COMP 182 Algorithmic Thinking

Sequences and Summations

Luay Nakhleh Computer Science Rice University

Reading Material

* Chapter 2, Section 4

- * A <u>sequence</u> is a function from a subset of the set of integers (typically the subset {1,2,3,...} or {0,1,2,...}) to a set *S*.
- * The notation a_n is used to denote the n^{th} term of the sequence.
- * The sequence itself is denoted by $\{a_n\}$.

- * Examples of sequences $\{a_n\}$:
 - * $a_n = 1$ (the sequence is 1,1,1,1,...)
 - * $a_n = n$ (the sequence is 1,2,3,4,...)
 - * $a_n=1/n^2$ (the sequence is 1,1/4,1/9,1/16,...)

A *geometric progression* is a sequence of the form

$$a, ar, ar^2, \ldots, ar^n, \ldots$$

where the *initial term a* and the *common ratio r* are real numbers.

An arithmetic progression is a sequence of the form

$$a, a+d, a+2d, \ldots, a+nd, \ldots$$

where the *initial term a* and the *common difference d* are real numbers.

* The <u>harmonic sequence</u> is given by

$$a_n = \frac{1}{n}$$
 for $n = 1, 2, 3, \dots$

Recurrence Relations

- * A <u>recurrence relation</u> for the sequence $\{a_n\}$ is an equation that expresses a_n in terms of one or more of the previous terms of the sequence, namely $a_0, a_1, ..., a_{n-1}$, for all integers n with $n \ge n_0$, where n_0 is a nonnegative integer.
- * A sequence is a <u>solution</u> of a recurrence relation if its terms satisfy the recurrence relation.

Recurrence Relations

- * Recurrence: $a_0=2$, and $a_n=2a_{n-1}$ for n=1,2,3,...
- * Solution: 2,4,8,16,32,...
- * Solution: a_n =? for n=0,1,2,...

Summations

- * The sum of terms of a sequence plays an important role in counting (which is necessary for running time analysis, probability,...).
- * We can consider the sum of all terms of a sequence or the sum of certain terms.

$$\sum_{n=0}^{\infty} a_n \qquad \sum_{n=i}^{n=j} a_n \qquad \sum_{n \in S} a_n$$

Sequences and Series

* The sum of a sequence yields a <u>series</u> S_n as follows:

$$S_n = \sum_{i=1}^n a_i$$
 for $n = 1, 2, 3, \dots$

* And, if a_n is defined for n=0:

$$S_n = \sum_{i=0}^n a_i$$
 for $n = 0, 1, 2, \dots$

Arithmetic Sequence and Series

$$a, a+d, a+2d, \ldots, a+nd, \ldots$$

$$S_n = \sum_{j=0}^n a + dj = (n+1)a + \frac{n(n+1)}{2}d$$

Telescoping Sums

$$S_n = \sum_{j=1}^n (a_j - a_{j-1})$$

$$= (a_1 - a_0) + (a_2 - a_1) + \dots + (a_{n-1} - a_{n-2}) + (a_n - a_{n-1})$$

$$= a_n - a_0$$

Telescoping Sums

* Find, using a telescoping sum, a closed-form formula for the summation

$$\sum_{k=1}^{n} k$$

- * Sometimes, it helps to "perturb" the sum to create another another summation and consider the difference between them.
 - * You want the difference to cancel out a majority of the terms so as you get a simple equation!

* Suppose we want to find a closed-form formula for the sum

$$1+r+r^2+\cdots+r^n$$

- * The technique:
 - * Denote the sum by a variable, say, S

- * The technique:
 - * Denote the sum by a variable, say, S

$$S = 1 + r + r^2 + \dots + r^n$$

- * The technique:
 - * Denote the sum by a variable, say, S

$$S = 1 + r + r^2 + \dots + r^n$$

* Perturb (add, multiply, etc.) to get a very similar equality that, when, for example, subtracted, would leave very few terms

- * The technique:
 - * Denote the sum by a variable, say, S

$$S = 1 + r + r^2 + \dots + r^n$$

* Perturb (add, multiply, etc.) to get a very similar equality that, when, for example, subtracted, would leave very few terms

$$rS = r + r^2 + \dots + r^n + r^{n+1}$$

* Subtract the first from the second:

* Subtract the first from the second:

$$rS - S = r^{n+1} - 1$$

* Subtract the first from the second:

almost all terms canceled out!

$$rS - S = r^{n+1} - 1$$

* Subtract the first from the second:

almost all terms canceled out!

$$rS - S = r^{n+1} - 1$$

* Solve to get an expression for S

$$S(r-1) = r^{n+1} - 1$$

$$\Rightarrow S = \frac{r^{n+1}-1}{r-1}$$

* Suppose we want to find a closed-form formula for the following sum when $r \neq 1$

$$S_n = \sum_{j=0}^n ar^j$$

$$S_n = \sum_{j=0}^n ar^j$$

$$S_n = \sum_{j=0}^n ar^j$$
 $rS_n = r\sum_{j=0}^n ar^j = ar^{n+1} + \sum_{j=1}^n ar^j$

$$S_n = \sum_{j=0}^n ar^j$$
 $rS_n = r\sum_{j=0}^n ar^j = ar^{n+1} + \sum_{j=1}^n ar^j$

$$rS_n - S_n = ar^{n+1} - a = a(r^{n+1} - 1)$$

$$S_n = \sum_{j=0}^n ar^j$$
 $rS_n = r\sum_{j=0}^n ar^j = ar^{n+1} + \sum_{j=1}^n ar^j$

$$rS_n - S_n = ar^{n+1} - a = a(r^{n+1} - 1)$$

$$S_n = \frac{a(r^{n+1} - 1)}{r - 1}$$

* You can use results from your favorite subject: Calculus!

* We seek a closed-form formula for the sum

$$\sum_{i=0}^{\infty} x^i \quad |x| < 1$$

* This is equivalent to

$$\sum_{i=0}^{\infty} x^{i} = \lim_{n \to \infty} \sum_{i=0}^{n} x^{i}$$

$$= \lim_{n \to \infty} \frac{x^{n+1} - 1}{x - 1}$$

* This is equivalent to

$$\sum_{i=0}^{\infty} x^{i} = \lim_{n \to \infty} \sum_{i=0}^{n} x^{i}$$

$$= \lim_{n \to \infty} \frac{x^{n+1} - 1}{x - 1}$$

$$= \frac{1}{1 - x}$$

* This is equivalent to

$$\sum_{i=0}^{\infty} x^{i} = \lim_{n \to \infty} \sum_{i=0}^{n} x^{i}$$

$$= \lim_{n \to \infty} \frac{x^{n+1} - 1}{x - 1} \quad \text{when } |x| < 1$$

$$= \frac{1}{1 - x}$$

Summations

Sum	Closed Form
$\sum_{k=0}^{n} ar^k \ (r \neq 0)$	$\frac{ar^{n+1}-a}{r-1}, r \neq 1$
$\sum_{k=1}^{n} k$	$\frac{n(n+1)}{2}$
$\sum_{k=1}^{n} k^2$	$\frac{n(n+1)(2n+1)}{6}$
$\sum_{k=1}^{n} k^3$	$\frac{n^2(n+1)^2}{4}$
$\sum_{k=0}^{\infty} x^k, x < 1$	$\frac{1}{1-x}$
$\sum_{k=1}^{\infty} kx^{k-1}, x < 1$	$\frac{1}{(1-x)^2}$

Questions?