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1 Introduction

The primairy goal of a genome project is to determine the complete sequence of the genome and
its genetic content. Thus a genome project is carried out in two separate stages, one for genome
sequencing and another for genome annotation. This report surveys computational techniques for
genome sequencing.

The most common laboratory mechanism for reading DNA sequences, called gel electrophoresis,
can determine sequence of up to approximately 103 nucleotides at a time. However, the size of
an organism’s genome is much larger; for example, a human genome consists of approximately
3 billion nucleotides. There are several ways to get around the length limitations inherent in
gel electrophoresis. Among them, the most commonly used and most cost effective process is
shotgun sequencing, which biologically breaks multiple copies (or clones) of a target sequence into
short, readable, fragments and then reassembles the short fragments to recover the target sequence.
The assembly of short fragments in shotgun sequencing was originally done by hand, but manual
assembly clearly is not desirable since it is error prone and not cost effective. Due to these reasons,
automatic assembly of DNA fragments has been studied for a long period of time [36, 44, 21, 19,
34, 13, 14, 15, 3]. These sequence assemblers contributed to the determination of many genome
sequences, including the most recent announcement of the Human genome [48, 28].

The survey consists of three parts: (1) a survey of computational techniques for sequence as-
sembly, (2) for detecting misassembly and (3) for the genome scaffold generation. This survey
summarizes computational techniques in genome sequencing, thus the report is more suitable for
computer scientists or bioinformaticians, who wants to develop a better genome sequencing environ-
ment, rather than biologists or bioinformaticians who intend to learn how to use genome sequencing
software.

2 An overview of genome sequencing

Almost all large scale sequencing projects employ the shotgun sequencing strategy that assembles
(deduces) the target DNA sequence from a set of short DNA fragments determined from a set of
DNA pieces randomly sampled from the target sequence. The set of short DNA fragments, called
shotgun data, are assembled into a set of contigs, or sets of aligned fragments, using a computer
program, sequence assembler. The sequence assembly is a conceptually simple procedure that
generates longer sequences by detecting overlapping fragments as shown in Figure 1. Shotgun
data in Step (c) of Figure 1 consists of six fragments, {f1, f2, f3, f4, f5, f6}, and there is only one
contig with all six fragments aligned togther in Step (d). The fragment alignment is based on the
existence of overlapping subsequence. For example, f5 and f3 are aligned togther since they share
the same subsequence, ATC. Since there are errors in fragment reads, two fragments can be aligned
even when they share only similar – not same – sequences. For example, two fragments, f6 and
f4, do not share the same sequences but they are aligned together. The sequencing error, t in f4,
can be corrected by the rule of majority, two A’s and one t in this case. That is one of the reasons
why shotgun data is of multiple coverage of the target sequence. In this example, the coverage of
shotgun data is 2.3 (= 31/13) where 31 is the sum of the number of characters in shotgun data
and 13 is the length of the target sequence. In general, 6 to 10 coverage shotgun data is needed.
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Figure 1: An illustration of a simple genome sequencing procedure. In case that there is no repetitive
sequences in the target DNA, the genome can be sequenced by simply connecting overlapping
fragments.
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Figure 2: Clone mate information. Two fragments are read at both ends of the same clone.

Repetitive sequences and their effect in the sequence assembly In practice, there are
extensive repetitive sequences, repeats in short, in a genomic sequence. A repeat is a collection of
occurrences of the same or similar patterns in a sequence. Due to the nature of biological similarity,
there is no formal definition of a repeat. However, the statistical theory of biological significance has
been well developed; for example, see [18]. Thus, any patterns at different positions of a sequence,
whose similarities are biologically significant, are defined as occurrences of the same repeat. A
repeat segment is an occurrence of a repeat. The copy number of a repeat denotes how many repeat
segments of a repeat exist in a target sequence. Repeats can easily mislead to false overlap detection
since sequence assembly relies on the existence of overlapping subsequences among fragments. Two
fragments that come from two different copies of the same repeat cannot be distinguished from two
truly overlapping fragments that come from the same repeat copy. A recent paper [3] discusses the
effect of repeats in the sequence assembly (Figure 3 in the paper).

Quality values and clone mate information In case that copies of repeats are similar but
not identical, difference in base calls1 can used to detect repeats. The most widely used sequence
assembly program called Phrap relies on this apporach to discriminate fragments from different
repeat copies. Base calls may not be correct and Phred generates numeric values to denote the
confidence level of each base call. The quality value of a base is q = −10 × log10(p) where p is
the estimated error probability for the base [7]. Another important technique is to sequence both
ends of a clone, generating two fragment reads per clone as shown in Figure 2. Since the insert
size of clone is known, we know the approximate distance between two fragments. This technique
is developed by Edwards and the colleagues [?] and is often known as double barreled sequencing.

1The DNA characters in a fragment are determined from chromatogram that can be viewed as a plot that shows
possibilities of each of four DNA characters. The base call is a DNA character that determined from chromatogram
and this process is done automatically by a computer program. The most widely used one is Phred [7].
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The overlap-layout-consensus approach The most widely used “overlap-layout-consensus”
approach to sequence assembly consists of three major steps: (1) the identification of candidate
overlaps, (2) the fragment layout generation, and (3) the consensus sequence generation from the
layout. The first step is achieved using string pattern matching techniques, generating possible
overlaps between fragments. The second and third steps involve building models, implicit or ex-
plicit, for computing the layout of fragments and generating consensus sequences by enumerating
the search space based on the model. Many successful sequence assembly algorithms have been
developed based on this paradigm [21, 36, 13, 14, 15, 48, 44, 3]. There are also other approaches
based on graph theory [17, 34]. These sequence assemblers contributed to the determination of
many genome sequences, including the most recent announcement of the Human genome [48, 28].
However, sequence assemblers typically generate a large number of contigs rather than single con-
tiguous sequences, due to repetitive sequences and technical difficulties encountered at different
stages of a genome sequencing project. For example, the four most widely used assemblers gen-
erate 149 to more than 300 contigs for the N. meningitidis genome of 2.18Mb [34]. The complete
determination of the target sequence from the set of contigs requires a significant amount of work,
which is called the post-assembly procedure.2

The post-assembly procedure: The post-assembly procedure is labor intensive and consti-
tutes a major bottleneck in the genome sequencing project. Two main problems are the verification
of contig assemblies and the generation of scaffold of contigs. The verification of contig assemblies,
despite its importance, has not been well studied and only a few computational approaches are
known [24, 23, 42]. When fragments are read, two end sequences of the same clone are usually read
and this clone mate information is valuable in generating scaffolds of contigs. Scaffolding contigs
can be embedded in assemblers [44], or implemented as a separate package to order contigs [48] or
BAC clones [20]. These scaffolding packages were successful in ordering a large number of contigs or
BAC clones for large scale genome sequencing projects [20, 48]. However, the generation of the cor-
rect scaffolds of contigs is still quite challenging and more reliable algorithms need to be developed
to handle a higher level of errors in contig assembly. Due to the difficulties, there are two different
views in pursuing genome level sequencing, one in favor of the whole genome shotgun sequencing
[50] and another in favor of smaller scale shotgun sequencing [32]. Figure 3 illustrates a sample
genome sequencing project. In summary, there should be more efforts in developing frameworks for
genome sequencing as well as component tools such as scalable, reliable sequence assemblers and
contig assembly validation methods.

