COMP 182 Algorithmic Thinking

Proofs

Luay Nakhleh Computer Science Rice University

Reading Material

*Chapter 1, Section 3, 6, 7, 8

- * The compound propositions p and q are called <u>logically</u> equivalent, denoted by p=q, if $p \leftrightarrow q$ is a tautology.
- * One way to determine whether two compound propositions are equivalent is to use a truth table.
- * Examples:
 - $\Rightarrow \neg (p \lor q) \equiv \neg p \land \neg q.$
 - $p \rightarrow q \equiv \neg p \lor q.$
 - * $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$.

Equivalence	Name
$p \wedge \mathbf{T} \equiv p$	Identity laws
$p \vee \mathbf{F} \equiv p$	
$p \vee \mathbf{T} \equiv \mathbf{T}$	Domination laws
$p \wedge \mathbf{F} \equiv \mathbf{F}$	
$p \lor p \equiv p$	Idempotent laws
$p \wedge p \equiv p$	
$\neg(\neg p) \equiv p$	Double negation law
$p \vee q \equiv q \vee p$	Commutative laws
$p \wedge q \equiv q \wedge p$	
$(p \lor q) \lor r \equiv p \lor (q \lor r)$	Associative laws
$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	Distributive laws
$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	
$\neg (p \land q) \equiv \neg p \lor \neg q$	De Morgan's laws
$\neg (p \lor q) \equiv \neg p \land \neg q$	
$p \lor (p \land q) \equiv p$	Absorption laws
$p \land (p \lor q) \equiv p$	
$p \vee \neg p \equiv \mathbf{T}$	Negation laws
$p \land \neg p \equiv \mathbf{F}$	

$$p \to q \equiv \neg p \lor q$$

$$p \to q \equiv \neg q \to \neg p$$

$$p \lor q \equiv \neg p \to q$$

$$p \land q \equiv \neg (p \to \neg q)$$

$$\neg (p \to q) \equiv p \land \neg q$$

$$(p \to q) \land (p \to r) \equiv p \to (q \land r)$$

$$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$$

$$(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$$

$$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$$

$$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$$

$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$

$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

- * Prove that $\neg(p \rightarrow q) \equiv p \land \neg q$.
 - * Proof 1: by using a truth table.
 - * Proof 2: by using logical identities:

- * Prove that $\neg(p \rightarrow q) \equiv p \land \neg q$.
 - * Proof 1: by using a truth table.
 - * Proof 2: by using logical identities:

$$\neg(p\rightarrow q) \equiv \neg(\neg p \lor q)$$
 by a previous example
$$\equiv \neg(\neg p) \land \neg q \text{ by De Morgan law}$$

$$\equiv p \land \neg q \text{ by the double negation law}$$

* Prove that $\neg(p \lor (\neg p \land q)) \equiv \neg p \land \neg q$.

- * Proofs are <u>valid</u> <u>arguments</u> that establish the truth of mathematical statements.
- * By an <u>argument</u>, we mean a sequence of statements that end with a conclusion.
- * By <u>valid</u>, we mean that the conclusion, or final statement of the argument, must follow from the truth of the preceding statements, or premises, of the argument.
- * Let's look at this issue more formally.

- * An <u>argument</u> in propositional logic is a sequence of propositions.
- * All but the final proposition in the argument are called <u>premises</u> and the final proposition is called the <u>conclusion</u>.
- * An argument is <u>valid</u> if the truth of all its premises implies the conclusion is true.
- * An <u>argument form</u> in propositional logic is a sequence of compound propositions involving propositional variables.
- * An argument form is <u>valid</u> if no matter which particular propositions are substituted for the propositional variables in its premises, the conclusion is true if the premises are all true.

Rule of Inference	Tautology	Name
$p \\ p \to q \\ \therefore q$	$(p \land (p \to q)) \to q$	Modus ponens
	$(\neg q \land (p \to q)) \to \neg p$	Modus tollens
$p \to q$ $q \to r$ $\therefore p \to r$	$((p \to q) \land (q \to r)) \to (p \to r)$	Hypothetical syllogism
$ \begin{array}{c} p \lor q \\ \neg p \\ \therefore \overline{q} \end{array} $	$((p \lor q) \land \neg p) \to q$	Disjunctive syllogism
$\therefore \frac{p}{p \vee q}$	$p \to (p \lor q)$	Addition
$\therefore \frac{p \wedge q}{p}$	$(p \land q) \to p$	Simplification
p $\frac{q}{\therefore p \wedge q}$	$((p) \land (q)) \to (p \land q)$	Conjunction
$p \vee q$ $\neg p \vee r$ $\therefore \overline{q \vee r}$	$((p \lor q) \land (\neg p \lor r)) \to (q \lor r)$	Resolution

* Show that that hypotheses $(p \land q) \lor r$ and $r \rightarrow s$ imply the conclusion $p \lor s$.

Rule of Inference	Name
$\therefore \frac{\forall x P(x)}{P(c)}$	Universal instantiation
$P(c) \text{ for an arbitrary } c$ ∴ $\forall x P(x)$	Universal generalization
$\exists x P(x)$ $\therefore P(c) \text{ for some element } c$	Existential instantiation
$P(c) \text{ for some element } c$ $\therefore \exists x P(x)$	Existential generalization

* Use rules of inference to show that if $\forall x (P(x) \lor Q(x))$, $\forall x (\neg Q(x) \lor S(x))$, $\forall x (R(x) \rightarrow \neg S(x))$, and $\exists x \neg P(x)$ are all true, then $\exists x \neg R(x)$ is true.

