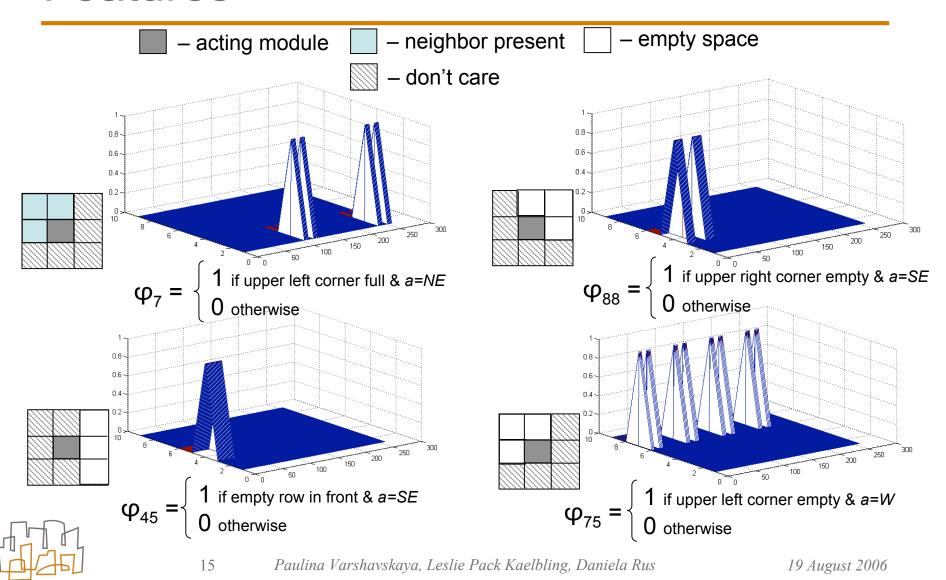
faster RL but not fast enough for online adaptation

Desirable general solution



AIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATORY

Features



Approximation by feature spaces

define a number of feature functions over the observation-action space $\Phi(a,o) = \begin{bmatrix} \varphi_1(a,o) \\ \vdots \\ \varphi_n(a,o) \end{bmatrix}$

policy computed from the dot product of the feature vector and parameters $\boldsymbol{\theta}$

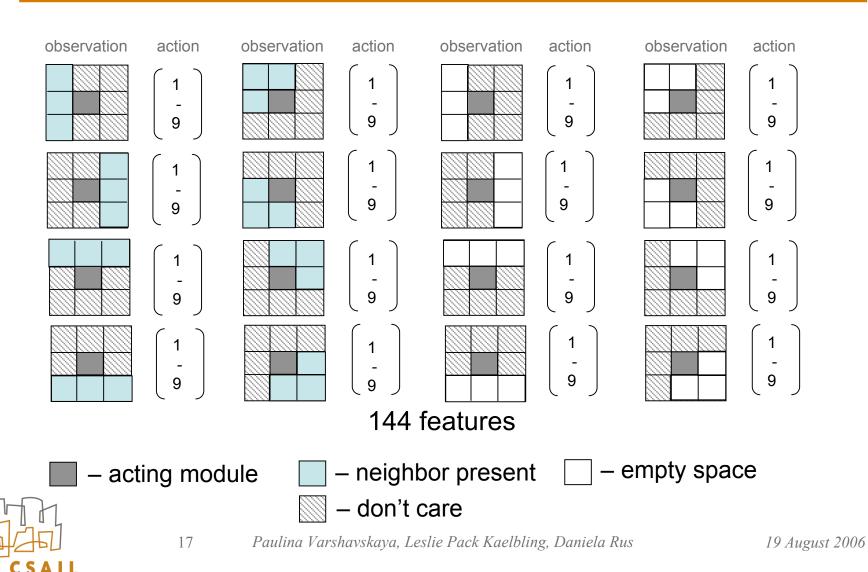
$$P(a_t \mid o_t, \theta) = \frac{e^{\beta_t \Phi(a_t, o_t) \cdot \theta}}{\sum_{a'} e^{\beta_t \Phi(a', o_t) \cdot \theta}}$$

- · a few features approximate the desired space
- learning with a modified log-linear GAPS (LLGAPS)