3 Computational Techniques for Genome Sequencing

3.1 Genome sequencing based on shotgun strategy

The number of successfully sequenced genomes based on shotgun strategy increases since the first
successfully whole baterial genome, H. influenzae, was sequenced at TIGR in 1995 using the whole
genome shotgun strategy [9]. However, there is also competing opinion advocating the BAC-size
(about 100kb) shotgun sequencing [51, 52, 53]. Thus it is not known what is the appropriate size
of the target DNA when the shotgun strategy is employed. In general, we can hardly expect to
assemble single contiguous sequences by assembling the shotgun data. Instead, a large number

2A recent paper surveys issues in genome sequencing [38].
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Contigs (C1, C2, ..., C1000)

Sequence assembly

Sequence assembly validation

Close gaps between contigs

Shotgun data

Contigs(C1, C2.1, C2.2, ..., C1000)

C2.1 C9 

genome sequence

Scaffold of contigs

rc(C5) C7

C2.1 rc(C5) C7 C9 ...

...

Figure 3: An illustration of a genome sequencing project. The shotgun data is assembled into 1000
contigs. Among them, C2 is found to be assembled incorrectly in the middle and separated into
two contigs, C2.1 and C2.2. The orientation and ordering of 1001 contigs are determined. The
orientation of C5 is determined in the reverse complement direction, denoted by rc(C5). With
additional sequencing to close gaps between contigs in the scaffold, a single contiguous sequence is
determined.

of contigs are generated and there are contigs that are misassembled probably due to repetitive
sequences in the target DNA. As a result, genome sequencing is usually carried out in multiple steps
and, unfortunately, there is no consensus on the steps of a genome sequencing project. We describe
a general procedure for genome sequencing in the below, but we emphasize that procedures used
at genome sequencing centers differ in detail.

1. Reading fragment reads: The sequence of each fragment are determined using an auto-
matic base calling software. Phred [7, 8] is the most widely used program.

2. Trimming vector sequences: Sequence reads in the shotgun data contains part of the
vector sequences that have to be removed before sequence assembly.

3. Trimming low quality sequences: Sequence reads contain poor quality base calls and
removing or masking out these low quality base calls often leads to more accurate sequence
assembly. however, this step is optional and some sequencing centers do not mask out low
qualty base calls, relying on the sequence assmebler to utilize quality values to decide true
fragment overlaps.

4. Sequence assembly: The shotgun data is input to a sequence assembler that automatically
generates a set of aligned fragment called contigs.

5. Sequence assembly validation: Some contigs that assembled in the previous steps may
be misassembled due to repeats. Since we do not have a priori knowledge on repeats in
the target DNA, it is very difficult to verify the correctness of assembly of each contig and

9



this step is largely done manually. There are recent algorithmic development on automatic
verification of contig assemblies (see Section 5).

6. Scaffolding contigs: Contigs need to be oriented and ordered. Clone mate information is a
primary information source for this step, thus this step is not achievable if the input shotgun
data is not prepared by reading both ends of clones (see Section 6 for more detail).

7. Gap closing: Assuming that all contigs are assembled correctly and contigs are oriented
and ordered correctly, we can close gaps between two contigs by sequencing specific regions
that correspond to the positions of gaps.

4 Survey of sequence assembly programs

4.1 Formulation As Shortest Common String Problem

One attempt to solve the shotgun sequencing problem is to formulate it as an instance of the
“shortest common string problem” [45, 46, 49]. Such a formulation assumes that fragments are error
free and fragment orientation is known. There is interesting theoretical work on the assembly result
given by a greedy algorithm for such formulation of the sequence assembly problem. For example,
[?] proves that the greedy algorithm delivers a superstring at most four times longer than the
shortest superstring. Even though the shortest common substring problem has been theoretically
well studied, there are two serious problems with this formulation. First, it is questionable whether
the notion of “shortest” models the target sequence and the shotgun data. In particular, how
to model repetitive sequences in this formulation has not been well studied. Second, we expect
gaps in shotgun data for long sequences. The existence of gaps is problematic for the formulation,
since there may be “weak” overlaps between non overlapping fragments either of which is followed
by a gap in the shotgun data. Here, joining two fragments will result in contracting the target
sequence or switching subsequences. Thus, approaches based on the shortest common superstring
formulation are unlikely to be successful in assembling long sequences of real DNA.

4.2 CAP

CAP [13] operates in three phases: fragment overlap detection, contig formation, and consensus
sequence generation.

4.2.1 Fragment Overlap Detection

CAP computes overlaps between every pair of input fragments and classifies the identified overlap
into one of four overlap types: two containment overlaps and two non-containment overlaps (see
Figure 4). A modified Smith-Waterman algorithm [41] is used to compute the best overlap score
between a given pair of fragments. Since the overlap computation between every pair of input frag-
ments is often computationally infeasible, an approximate string matching algorithm from Chang
and Lawler [?] is used to speed up the overlap map construction; the Chang and Lawler algorithm
is used to check if one fragment could possibly overlap with another fragment or be contained in
another fragment.

10
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Figure 4: Four types of alignments of two fragments

4.2.2 Contig Formation

Contigs are assembled in a greedy fashion, by adding the best overlapping fragment (from the
fragment overlap detection phase) one at a time. The overlap score is the similarity of the overlap-
ping alignment between two fragments; the length of overlaps are not considered in computing the
overlap score.

Containment trees are computed first to reduce the complexity of the assembly task. A con-
tainment tree is a tree whose the root is a noncontained fragment and a fragment f1 is a child of a
fragment f2 if the best alignment of f1 and f2 is that f2 contains in f1. Then, noncontainment
fragments are used for the greedy contig assembly.

4.2.3 Consensus Sequence Generation

To generate consensus sequences from the contigs, CAP merges each pairwise alignment into a
multiple alignment of fragments in a similar fashion to [19]. A multiple alignment of fragments
for a contig is generated one section at a time, where each section consists of a fixed number of
nucleotides, say 60. A working set of fragments that appears in the current working section is
maintained. As a section finishes, fragments which end within the section are removed from the
working set of fragments and fragments which start within the section are added to the working
set of fragments.

4.3 Kececioglu and Myers

Kececioglu and Myers approach [19] is best summarized as follows:

1. Construct a graph of approximate overlaps between every pair of fragments.

2. Assign an orientation to each fragment, i.e., choose the forward or reverse complement se-
quence for each fragment.

3. Select a set of overlaps that induces a consistent layout of the oriented fragments.

4. Merge the selected overlaps into a multiple sequence alignment, and vote on a consensus.

Each of the four phases can be viewed as a separate problem. Unfortunately, the last three
problems are NP-complete and are handled by heuristic measures in the Kececioglu and Myers
approach .
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f1
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f1

f1

f2

f2

f2
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Figure 5: Four possible overlaps between fragments f1 and f2

4.3.1 Overlap Graph Construction

There are four possible overlap types between two fragments f1 and f2 (see Figure 5). Fragment
f1 dovetails to fragment f2 when a suffix of f1 aligns to a prefix f2.3 f1 contains f2 when f2 is
a substring of f1.4 There are O(mn) dovetails and O(m2) containments for a given pair f1, f2 of
sequences of length m and n.

An overlap graph G = (V,E,w) represents fragments with vertex set V , and overlaps with
edge set E. An edge weight function w gives the plausibility metric for an overlap. An unoriented
overlap graph V contains two vertices for every fragment F . The two vertices are one for the original
fragment, and one for the reverse complement of the fragment. Figure 6 shows an overlap graph.

To choose which of the possible overlaps actually appears between each vertex pairs in the
overlap graph, Kececioglu and Myers choose the maximum likelihood overlap among all possible
overlaps based on the edit distance 5 and the probabilistic metric from Chvatal and Sankoff [?]. The
probabilistic metric is computed as follows: given an overlap between two fragments, the overlap
of length l + d is a string containing l exact matches(substrings that both fragments agree) and
d mismatches. Chvatal and Sankoff compute the probability that a string of length l + d which
contains the fixed substring of length l occurs.