Introduction to Proofs

- * A theorem is a statement that can be shown to be true.
- * We demonstrate that a theorem is true with a proof.
- * A proof is a valid argument that establishes the truth of a theorem.
- * The statements used in a proof can include <u>axioms</u> (or <u>postulates</u>), which are statements we assume to be true.

Introduction to Proofs

- * Examples of axioms for real numbers:
 - * For all real numbers x and y, x+y is a real number (closure under addition).
 - * For all real numbers x and y, xy is a real number (closure under multiplication).
 - * For every real number x, x+0=0+x=x.

*

Introduction to Proofs

- * A less important theorem that is helpful in the proof of other results is called a <u>lemma</u>.
- * A <u>corollary</u> is a theorem that can be established directly from a theorem that has been proved.
- * A <u>conjecture</u> is a statement that is being proposed to be a true statement, usually on the basis of some partial evidence, a heuristic argument, or the intuition of an expert.
- * When a proof of a conjecture is found, the conjecture becomes a theorem.

Introduction to Proofs: Direct Proofs

* A <u>direct proof</u> of a conditional statement p→q is constructed when the first step is the assumption that p is true; subsequent steps are constructed using rules of inference, with the final step showing that q must also be true.

Introduction to Proofs: Direct Proofs

- * Definition: The Integer n is even if there exists an integer k such that n=2k, and n is odd if there exists an integer k such that n=2k+1.
- * Give a direct proof of the theorem "If n is an odd integer, then n² is odd."
- * Give a direct proof of the theorem "if m and n are both perfect squares, then nm is also a perfect square." (An integer j is a perfect square if there is an integer k such that j=k².)

Introduction to Proofs: Proof by Contraposition

- Attempts at direct proofs often reach dead ends.
- * We need other methods of proving theorems of the form $\forall x(P(x) \rightarrow Q(x))$.
- * Proofs of theorems of this type that are not direct proofs are called <u>indirect proofs</u>.
- * An extremely useful type of indirect proofs is known as proof by contraposition.
- * Such proofs make use of the fact that $p \rightarrow q$ is equivalent to $\neg q \rightarrow \neg p$.
- * We take $\neg q$ as a hypothesis, and show that $\neg p$ must follow.

Introduction to Proofs: Proof by Contraposition

- * Prove that if n is an integer and 3n+2 is odd, then n is odd.
- Prove that if n=ab, where a and b are positive integers, then a≤ \sqrt{n} or b≤ \sqrt{n} .

Introduction to Proofs: Vacuous and Trivial Proofs

- * We can quickly prove that a conditional statement $p\rightarrow q$ is true when we know that p is false, because $p\rightarrow q$ must be true when p is false.
- * Consequently, if we can show that p is false, then we have a proof, called a vacuous proof, of the conditional statement $p\rightarrow q$.
- * Example: Show that the proposition P(0) is true, where P(n) is "If n>1, then n²>n" and the domain consists of all integers.
- * A proof of $p\rightarrow q$ that uses the fact that q is true is called a <u>trivial proof</u>.
- * Trivial proofs are often important when special cases of theorems are proved.
- * Example: Let P(n) be "If a and b are positive integers with $a \ge b$, then $a^n \ge b^n$," where the domain consists of all integers. Show that P(0) is true.

Introduction to Proofs: Proof by Contradiction

- * Suppose we want to prove that a statement p is true.
- * Furthermore, suppose that we can find a contradiction q such that $\neg p \rightarrow q$ is true.
- * Because q is false, but $\neg p \rightarrow q$ is true, we can conclude that $\neg p$ is false, which means that p is true.
- * The question is: How can we find a contradiction q that might help us prove that p is true in this way?

Introduction to Proofs: Proof by Contradiction

- * Because the statement $r \land \neg r$ is a contradiction whenever r is a proposition, we can prove that p is true if we can show that $\neg p \rightarrow (r \land \neg r)$ is true for some proposition r.
- * Proofs of this type are called <u>proofs by contradiction</u>, which is another type of indirect proofs.
- * Example: Prove that the square root of 2 is irrational.
- * Example: Show that at least four of any 22 days must fall on the same day of the week.
- * Example: Prove that if 3n+2 is odd, then n is odd.

Introduction to Proofs: Proof by Contradiction

- * Recall that to show that a statement of the form $\forall x P(x)$ is false, we need only find a <u>counterexample</u>, that is, an example x for which P(x) is false.
- * Show that the statement "Every positive integer is the sum of the squares of two integers" is false.

- * Some theorems can be proved by examining a relatively small number of examples.
- * Such proofs are called <u>exhaustive proofs</u>, because these proofs proceed by exhausting all possibilities.
- * Prove that $(n+1)^2 \ge 3^n$ if n is a positive integer with $n \le 4$.
- * Prove that the only consecutive positive integers not exceeding 100 that are perfect powers are 8 and 9.

- * To write an exhaustive proof it must be possible to list all instances to check.
- * A type of exhaustive proofs that does not explicitly check all instances is <u>proof by cases</u>.
- * A proof by cases must cover all possible cases (as opposed to instances) that arise in a theorem.
- ❖ Prove that if n is an integer, than $n^2 \ge n$.

- * Many theorems are assertions that objects of a particular type exist.
- * A theorem of this type is a proposition of the form $\exists x P(x)$, where P is a predicate.
- * A proof of a proposition of the form $\exists x P(x)$ is called an <u>existence</u> <u>proof</u>.
- * There are several ways to prove a theorem of this type.
- * A <u>constructive proof</u> simply finds an element a such that P(a) is true.
- * Not all existence proofs are constructive though.

- * Show that there exists a prime number greater than 10.
- * Show that there exist irrational numbers x and y such that x^y is rational.

Questions?