Reading Material

- Chapter 8, Section 3
A divide-and-conquer algorithm works as follows for solving a problem:

- A problem’s instance of size n is divided into b smaller instances of the same problem, ideally of about the same size n/b.
- Some (say a of the b subproblems) of the smaller instances are solved (typically recursively).
- If necessary, the solutions to the solves subproblems are combined to get a solution to the original instance.
Sorting

- Input: A list L of n elements that can be totally ordered.
- Output: L with its elements appearing in ascending order.
A (terribly) brute-force algorithm would go through all $n!$ permutations of the list’s elements and returns a sorted one.

- Takes $O(n \cdot n!)$ time.
- Of course, we can do much better.
MergeSort

- **MergeSort** is a divide-and-conquer algorithm that
 - divides the list into two halves,
 - sorts each of them (recursively), and
 - merges the two sorted halves while making use of the fact that each is sorted.
MergeSort
MergeSort

Input: List L[0..n-1] of "orderable" elements

Modifies: List L is sorted in-place in ascending order

Output: None

If n>1

 copy L[0..[n/2]-1] to A[0..[n/2]-1];
 copy L[[n/2]..n-1] to B[0.. [n/2]-1];
 MergeSort(A[0..[n/2]-1]);
 MergeSort(B[0..[n/2]-1]);
 Merge(A, B, L);
MergeSort
MergeSort

Merge
Input: Two sorted lists A[0..p-1] and B[0..q-1], and list L
Modifies: List L contains the elements of A and B sorted in ascending order
Output: None

i←0; j←0; k←0;

While i<p and j<q
 If A[i]≤B[j]
 L[k]←A[i];
 i←i+1;
 Else
 L[k]←B[j];
 j←j+1;
 k←k+1;

If i=p
 copy B[j..q-1] to L[k..p+q-1]
Else
 copy A[i..p-1] to L[k..p+q-1]
What is the running time $T(n)$ of MergeSort?

$T(n) = 2T(n/2) + O(n)$

What is a solution to this recurrence?
MASTER THEOREM

Let f be an increasing function that satisfies the recurrence relation

$$f(n) = af(n/b) + cn^d$$

whenever $n = b^k$, where k is a positive integer, $a \geq 1$, b is an integer greater than 1, and c and d are real numbers with c positive and d nonnegative. Then

$$f(n) \text{ is } \begin{cases}
O(n^d) & \text{if } a < b^d, \\
O(n^d \log n) & \text{if } a = b^d, \\
O(n^{\log_b a}) & \text{if } a > b^d.
\end{cases}$$
What is the running time $T(n)$ of MergeSort?

- $T(n)=2T(n/2)+O(n)$

What is a solution to this recurrence?

- Answer: $O(n \log n)$
Binary Search

- **Input:** Sorted list L and element x.
- **Output:** True if x is in L, and False otherwise.
Binary Search

- A divide-and-conquer algorithm:
A divide-and-conquer algorithm:

BinarySearch

Input: Ordered list \(L[0..n-1]\), and element \(x\)

Output: True if \(x\) is in \(L\), and False otherwise

- If \(|L|=1\)
 - Return \((x=L[0])\);
- Else If \((x = L[\lfloor n/2 \rfloor - 1])\)
 - Return True;
- Else If \((x < L[\lfloor n/2 \rfloor - 1])\)
 - **BinarySearch**\((L[0..\lfloor n/2 \rfloor - 1]);\)
- Else
 - **BinarySearch**\((L[\lfloor n/2 \rfloor ..n-1]);\)
What is the recurrence $T(n)$ for the running time of BinarySearch?

What is a solution to this recurrence?
Questions?