Finally, Kececioglu and Myers cull overlap edges since most of the edges represent chance align-
ment rather than true overlaps. There are two criteria for culling overlaps; (1) match significance,
and (2) error distribution. An overlap with match probability less than match significance threshold
is rejected. Assuming a binomial distribution in the error, they also reject some edges by error

3Note that a suffix of f1 may not match exactly with a prefix of f2 due to the reading error.
4Again the containment does not imply f2 is a exact substring of f1 due to the error in reading.
5We say informally that a string S1 is d edit distance from a string S2 when S1 can be transformed to S2 by

d operations which consist of either inserting a character, deleting a character, or replacing a character by another
character.
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Figure 6: Overlap graphs. (a) unoriented graph. (b) oriented graph

distribution threshold. Roughly speaking, an overlap with highly clustered errors is rejected by a
probabilistic argument.

4.3.2 Fragment Orientation

Once an overlap graph has been constructed, the next step is to determine the orientation of each
fragment. Let G be an unoriented overlap graph with weight function w, and f1 be a reverse
complement of a fragment f1. Given two fragments f1 and f2, there are four possible overlaps;
(f1, f2), (f1, f2), (f1, f2) and (f1, f2). The basic idea is to determine one edge among the four
possible edges between fragments f1 and f2 so that G has the maximum overlap score in total.
Before defining the orientation problem formally, let’s define some notation. Let F be a set of all
input fragments, O a subset of F containing fragments in one direction, and O be F −O containing
fragments in the other direction. For two fragments f1 and f2, let

same(f1, f2) = max(w(f1, f2), w(f2, f1))

and
opp(f1, f2) = max(w(f1, f2), w(f2, f1)).

Then the fragment orientation problem is defined as follow.

maximize w(O) =
∑

(f1,f2)∈(O,O)

opp(f1, f2) +
∑

(f1,f2)/∈(O,O)

same(f1, f2)

This problem is NP-complete, shown by the reduction from the maximum weight problem [19].
Thus Kececioglu and Myers proposed a greedy approximation algorithm that works as follows.
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Given an ordering F1, F2, ..., Fn of F , and an initially empty set O, at each step i, consider adding
Fi to O where (O,O) currently partitions {F1, ..., Fi−1}. If w(O ∪ {Fi}) ≤ w(O ∪ {Fi}), then
O = O ∪ {Fi}. Otherwise, O is unchanged, and Fi is added to O. Kececioglu and Myers proved
that the greedy heuristic finds an orientation of weight at least 1

2w(O∗) where O∗ is an optimal
solution, for any ordering of fragments. Kececioglu and Myers also proposed a fragment ordering
heuristic.

4.3.3 Fragment Layout

After the fragment orientation phase, the overlap graph G is an oriented graph. In the fragment
layout phase, a layout of fragment overlaps is generated by traversing the oriented graph according
to the four constraints given below.

1. Every vertex in G has at most one incoming edge.

2. The edges do not form cycles.

3. No two dovetail edges leave the same vertex.

4. No containment edge f1⇒f2 is followed by a dovetail edge f2 → f3

A set of edges that satisfies constraints 1 and 2 is called a branching. A branching can be seen
as a collection of trees. A set of edges that also satisfies constraints 3 and 4 is called a dovetail-
chain branching. Its dovetail edges form disjoint chains that originate at the root. Let IN be a
set of edges which should be included in the dovetail chain branching, and OUT be a set of edges
which should be excluded in the dovetail chain branching. The fragment layout phase repeats the
following two steps.

1. Given a graph G, generate the maximum weight branching β, satisfying constraints 1 and 2.

2. If β is a dovetail-chain branching, return its weight. Otherwise, identify a pair of edges (e, f)
violating constraints 3 and 4, and generate two subgraphs; G1 with IN and OUT = OUT∪{e}
and G2 with IN = IN ∪ {e} and OUT = OUT ∪ {f}. Solve both G1 and G2 and select the
dovetail chain branching with higher weight.

Algorithms for generating a branching in order of decreasing weight can be found in the literature
[?, ?]. Thus a solution to the maximum dovetail branching problem can be found by repeating the
generation of the maximum weight branching and then generating two subproblems by removing a
pair of edges violating constraints 3 and 4.

Obviously, it grows exponentially. Kececioglu and Myers presented two techniques to reduce
search space.

4.3.4 Multiple Sequence Alignment

Now the final step is to determine the DNA sequence from the layout of fragment overlaps. Note
that from the fragment layout phase, we know how each pair of fragments overlap if they do.
However, simply merging all pairwise overlaps does not lead to a consistent sequence of nucleotides
as shown in Figure 7. The graph (b) corresponding to the graph (a) shows that there is a cycle.
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Figure 7: Pairwise alignments may not form a multiple alignment. (a) Three pairwise alignments of
a1a2a3a4, b1b2b3b4, and c1c2c3c4. Edges join matched characters. (b) The connected components
contains a cycle. A directed edge from v1 to v2 is constructed if any character in v1 precedes any
character in v2.

A graph like (a) is called trace when the corresponding graph of connected components like (b)
does not have a cycle. A trace gives us a sequence of characters. Thus the multiple alignment
phase determines a trace first and then generates a sequence by topologically sorting connected
components in the trace.

The main problem is how to find the best trace from a graph of characters. The basic idea is that
any pairwise alignment that is already determined forms a trace. In Figure 7, any two sequences
form a trace, although all three sequences do not. Given the pairwise alignments, compute a
supergraph whose supernodes are the sequences to be aligned and whose superedges are defined by
pairwise alignments. A superedge is weighted by a similarity metric which is the sum of similarities
between characters in two sequences.6 Now the goal is to find a tree of pairwise traces with the
maximum weight for a supergraph. The heuristic proposed by Kececioglu and Myers is:

1. Compute a closure between pairwise traces and add them to the superedges.

2. Compute the maximum weight spanning tree.

From the observation that errors are clustered at the ends of a fragment, Kececioglu and Myers
proposed a variant of the heuristic based on a window containing a subset sequence. In this variant,
supernodes become the subset sequences in the window, and searching for the maximum weight
spanning tree generates a column of characters.7 The application of the observation is the use of
a larger window in the middle of a sequence and of a smaller window at the end. The detailed
description of the variant of the heuristic can be found in [19].

4.4 Idury and Waterman

Idury and Waterman [17] proposed a totally new way to assemble fragment data by combining
sequencing by hybridization [5, 35] and shotgun sequencing. Before describing their new approach,
the hybridization technique and sequencing by hybridization are described.

6The similarity between two character sets X and Y is defined by |X∩Y |/|X∪Y |. At first, X and Y are singletons,
but they become non-singleton sets as sequences are added to the alignment.

7A column of characters becomes a character in the final sequences determined by voting between fragments to
remove ambiguity.
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4.4.1 Hybridization Technique

Hybridization technique is to prepare probes(k-tuples of nucleotides) and apply them to the set of
DNA pieces. The probes hybridize (or bind) with any fragment having the reverse complement
nucleotide sequences. The existence of hybridized probes can be identified with a radioactive or
fluorescent material. The hybridization data is then used to construct a map so that positional
information among fragments can be obtained.8 The map is used for determining sequences of
fragments or identifying genes, etc.

The major problems here is that (1) hybridization data may contain errors, and (2) we do
not know how many occurrences of a probe or in what order they occur when there are multiple
occurrences of probes. Thus it is often not possible to determine a complete hybridization map.
Determination of a hybridization map is another research topic in computational biology(see [?]).

