COMP 182: Algorithmic Thinking Big-O: The role of constant k

Luay Nakhleh

Recall the definition of O.

Definition 1 We say function f is O(g) if there exist two constants C > 0 and $k \ge 0$ such that

$$|f(x)| \le C \cdot |g(x)|$$

for every $x \geq k$.

Let us illustrate the definition by showing that for f(x)=2x and g(x)=x, we have f=O(g). We need to show a positive real number C and a non-negative real number k such that $|2x| \le C|x|$ for every $x \ge k$. Since |2x|=2|x|, we seek C and k such that $2|x| \le C|x|$ for every $x \ge k$. In this example, the constants are clear. For example, take C=2 and k=0, then the inequality holds. That is, it is true that

$$|2x| \le 2|x|$$

for every $x \geq 0$.

In practice, the value of the constant C could have a big impact. Two students devise two different, but correct, algorithms—Algorithm A and Algorithm B—for a problem. In the worst case, Algorithm A executes $f_A(n)=4n^2$ operations on an input of size n, and Algorithm B executes $f_B(n)=n^2+10000$ steps on the same input. It is a simple exercise to show that both $f_A(n)$ and $f_B(n)$ are $O(n^2)$. Let us take k=1, for example. Then, if we take $C_A=4$, for all $n\geq k$, we have $4n^2\leq C_An^2$, showing that $f_A(n)=O(n^2)$. Similarly, if we take $C_B=10001$, we have $n^2+10000\leq 10001n^2$ for every $n\geq 1$, showing that $f_B(n)=O(n^2)$.

What role, if any, does k play, then? Based on the above analysis, the constant of Algorithm B is much larger than that of Algorithm A, giving the impression that, in practice, Algorithm B might very well have a worse performance than Algorithm A. But is that truly the case for <u>sufficiently large input sizes</u>¹? Let us consider, for example, an input of size n=100. For this input, Algorithm A would execute $4 \cdot 100^2 = 40000$ steps, whereas Algorithm B would execute $100^2 + 10000 = 20000$ steps. We can generalize this and ask the question: Is there an input size beyond which Algorithm B would execute at most as many steps as Algorithm A would? Answering this question amounts to finding the value of n for which

$$n^2 + 10000 < 4n^2$$
.

Equivalently, we seek n such that $3n^2 \ge 10000$. Solving this inequality gives us $n \ge \sqrt{10000/3} = 57.735$. In other words, if we take k = 58, then we have $f_B(n) \le f_A(n)$ for every $n \ge k$. It follows from this that if we choose k = 58, then whatever constant C we choose so that $f_A(n) \le Cn^2$, then for sure $f_B(n) \le Cn^2$ for $n \ge k$, since $f_B(n) \le f_A(n) \le Cn^2$. This analysis shows us that if we ignore inputs of sizes 57 or smaller, the constant for Algorithm B is not worse (i.e., larger) than the constant for Algorithm A.

Let us now tighten this analysis by asking the question: Is there a value k such that $f_B \le n^2$ for all $n \ge k$? That is, is there a value of k that would allow us to choose constant $C_B = 1$ so that $f_B \le C_B n^2$? The answer is negative, because no matter what k is, we have

$$n^2 + 10000 > n^2$$

^{1&}quot;Sufficiently large n" is the meaning of n > k for some constant k.

for every $n \ge k$. So, $C_B = 1$ does not work. But is there a constant C_B that is very close, but is not equal, to 1, such that $f_B \le C_B n^2$? Think of C_B as being a real number $1 + \epsilon$, where ϵ is a number that is very close, but not equal, to 0. So, we solve

$$n^2 + 10000 \le (1 + \epsilon)n^2.$$

Equivalently, $n^2 \geq (10000/\epsilon)$, or $n \geq \sqrt{10000/\epsilon} = 100/\sqrt{\epsilon}$. Keep in mind that $100/\sqrt{\epsilon}$ is (a lower bound on) k. What we have shown is that if we take $k = 100/\sqrt{\epsilon}$, then $f_B(n) \leq C_B n^2$ for $C_B = (1+\epsilon)$.

This analysis shows us that if we want a smaller value for C_B , the value of ϵ has to be smaller, which means that value of $100/\sqrt{\epsilon}$ (that is, the value of k) has to be larger. In other words, the constant k plays the role of a "tuning knob" that allows us to "tighten" the value of C. Choose a larger value of k, allows us to choose a smaller value of C.

If we turn our attention now to algorithm A, we notice that no matter what value of k we choose, the constant C_A cannot be smaller than 4 for $f_A(n) \leq C_A \cdot n^2$ to be true for $n \geq k$.

To summarize, for Algorithm B, we can choose a value of k that is large enough so that $f_B = O(n^2)$ with a constant C_B that is arbitrarily close to 1. For Algorithm A, no matter what value of k we choose, the constant C_A has to have a value of at least 4. In practice, for <u>sufficiently large input sizes</u>, Algorithm B is better than Algorithm A in terms of running time.