COMP 182 Algorithmic Thinking

Markov Chains and Hidden Markov Models

Luay Nakhleh Computer Science Rice University

- * What is *p*(01110000)?
- * Assume:
 - * 8 independent Bernoulli trials with success probability of α ?
- * Answer:
 - $*(1-\alpha)^5\alpha^3$

- *However, what if the assumption of independence doesn't hold?
- *That is, what if the outcome in a Bernoulli trial depends on the outcomes of the trials the preceded it?

- * Given a sequence of observations $X_1, X_2, ..., X_T$
- * The basic idea behind a Markov chain (or, Markov model) is to assume that X_t captures all the relevant information for predicting the future.
- * In this case:

$$p(X_1 X_2 \dots X_T) = p(X_1) p(X_2 | X_1) p(X_3 | X_2) \cdots p(X_T | X_{T-1}) = p(X_1) \prod_{t=2}^{T} p(X_t | X_{t-1})$$

- * When X_t is discrete, so $X_t \in \{1, ..., K\}$, the conditional distribution $p(X_t | X_{t-1})$ can be written as a $K \times K$ matrix, known as the transition matrix A, where $A_{ij} = p(X_t = j | X_{t-1} = i)$ is the probability of going from state i to state j.
- * Each row of the matrix sums to one, so this is called a stochastic matrix.

- * A finite-state Markov chain is equivalent to a stochastic automaton.
- * One way to represent a Markov chain is through a state transition diagram

$$\mathbf{A} = \begin{pmatrix} 1 - \alpha & \alpha \\ 1 & 2 \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{pmatrix}$$

- * The A_{ij} element of the transition matrix specifies the probability of getting from i to j in one step.
- * The n-step transition matrix A(n) is defined as

$$A_{ij}(n) = p(X_{t+n} = j | X_t = i)$$

- *Obviously, A(1)=A.
- * The Chapman-Kolmogorov equations state that

$$A_{ij}(m+n) = \sum_{k=1}^{K} A_{ik}(m) A_{kj}(n)$$

- * Therefore, we have A(m+n)=A(m)A(n).
- * Hence, $A(n)=AA(n-1)=AAA(n-2)=...=A^n$.
- * Thus, we can simulate multiple steps of a Markov chain by "powering up" the transition matrix.

Language Modeling

- * One important application of Markov models is to make statistical <u>language models</u>, which are probability distributions over sequences of words.
- * We define the state space to be all the words in English (or, the language of interest).
- * The probabilities $p(X_t=k)$ are called <u>unigram</u> statistics.
- * If we use a first-order Markov model, then $p(X_{t}=k \mid X_{t-1}=j)$ is called a bigram model.

Language Modeling

Unigram and bigram counts for Darwin's On the Origin of Species

- * The parameters of a Markov chain, denoted by θ , consist of the transition matrix (A) and the distribution on the initial states (π).
- * We want to estimate these parameters from a training data set.
- * Such a data set consists of sequences $X^1, X^2, ..., X^m$.
- * Sequence X^k has length L_k .

* The maximum likelihood estimate (MLE) of the parameters is easy to obtain from the data:

$$N_j^1 = \sum_{i=1}^m \mathbb{I}(X_1^i = j) \quad N_{jk} = \sum_{i=1}^m \sum_{t=1}^{L_i - 1} \mathbb{I}(X_t^i = j, X_{t+1}^i = k)$$

$$\hat{\pi}_{j} = \frac{N_{j}^{1}}{\sum_{i} N_{i}^{1}} \qquad \hat{A}_{jk} = \frac{N_{jk}}{\sum_{k'} N_{jk'}}$$

* The maximum likelihood estimate (MLE) of the parameters is easy to obtain from the data:

$$N_j^1 = \sum_{i=1}^m \mathbb{I}(X_1^i = j) \quad N_{jk} = \sum_{i=1}^m \sum_{t=1}^{L_i - 1} \mathbb{I}(X_t^i = j, X_{t+1}^i = k)$$

$$\hat{\pi}_j = \frac{N_j^1}{\sum_i N_i^1} \qquad \hat{A}_{jk} = \frac{N_{jk}}{\sum_{k'} N_{jk'}}$$

Indicator function:
$$\mathbb{I}(e) = \begin{cases} 1 & \text{if } e \text{ is true} \\ 0 & \text{if } e \text{ is false} \end{cases}$$

* It is very important to handle zero counts properly (this is called <u>smoothing</u>).