4.4.2 Sequencing By Hybridization

Biologists came up with an approach to determine the DNA sequence by hybridization(SBH) [5]
and Pevzner [35] further developed the approach. This section will describe Pevzner’s idea. The
approach consists of three major steps.

1. Prepare a collection of all the instances of k-tuple probes, called a sequencing chip.

2. Apply all of the sequencing chip to each fragment being sequenced.

3. Construct a graph from the resulting hybridization data and determine the sequence.

The example of 3-tuple sequencing chip and its application to a sequence a = ATGTGCCGCA
is presented in Figure 8. The reason for preparing all instances is that we do not know the original
sequence so there is no way to tell in advance which subset of a sequencing chip will be useful.
Obviously it is advantageous to prepare larger sequencing chips, but there is a technical limitation
since to prepare a sequencing chip of size k means to generate 4k biological probes. (The current
technology can accommodate up to the k = 8.)

The next step is to construct a graph using the hybridization data. Let’s assume that we used
a sequencing chip of size k. In the graph, each probe becomes a node, and an edge from a node
N1 to N2 is constructed if a suffix of N1 of size k − 1 matches exactly a prefix of N2 of size k − 1.
Returning to the example in Figure 8, the sequence a contains instances of probes ATG, TGC,
GCA, CAG, AGG, GGT, GTC, TCC. There is a directed edge from ATG to TGC since the suffix
TG of ATG is equal to the prefix TG of TGC.

After constructing a graph, the sequence is determined by finding a Hamiltonian path through
the graph. Since constructing a Hamiltonian path is NP-complete, Pevzner came up with an
alternative formulation of the graph. In the new graph G, each k − 1 tuple becomes a node, and
an edge is set from node N1 to N2 when there is an instance of a probe whose prefix of size k − 1
is N1 and whose suffix of size k − 1 is N2. With the new graph, the sequence can be determined
by a finding Eulerian tour, for which a simple linear time algorithm is known (Figure 9 shows
a Hamiltonian graph H and an Eulerian Graph G for the sequence ATGTGCCGCA). Another
advantage of the Eulerian graph approach is that there might be cases where the Eulerian tour

8Thus we do not determine the DNA sequence by hybridization data.

16



AAC 
AAG 
AAT 
CAA 
CAC 

CAT 
CAG 

GAA 
GAC 
GAG 
GAT 
TAA 
TAC 
TAG 
TAT

ACA 
ACC 
ACG 
ACT 
CCA 
CCC 
CCG 
CCT 
GCA 
GCC 
GCG
GCT
TCA 
TCC 
TCG 
TCT 

AGA 
AGC 
AGG 
AGT 
CGA 
CGC 
CGG 
CGT 
GGA 
GGC 
GGG 
GGT 
TGA 
TGC 
TGG 
TGT 

ATA 
ATC 
ATG 
ATT 
CTA 
CTC 
CTG 
CTT 
GTA 
GTC 
GTG 
GTT 
TTA 
TTC 
TTG 
TTT 

AAA

Figure 8: Sequencing chip and hybridization result
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Figure 9: Graphs H and G for ATGCAGGTCC
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Figure 10: Graphs H and G for ATGTGCCGCA

determines one sequence, but Hamiltonian tour cannot determine a sequence due to the existence
of the multiple Hamiltonian tours (Figure 10 shows such an example).

4.4.3 Idury and Waterman’s Approach

As explained before, SBH is limited by the size of the sequencing chip and also by the possibility of
errors in the hybridization data. Idury and Waterman [17] proposed an approach combining SBH
and shotgun sequencing that sidesteps the first of these problems.

4.4.4 Overview of Idury and Waterman’s Approach

The basic idea is to use artificial probes generated from shotgun sequencing data, instead of biolog-
ical probes. The advantage is that there is now no restriction on the size of a probe since a probe
comes from a sequence which is already determined by shotgun sequencing. However, shotgun
sequencing data still contains errors, so that occurrences of a probe may depend on the presence
of errors. Idury and Waterman argue that the error rate is not that high so there is a sufficient
number of probe occurrences even in the presence of errors. For example, if there are 2% errors,
on the average there will be 50 − k correct tuples in every 50 nucleotide sequence [?]. Idury and
Waterman rely on the fact that there is multiple coverage to sidestep these errors.

The algorithm is in Figure 11. In the algorithm, Idury and Waterman handle the unknown
orientation problem by simply enlarging the input fragment set by a factor of 2 by including all
reverse-complemented fragments f r

i . Step 1 is to convert a fragment into a sequence of occurrences
of probes of size k. The start and end of each probe occurrence is marked by iα and jα. In step 2,
an edge is weighted according to the number of occurrences. Step 3 is to construct super edges to
reduce the size of the graph (graph reduction technique will be explained later in detail). In step
4, the greedy Eulerian tour begins with the heaviest edge(s). The example in Figure 12 shows the
construction of the sequence.
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input: N(coverage), k(probe size), f1, f2, ..., fn(fragments)

output: sequence assembly

1. Convert f1, f2, ..., fn f r
1 , f r

2 , ..., f r
n into (wα, iα, jα) for all α occurrences of w,

when |w| = k.

2. Construct the Euler graph on (k − 1)-tuples for the k-tuples from (1). Each

edge w has α = 1 to n(w) pairs of (fragment=iα, position=jα).

3. Reduce the Graph.

4. Perform greedy Eulerian tour(s)

5. Align fragments to sequence produced by (4).

Figure 11: Idury and Waterman’s algorithm
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Figure 12: An Eulerian graph for ATGTGCCGCA; an Eulerian tour is constructed, starting with
the heaviest edges and going backwards and forwards.
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4.4.5 Graph Reduction and Repeating Sequences

There are three types of reducible nodes according to their classification; singletons, forks and
crosses. Before performing an Eulerian tour, Idury and Waterman reduce the graph by removing
all edges of these three types.

Elimination of singletons A singleton v is a node having only one incoming edge (u, v) and
only one outgoing edge (v, w). The reduction removes the node v and collapses two edges into one,
(u,w). Let the tuples represented by edges, (u, v) and (v, w), be a1...ap and b1...bq respectively.
Then the tuple represented by the edge (u,w) becomes a1...ap, bk...bq since ap−k+2...ap = b1...bk−1.
The new edge (v, w) is called a super edge. Idury and Waterman observed that 90 % of edges in
the graph are singletons and the length of a super edge often is more than 50 nucleotide long.

Elimination of forks A fork is a node which has one incoming edge and multiple outgoing
edges. For example, consider a case in which v has one incoming edge e = (u, v) and two outgoing
edges, e1 = (v, w1) and e2 = (v, w2). If we visit v once, then we will have to visit w1 or w2, but not
both. Idury and Waterman remove forks by selecting the edge with the heaviest weight. Removing
forks in turn creates new forks since some crosses become forks by elimination of existing forks.

Elimination of crosses A cross is a node with multiple incoming edges and multiple outgoing
edges. Elimination of crosses is done in a fashion similar to the elimination of forks, that is, by
selecting the heaviest incoming and outgoing edges. Note that elimination of crosses is performed
only after elimination of singletons and forks; after elimination of crosses, the first two reductions
are repeated if applicable.

Note that real DNA sequences contain repeating regions, that is, occurrences of the same pattern
at different positions. The three graph reduction techniques just described cannot handle repeating
regions.

4.5 Parsons, Forrest and Burks

Parsons, Forrest, and Burks [33] proposed an approach based on genetic algorithms. Since the
sequence assembly problem is NP-complete, the application of genetic algorithms makes sense.
Furthermore, as Parsons, Forrest and Burks argue, the basic idea underlying all genetic algorithms
(to generate a better composite solution from good partial solutions) is well suited to the sequence
assembly algorithm.