16

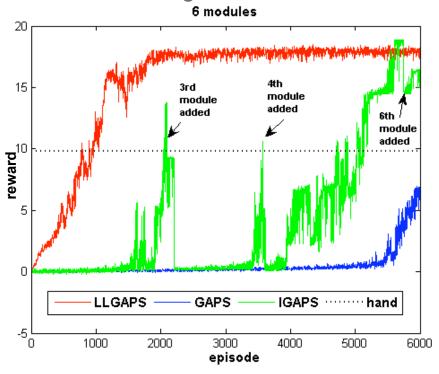
Full feature set

MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATORY

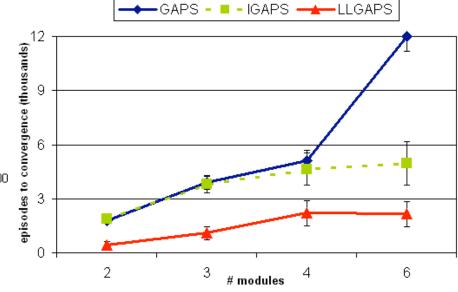


Performance comparison

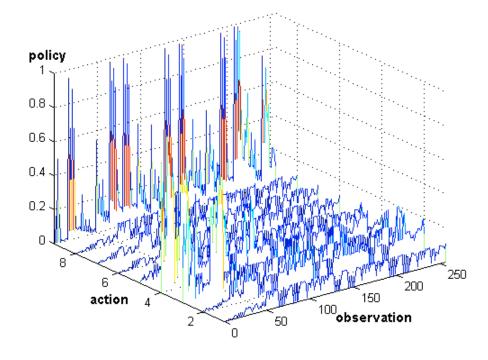
Performance as learning progresses: Smoothed average reward over 10 runs



Mean convergence times comparison



Learned locomotion



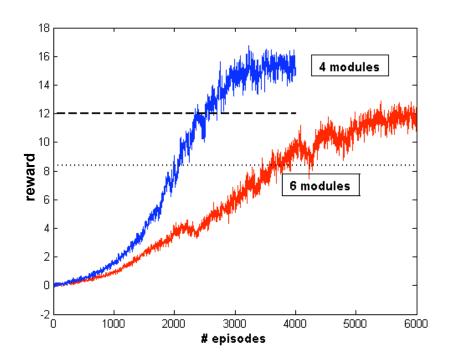
Summary so far

- reinforcement learning for modular robots with more realistic observability assumptions
- learning algorithm with feature representation
- results in locomotion by self-reconfiguration

Advantages of a feature representation

- faster learning
- number of parameters independent of robot size or observation space size
- domain knowledge
 - "don't try to move into an occupied cell"
- features can be designed for many tasks and robots

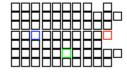
Current work: asynchronous execution



2⁴ observations, 11 actions only 220 features

Current work: large system locomotion

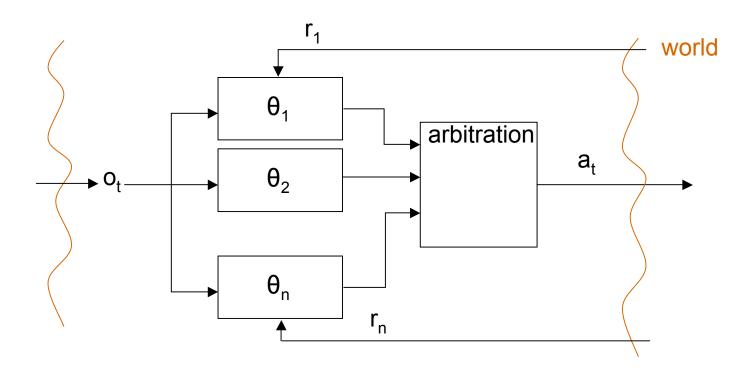
20 modules



23

70 modules

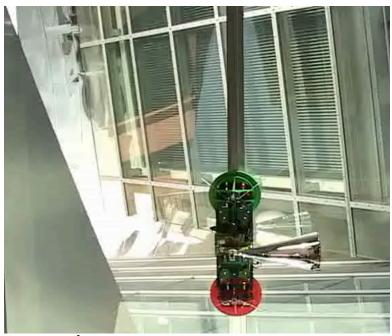
Current work: complex reward



distribute subtasks within each module

Current work: locomotion in truss robots

MultiShadySim Detweiler et al 2006



x4 Shady Vona et al 2006

25

Questions?

project sponsored by Boeing Corporation