- * A hidden Markov model, or HMM, consists of a discrete-time, discrete state Markov chain, with hidden states $Z_t \in \{1,...,K\}$, plus an observation model $p(X_t | Z_t)$ (emission probabilities).
- * The corresponding joint distribution has the form

$$p(Z_{1:T}, X_{1:T}) = \left[p(Z_1) \prod_{t=2}^{T} p(Z_t | Z_{t-1}) \right] \left[\prod_{t=1}^{T} p(X_t | Z_t) \right]$$

- * Example: The "occasionally dishonest casino"
 - * Most of the time, the casino uses a fair die (Z=1), but occasionally it switches for a short period to a loaded die (Z=2) that is skewed towards face 6.

- * Example: The "occasionally dishonest casino"
 - * Most of the time, the casino uses a fair die (Z=1), but occasionally it switches for a short period to a loaded die (Z=2) that is skewed towards face 6.

- * Two important questions:
 - * How do we obtain the HMM?
 - * Given the observations, how do we find the hidden states that generated them?

Learning for HMMs

- * The task of estimating the parameters (initial state distribution, transition, and emission probabilities)
- * The more general case: Determining the set of states as well
 - * In practice, the states are often known

Learning for HMMs

- * Training from fully observed data:
 - * If we observe hidden state sequences, we can compute MLEs for the parameters, similar to the case of Markov chains
- * Training when hidden state sequences are not observed is much harder:
 - * The Baum-Welch algorithm, which is an expectationmaximization (EM) algorithm, is used in this case (well beyond the scope of this course, though)

* The most probable sequence of states can be computed as

$$Z^* \leftarrow \operatorname{argmax}_Z p(Z, X)$$

The same as $Z^* \leftarrow \operatorname{argmax}_Z p(Z|X)$

- * Z* can be computed efficiently using a dynamic programming algorithm, called the <u>Viterbi algorithm</u>.
- * Define

$$v[\ell, i] = \max_{Z_{1:i-1}} p(Z_{1:i-1}, Z_i = \ell | X_{1:i})$$

Algorithm 1: Viterbi.

```
Input: A first-order HMM M with states \mathcal{S} = \{1, 2, \dots, K\} given by its transition matrix A, emission probability matrix E (alphabet \Sigma), and probability distribution \pi on the (initial) states; a sequence X of length L (indexed from 0 to L-1).

Output: A sequence Z, with |Z| = |X|, that maximizes p(Z, X).

v[\ell, 0] \leftarrow (\pi_{\ell} \cdot E_{\ell}(X_0)) for every \ell \in \mathcal{S};

for i \leftarrow 1 to L-1 do
```

for
$$i \leftarrow 1$$
 to $L-1$ do

foreach $\ell \in \mathcal{S}$ do

$$v[\ell, i] \leftarrow E_{\ell}(X_i) \cdot \max_{\ell' \in \mathcal{S}} (v[\ell', i-1] \cdot A_{\ell', \ell});$$

$$bp[\ell, i] \leftarrow \operatorname{argmax}_{\ell' \in \mathcal{S}} (v[\ell', i-1] \cdot A_{\ell', \ell});$$

$$Z_{L-1} \leftarrow \operatorname{argmax}_{\ell' \in \mathcal{S}} v[\ell', L-1];$$
for $i \leftarrow L-2$ downto 0 do
$$Z_i \leftarrow bp[Z_{i+1}, i+1];$$

return Z

Algorithm 1: Viterbi.

```
Input: A first-order HMM M with states S = \{1, 2, ..., K\} given by its transition matrix A, emission probability matrix E (alphabet \Sigma), and probability distribution \pi on the (initial) states; a sequence X of length E (indexed from E to E to E to E output: A sequence E, with E is a maximize E to E to E to E to E to E output: A sequence E of E is a maximize E to E t
```

return Z

If there's an 'end' state, replace by:

$$Z_{L-1} \leftarrow \operatorname{argmax}_{\ell' \in S}(v[\ell', L-1] \times A_{\ell',end})$$

Questions?