The basic principles of genetic algorithms can be found in many Artificial Intelligence text books
and articles, e.g. [47].

4.5.1 Genetic Algorithms

A genetic algorithm starts with a random population, which is allowed to evolve over many gener-
ations. In other words, given a population, we apply genetic operators like crossover and mutation
to increase the population, which is the next generation, and then select a fixed number of individ-
uals in the population by a selection function called a fitness function. When a genetic algorithm
technique is applied to a specific domain, the issues are as follows;

1. The representation of a specific problem in genetic algorithm terms is not trivial. Usually a
set of binary bits is used to encode the suitable information.
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Figure 13: How to get a permutation ordering, 1 5 4 2 3.

2. A fitness function is the metric to evaluate the goodness of an individual; such a function is
necessarily domain dependent.

3. Genetic operators are used to generate new individuals. In general, there are two kinds of
operators, crossover and mutation. The crossover operator generates a new individual by
exchanging substrings in parents. The purpose of the crossover operator is to allow partial
solutions to evolve in different individuals and then combine them to produce, sometimes,
a better solution. The mutation operator alters one individual by exchanging a primitive
element of that individual(e.g., flipping one bit). The rate of what percentage of individuals
is formed through an operator is one of the important parameters.

4.5.2 Representing the Sequence Assembly Problem

A permutation of integers represents a sequence of fragment numbers where successive fragments
overlap if there is evidence for overlapping.9 They used the sorted-order representation for the
permutation ordering [43]. There are two requisite properties for a legal ordering: (1) all fragments
should be present in the ordering and (2) there should be no duplication in the ordering. These
properties are ensured through the use of a sort. Consider the example in Figure 13. In the example,
each 3 successive bits represent a fragment number in the bit string. The bit string represents a
sequence, 2 7 1 5 3. Each number is associated with another number (associate) representing its
position in the ordering; The position of the number ‘2’ is 1st, so ‘2’ is associated with ‘1’. Then
the sequence is sorted in ascending order, becoming a new sequence 1 2 3 5 7. The permutation
is a sequence of associates, that is, 3 1 5 4 2. The final step is to read the sequence starting at
the position 2 designated as a starting position by the last number in the original bit string. This
reading gives us the permutation, 1 5 4 2 3.

9Parsons, Forrest and Burks did not explain in the paper how to compute an overlap score between fragments.
We might compute it as in [19].
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4.5.3 Fitness Function

The choice of a fitness function is crucial to the success of a genetic algorithm on a particular
problem. Parsons, Forrest and Burks used two fitness functions; F1 and F2.

Let I = f [0], f [1], ...f [n − 1] be an ordering of fragments, where f [i] = j denotes that fragment
j appears in position i of the ordering. The first fitness function F1 is defined by

F1(I) =
n−2∑

i=0

wf [i],f [i+1]

where wi,j is the pairwise overlap strength of fragment i and j. Note that this function examines
only the overlap strength of directly adjacent fragments in the ordering. The optimization process
finds a layout that maximize this function.

The second fitness function F2 considers the overlap strength among all possible pairs, in which
fragments with strong overlap are far apart.

F2(I) =
n−1∑

i=0

n−1∑

j=0

|i − j| × wf [i],f [j]

4.5.4 Genetic Operators

Parsons, Forrest and Burks used four genetic operators: order crossover, edge recombination, in-
version, and transposition. For the brevity of this survey paper, I will explain the operators briefly
rather than at length. Detailed description of the operators can be found in [33].

• Order crossover selects two random points in the permutation ordering. Unlike traditional
crossover operators, it copies a subsequence between the two points from a parent into the
same positions in an offspring. Then the remaining sequence is filled by copying numbers from
another parent, in accordance with the two requisite properties for a permutation ordering(see
Section 6.2).

• Edge recombination is another crossover operator which attempts to preserve adjacencies
in the parents. In particular, it preserves adjacencies that are common to both parents.

• Inversion is a mutation-like operator that reverses the order of the fragments in a contig.
Parsons, Forrest and Burks argue that this operator is useful for handling unknown orientation
problem.

• Transposition is another mutation-like operator. It moves a contig to a position between
two adjacent contigs that may allow the extension of a contig.

An important property in the operators is that they try to preserve or extend existing contigs.
Especially, the two mutation-like operators do not contract existing contigs but only try to extend
them. The basic idea is to allow for the evolution of larger contigs by treating smaller contigs as
basic building blocks.
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4.6 TIGR Assembler

The TIGR Assembler [44] of Sutton et al. has successfully assembled very long sequences. The
TIGR Assembler operates in two phases: pairwise comparison of fragments and fragment assembly.
A consensus sequence is automatically determined as fragments are assembled (see Section 4.6.3).
Handling repetitive sequences is discussed.

4.6.1 Pairwise Comparison

TIGR Assembler computes the best alignment of two fragments using a modified Smith-Waterman
algorithm [41]. Since pairwise comparison of all input fragments is often impractical due to the
quadratic complexity of the Smith-Waterman algorithm, they locates all patterns of length n bps
and restricts pairwise overlap comparison only to pairs of fragments with the same patterns of n
bps; thus any pair of fragments without common patterns of n bps are determined not to overlap.

4.6.2 Merging Fragments with Assemblies

After computing pairwise overlaps among input fragments, a fragment is merged with the current
assembly if the match criteria are satisfied. There are four elements of match criteria: minimum
length of overlap, minimum similarity in the overlap region as a percentage of the best possible
score, maximum length of overhang, and maximum number of local errors. Overhang is the region
in the alignment where two fragments do not match, and the length of overhang is the maximum
number of overhang at both ends of the alignment. Local errors are the base pair mismatches
between the fragment and the assembly in any given contiguous 32 bp in the overlap region. The
maximum number of local errors is used to reject overlap with clustered errors, which might survive
the similarity test. For example, 16 errors spread out evenly over a 400 bp overlap (96% similarity)
is more likely to be a real overlap than 8 errors clustered in a 32bp window of 400 bp overlap (98
% similarity).

Note that, when a fragment is considered for assembly, match criteria are computed against
the current assembly, thus the assembly doesn’t rely on pairwise alignment, although selection of
a fragment for assembly does.

4.6.3 Building a Consensus Sequence

When a fragment is added to the current assembly, TIGR does not commit to a consensus sequence
but keeps a history what bases have been aligned to that position in the past. This results in a
column or profile where a count of bases plus gaps is recorded. From this profile, a consensus se-
quence is generated after the assembly is completed, selecting the most frequent bases for consensus
sequence.

4.6.4 Handling Repetitive Sequences

TIGR uses two strategies to handle repetitive sequences: increased match criteria for fragments
possibly from repeats, and clone length constraints.

Fragments from repetitive sequences are identified by the number of potential overlaps each
fragment has based on pairwise comparisons. Any fragment with the number of overlaps more
than a threshold is labeled as being from repetitive sequences. When a repeat fragment is added
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to the current assembly, the stringency of the match criteria is increased so that nonexact repeats
(for example, 80% similarity for Alu repeats) can be distinguished.

Even with strict match criteria, it is impossible to avoid false overlap identifications when repeats
are longer than the average fragment size. TIGR uses clone length information that maintains
distance between the fragments that read from the same clone.

4.7 CAP2

CAP2 [14] is an extended version of CAP (see Section 4.2). Three major improvements are (1)
performance improvement by filtering out potentially non-overlapping fragments, (2) identification
of chimeric fragments, and (3) handling repetitive sequences.

4.7.1 Performance Improvement

CAP2 uses a modified Smith-Watermn algorithm [41] to test overlaps between a pair of fragments.
Since applying the Smith-Waterman algorithm for every pair of fragments to examine possible
overlaps is costly and often not practical in terms of computing time, CAP2 filters pairs of fragments
that are unlikely to overlap by locating common patterns. First all common patterns of 9bps are
searched among the input fragments, and then patterns of 9bps are extended to see if there are
gap-free common patterns of 20bps with at most 2 substitutions. Any pair of fragments without
such common patterns of 20bps are determined not to overlap without applying the expensive
Smith-Waterman algorithm.

4.7.2 Identification of Chimeric Fragments

First of all, CAP2 computes an error rate vector for each input fragment when constructing pairwise
overlap comparison. The error rate vector of a fragment is a list of the error rates of each regions
of length rbps; the error rate Ep(i) is defined as an estimated number of errors between i-th
base position and (i + r)-th base position of a fragment fp. Roughly speaking, the error rate is
computed as the minimum difference while computing pairwise comparisons of fragments. The
error rate vector is used to evaluate overlaps among fragments when constructing contigs and to
identify chimeric fragments.

A chimeric fragment is a fragment read from a chimeric clone which is a joining of two or
more clones. Thus, a chimeric fragment contains two or more non-contiguous segments of the
target sequence. A position separated by non-contiguous segments of the target sequence is called
a separation point (sp). A fragment fq is a chimeric fragment if it satisfies the following three
conditions:

1. The maximum difference

max{Eq(i − r/2) − Eq(i) | r < i < length(fq) − r}

is greater than a threshold.

2. There is a fragment f1 (other than fq) such that the overlapping region between f1 and fq

ends near the maximum difference position in condition (1). There also is a fragment f2
(other than fq) such that the overlapping region between f2 and fq starts near the maximum
difference position in condition (1).
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Figure 14: Difference in error rates in a chimeric fragment (where real and dotted lines denote
two segments which come from different parts of the target DNA). Two error rates E(i− r/2) and
E(i + r/2) are expected to be small since they are contiguous regions of the target DNA sequence,
thus it is high likely that a fragment covers the entire region for the two error rate estimations.
However, the error E(i) is large since it contains two non-contiguous regions of the target DNA
sequence, thus there is no fragment which covers the entire region for the error rate estimation.

3. No fragment overlapping with fq crosses over the maximum difference position.

The maximum difference position in condition (1) can be illustrated in Figure 14.

4.7.3 Handling Repetitive Sequences

When constructing contigs, the best remaining overlap from pairwise comparison is selected in a
greedy fashion. Thus, several contigs may be present at some point. The selection of an overlap
between two fragments that belong to two different contigs results in merging the two contigs
into one contig. When merging two different contigs, inconsistent overlaps in fragments lead to
construction of repetitive contigs which are essential to identifying repeats.

Let’s assume that the best remaining overlap is f1 → f2, and f1 and f2 belong to two different
contigs C1 and C2 repetitively. Then, a temporary contig that includes the current best overlap
f1 → f2 is constructed from the set of fragments in C1 and C2, by adding consistent overlaps. If
the two contigs does not contain repeats, the temporary contig will include all fragment in C1 and
C2, since all overlapping fragments in C1 and C2 are consistent. Otherwise, the temporary contig
will contain only a subset of the set of fragments in C1 and C2. In that case, a repetitive contig is
constructed from the temporary contig. Later, merging ordinary contigs and repetitive contigs is
considered to complete the assembly of the target sequence.

4.8 AMASS

Kim and Segre [21] proposed a sequence assembly algorithm that uses exact matches of short
patterns randomly selected from fragment data to identify fragment overlaps, construct an overlap
map, and finally deliver a consensus sequence.

4.8.1 Overview of AMASS

AMASS starts with sampling patterns of fixed length from shotgun data, and then find all oc-
currences of sampled patterns in shotgun data. The occurrences of patterns are used to detect
overlapping fragments and to handle repeats which is the major hurdle to sequence assembly. Two
distributions, the pattern distribution and the fragment distribution, are used to identify fragments
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Figure 15: An overview of the AMASS sequence assembler.

that come from repeats. Then, assembly of fragments from non-repeat regions are assembly first
and later contigs are extended to include repeat regions. Figure 15 illustrates how AMASS works.

4.8.2 Building contigs

AMASS represents a fragment as an ordered set of pattern occurrences (probes) and their interprobe
spacings and fragment overlaps are determined by this representation. (see Figure 16). Contig is
built in a greedy fashion, adding a fragment with the best score at a time as summarized below.

1. Build a pairwise overlap table.

2. Take best pair of unassigned fragments and build an initial contig.

3. Compute overlap score between the current contig and remaining fragments.

4. Selecting a fragment with the highest score, grow the current contig by adding the fragment.

5. Repeat Step 3 & 4 while overlap scores are still significant.

6. Goto Step 2 while unassigned fragments remain.
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Figure 16: Fragments are represented as ordered sets of pattern occurrences (probes) and their in-
terprobe spacings. Overlaps between fragments or between a fragment and a contig are determined
by this representation.

4.8.3 Handling repeats

Repeats are handled in three different ways: (1) use of satellite matching, (2) the pattern distribu-
tion and (3) the fragment distribution. To handle very short repeats, AMASS employs a technique
called satellite matching which tests for co-existence of very short patterns around a pair of com-
mon pattern (probe) occurrences. If probes are from two different repeat copies, their surrounding
regions will be different for short repeats and the satellite matching test can identify probes from
different repeat copies quickly and effectively. (see Figure 17) Any probe occurrences that fail for
the satellite matching test will be discarded so that they are not used for contig construction.

Probe occurrences are further screened using the pattern distribution that shows the distribution
of the number of probe occurrences v.s the number of probes. Any probe that occurs unusually
many times are obviously from repeats and discarded. This technique is used by nearly all sequence
assemblers to quickly filter out probes from repeats.

AMASS also attempts to identify fragments that comes from repeats using the fragment dis-
tribution that the distribution of the number of fragments v.s the number of probe occurrences in
a fragment. Figure 18 shows a fragment distribution from M. genitalium shotgun data obtained
from TIGR. The basic idea is that fragments from long repeats will exhibit a significant increase
in the number of probe occurrences since probes from a repeat copy will occur in other repeat
copies of the same repeat. AMASS marks fragments in the tail region as repeat fragments. Contigs
are constructed for non-repeat regions using the set of fragments that are not marked as repeat
fragments and repeat regions are expanded later whenever ambiguity in overlapping regions are
acceptible.
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Figure 17: Given a pair of common probe occurrences, p1 in this case, the satellite matching test
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Figure 18: Fragments in the tail region are most likely come from repeats.
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4.9 PHRAP

PHRAP is the most widely used sequence assembler. However, there is no published paper that de-
scribed the algorithm for PHRAP. We will briefly described the algorithm based on the information
on the web site at http://www.phrap.org.

1. A sorted list of all matching words of length at least minmatch between any pair of sequences
is constructed.

2. For each such pair, a band of a specified width, centered on the diagonal defined by the
matching words, is defined and then overlapping bands are merged. A “recursive” SWAT (an
implementation of Smith-Waterman algorithm) search of each band is used to find matching
segments with score greater than or equal to minscore. The recursive search of SWAT, which
is intended to find all matches between two matches, is done by repeating masking out the
current matched region and performing SWAT.

3. A match is associated with LLR score, which is a log-likelihood ratio for comparing the
hypothesis that the reads truly overlap to the hypothesis that they are from 95repeats. The
point is that discrepancies between overlapping reads are due to base-calling errors and thus
tend to occur in low-quality bases, whereas reads from different repeats can have high-quality
discrepancies that are due to sequence differences between the repeats; and the probability
of the observed data under each hypothesis can be quantified using the interpretation of the
phrap qualities in terms of error probabilities. A pairwise match tends to have a positive
LLR score if the two reads overlap, whereas it tends to have a negative LLR score if the two
reads are from different repeats (unless the repeats are nearly identical).

4. Sort all matching pairs by decreasing LLR score, and assemble layout by progressively merging
pairs with high score.

5. Construct contig ”consensus” as a mosaic of individual reads. This is done by building
a weighted graph using selected positions of matches as vertices (ends of alignments, and
midpoints of perfectly matching segments of sufficient length). Unidirectional edges from 5’
to 3’ positions within a single read, with weight equal to the total quality of the sequence
between the two nodes. To crosslink matches, bidirectional edges with weight 0 between
aligned bases in overlapping reads are added. Then, a standard maximum weight single
source maximum weight path is computed (the complexity is linear in relation to the number
of vertices).

4.10 CAP3

CAP3 is an improved version of CAP2 [14] (see Section 4.7 also). Three major improvements are:

1. Automatics clipping of 5′ and 3′ poor quality regions of fragment reads.

2. Use of base call quality values in alignment of fragment reads.

3. Use of clone-mate information (forward-reverse constraints) to correct assembly errors and
link contigs.
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4.10.1 Automatics clipping of 5′ and 3′ poor quality regions

Clipping is done using both base quality values and sequence similarities, and based on the notion
of good regions of a read as opposed to the poor quality regions. Good quality regions are defined
with two criteria.

1. Any sufficiently long region of high-quality values that is highly similar to a region of another
read is defined to be good.

2. Any sufficiently long region that is highly similar to a good high-quality region of another
read is defined to be good.

Once good regions are defined, the 3’ clipping position of a read is the maximum of 3’ end positions
of good regions of the read and the 5’ clipping position of a read is the minimum of 5’ end positions
of good regions of the read. High-quality regions are easily defined based on base call quality
values, but how can sequence similarity be defined? Regions of a read with a strong similarity to
other reads are computed using a extended version of the banded Smith-Waterman algorithm to
incorporate base quality values.

4.10.2 Computation and evaluation of overlaps

A global alignment with the maximum similarity score is computed over the band determined by
the optimal local alignment while clipping poor quality regions. Then each overlap is evaluated by
five measures.

1. The minimum length

2. The minimum percent identity

3. The minimum similarity score

4. The fourth measure examines the differences of the overlap at bases of high quality values.
If the overlap contains a sufficient number of differences at bases of high-quality values, then
the overlap is probably false. This is done by computing the quality difference score of the
overlap that is the sum of scores at each difference

5. The difference rate of the overlap is examined with respect to the sequencing error rates of
the two regions involved in the overlap. The error rate of any region of a read is estimated
using the error vector method [14] (see Section 4.7 also).

4.10.3 Use of constraints in construction of contigs

The procedure for using constraints in construction of contigs consists of four steps:

1. An initial layout of reads is performed by use of a greedy method in decreasing order of
overlap scores.

2. The quality of the current layout is assessed by checking constraints.
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3. A region of the current layout with the largest number of unsatisfied constraints is located
such that the unsatisfied constraints are satisfiable by making corrections to the region. If
such a region exists, corrections to the region are made and steps 2 and 3 are repeated.
Otherwise, the correction procedure is terminated.

4. Contigs are linked with constraints.

More details for each step are given below.

Terminologies The clone-mate information of two reads are called a forward-reverse constraint.
The constraint is satisfied by a layout if the two reads occur in the same contig, the upstream read
is in forward orientation, the downstream read in reverse orientation, and the distance between the
two reads is within the given range. Otherwise, the constraint is unsatisfied. An overlap is unused
if the overlap is not used in the current layout. Let f → g denote an overlap from read f to read g.

Step 2: grouping unsatisfied constraints Unsatisfied constraints are partitioned into two
types of groups, where all constraints in a group are associated with an unused overlap or a pair
of contigs. For each unsatisfied constraint that is satisfiable by unused overlaps, a unique overlap
with the maximum score is selected from the unused overlaps, and the constraint is associated with
the overlap. Additional criteria are used to choose only one winner in the case that there are two
or more unused overlaps with the maximum score.

Step 3: constraint satisfaction The unsatisfied constraint groups are attempted to be satisfied.
There are two cases. The first case is that a group involves unused overlaps. A group with the
largest number of unsatisfied constraints is selected for consideration. First consider the case where
the group is associated with an unused overlap f→ g. The number of unsatisfied constraints in
the group is examined to be greater than the sum of the following three; the parameter u, the
number of satisfied constraints supporting the used overlap involving f, and the number of satisfied
constraints supporting the used overlap involving g. If this is the case, the layout is corrected by
breaking the used overlaps involving f and g, and joining f and g with the overlap f → g. The
second case is that a group involves two contigs. Reads from other regions that are associated by
constraints with reads in the two contigs are used to close the gap.

Step 4: contig ordering Unsatisfied constraints are used to orient and order contigs. The
groups are considered in decreasing order of group size and the order is determined when the
number of unsatisfied constraints is above a threshold.

4.10.4 Construction of alignments and consensus sequences

A multiple sequence alignment of reads is constructed for each contig. The construction is performed
by repeatedly aligning the next read with the current alignment. The reads are considered in
increasing order of their positions in the contig. To produce an accurate alignment, the base
quality values of the reads are used in the construction.

Aligning a read to a multiple sequence alignment is conceptually the same as aligning two reads.
The only difference is how to define a scoring scheme, i.e., match score, mismatch score, gap open
penalty, and gap extension penalty. The most important issue is how to incorporate base quality
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scores for the scoring scheme. This is done as follows. Consider a column of the block. Let the
column consist of k nonblank characters ci, 1 ≤ i ≤ k. Each ci is in one of A, C, G, T, N, and
-, where N denotes any base other than the four regular bases and is a gap symbol. Let qi be
the quality value of ci. If ci is a gap symbol, then qi is the quality value of the base immediately
before ci in the same row if such a base exists and the quality value of the base immediately after
ci otherwise. Seven average quality values are computed for the column: five for substitution, one
for deletion, and one for insertion. Each of the five values for substitution corresponds to one of
the five base types. Let qs(d) denote the average quality value for substitution involving base type
d of the read, let qd denote the average quality value for deletion, and let qn denote the average
quality value for insertion. The values are defined by the following formulas, where d is a regular
base.

qs(d) = ((
∑

1≤i≤k & ci=d

qi) − (
∑

1≤i≤k & ci 6=d

qi))/k

qd =
∑

1≤i≤k & ci 6=−

qi/k

qn =
k∑

1

qi/k

qs(N) = −qn

where k is the number of non-blank characters in the alignment.

The scores of a substitution, a deletion, and an insertion are defined as follows. Consider a
substitution involving the column of the block and a base d of the read with quality value qr. If
qs(d) > 0, then the substitution is considered as a match and its score is m×min(qs(d), qr), where
the positive integer m is a match score factor. If qs(d) < 0, then the substitution is considered as
a mismatch and its score is n × min[qs(d), qr], where the negative integer n is a mismatch score
factor.

The score of a gap is the gap open score plus the gap extension score of each element in the
gap. For simplicity, the gap open score is a small negative number independent of quality values.
However, the extension score depends on quality values. Let a positive number g be a gap extension
penalty factor. The extension score of a column with average deletion quality value qd in a deletion
gap is g × min(qd, qr), where qr is the quality value of a base of the read immediately before or
after the gap. The extension score of a base of the read with quality value qr in an insertion gap is
g×min(qn, qr), where qn is the average insertion quality value of a column of the block immediately
before or after the gap.

4.11 CELERA

The CELERA Whole Genome Assembler(WGA) is the first sequence assembler that assembled
large eucharyotic genomes (>100Mbp) successfully using the whole genome shotgun approach.
The description of WGA is based on the article for the Drosophila genome assembly [?]. The main
design principle is as follows.

1. The clone mate information is used to generate scaffold of the genome, not just contigs.
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2. The assembler is capable of utilizing external information.

3. The assembler places fragment reads in a series of stages, starting with the safest moves to
more aggressive ones. The stage and evidence for a read’s placement are open to inspection,
providing an audit trail of the assembler’s decision.

4.11.1 Data preparation

To achieve a very large scale genome sequencing, it is very important to ensure the quality of the
input shotgun data. Errors in the input shotgun data will certainly compound the already difficult
assembly problem. The data used for the Drosophila genome is very high quality, less than 2%
errors in reads, 0.34% error rate in clone mate information. In addition, poor quality regions are
trimmed out before sequence assembly.

4.11.2 The overview of WGA

WGA employs the “overlap-layout-consensus” approach. However, note that every assembler em-
ploying the approach differs in detail. A figure from Figure 19 shows an overview of the WGA, which
will be detailed in the subsequence sections. One distinguishing feature would be scaffolder.10 The
more important feature would be the quality control of input data. As explained in Section 4.11.1,
the input data was of very high quality. Furthermore Screener module masked known repeats.

4.11.3 Overlapper

Fragment overlaps are detected with a criteria requiring fewer than 6% difference and at least
40bp of unmasked sequence. The methodology is similar to the well known seed-and-extend idea
developed for BLAST [1]. The average number of overlaps per fragment read was 33.7, which is
a lot higher than the coverage of the shotgun data (14.6). Like many other assemblers, unusually
high number of fragment overlaps can be used for detecting repeats.

4.11.4 Unitigger

A collection of fragments whose arrangement is uncontested by overlaps from other fragments were
assembled into unitigs, which are usually called contigs in other assemblers. Then each unitig were
examined to see whether it contains repeats or not, with a method that will be explained below.
Unitigs that represent unique DNA, i.e., no repeats, are called U-unitigs. Potential repeat bound-
aries in U-unitigs are computed and then U-unitigs were extended up to this repeat boundaries.
To detect misassembled unitigs, they used A-statistic that is the log-odds ratio of the probability
that the distribution of fragment start points is representative of a correct versus an overcollapsed
unitig of two repeat copies. U-unitigs are unitigs with A-statistic > 10. A-statistic is calculated as
follows.

Let F be the number of fragments in the database and G be the (estimated) size of a genome.
Assume that fragments are not oversampled. For an unitig with k fragments and distance ρ between
the start of its first fragment and the start of the last fragment, the probability of seeing k − 1

10Several assemblers generate scaffolds as of now, but WGA is probably the first one that attempted to generate
scaffolds of the whole genome.
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start points in the interval of length ρ is [(pF/G)k/k!]exp(−pF/G). If the unitig was the result of
collapsing two repeats, the probability is [(2pF/G)k/k!]exp(−2pF/G). A-statistic is the log of the
ratio of the two probabilities.

By detecting repeat boundaries, unitigs are extended on the order of a fragment length, i.e.,
extension of an unitig up to a fragment length. Repeat boundaries are detected as follows. When-
ever a unitig A overlaps with two different unitigs B and C, but B and C overlapping regions fail
to overlap, a repeat boundary can be detected by aligning B and C using a dynamic programming
technique.

4.11.5 Scaffolder

Using clone-mate information or BAC ends, unitigs are oriented and ordered. More discussion can
be found in Section 6.2.

4.11.6 Repeat resolution: rocks, stones, and pebbles

Both intra- and inter-scaffold gaps are filled with a series of three, increasingly more aggressive,
levels of repeat resolution.

1. The rock phase: unitigs are placed when at least two clone mate pairs are consistent.

2. The stone phase: unitigs are placed when a single clone mate pair and overlap tiling path
confirm the positioning.

3. The pebble phase: a best tiling path based on quality values is computed.

4.12 ARACHNE

ARACHNE [3] is a system for assembling genome sequence. It employs a traditional “overlap-
layout-consensus” approach (look at Euler in Section 4.13 for an alternative approach), but has a
number of well designed features for large scale genome projects; an efficient and sensitive procedure
for finding real overlaps, a procedure for scoring overlaps that achieves high accuracy by correcting
errors before assembly, read merger based on forward-reverse links, and detection of repeat contigs
by forward-reverse link consistency. The outline of the ARACHNE assembly algorithm is:

1. Overlap detection and alignment: Pairwise overlaps are computed by a three step process: (a)
identify all k-mers (they used k = 24) and merge overlapping shared k-mers, (b) extend the
shared k-mers to alignments, and (c) refine the alignment by dynamic programming.

2. Error correction: Sequencing errors are detected and corrected by generating multiple align-
ments among overlapping reads using a majority rule based on quality base score (by Phred).

3. Evaluation of alignments: Each alignment is evaluated by an overall penalty score for an
alignment which combines individual discrepancy in base calls (considering the quality score).
Overlaps incurring to a high penalty score are discarded. This step detects repeats and
chimerical reads.
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4. Identification of paired pairs: Complexes of paired pairs are built by starting with combining
two overlapping paired pairs at both ends and iteratively adding paired reads matching both
ends.

5. Contig assembly: First, potential repeat boundaries are identified by trying to align fragments
that extend the same fragment. The all fragment reads are merged and extended until a
repeat boundary is reached.

6. Detection of repeat contigs: Once contigs are assembled, contigs that are potentially misas-
sembled due to repeats are identified by two criteria, one to check the depth of coverage and
another to check the consistency of links to other contigs.

7. Creation of supercontigs: After marking repeat contigs, unmarked contigs are oriented and
ordered based on forward-reverse links.

8. Filling gaps in supercontigs: Once the scaffold of contigs are generated, gaps between CON-
TIGS are attempted to be filled using repeat contigs.

We will review techniques used in ARACHNE in detail below.

4.12.1 The alignment module

The alignment module is used to align fragment reads to reads, reads to contaminants, contigs to
each other. It works in four phases as below.

1. The phase 1 makes a list of all k-mers that appear in the sequences and their reverse com-
plements.

2. After sorting the k-mer records, each record is processed as below (any k-mer that occurs
more than a specified threshold times is not processed). Each k-mer hit is extended to a
long, imperfect, but gap-free partial alignments (no mismatches at the ends of the extended
match).

3. The phase 3 generates a full alignment of a pair of reads from the extended k-mer hits by
filling in bases between consecutive extended k-mer hits.

4. Using the banded Smith-Waterman algorithm, each full alignment in the phase 3 are refined.
Each final alignment is assessed using the quality scores, a penalty score is computed. An
alignment with a penalty score higher than a preset threshold is discarded.

4.12.2 Contig assembly

Reads are merged into contigs up to potential repeat boundaries. Repeat boundaries are detected
by looking for inconsistency in extending overlaps. For example, suppose that a read r can be
extended by both x and y, but x and y do not overlap each other. Then a repeat boundary can
be detected by aligning x and y. However, this could result in detecting too many potential repeat
boundaries. Thus ARACHNE uses two techniques, dominated reads and subreads, to eliminate
spurious repeat boundaries.

36



4.12.3 Detecting repeat contigs and repeat supercontigs

Two heuristics are used to detect contigs and supercontigs that are misassembled due to repeats.

1. Density of reads: ARACHNE computes the log-odds ratio,

log(
a given density of reads representing a unique region of genome

a density representing at lest two copies of a repeated regions
)

Any contigs with a log-odds ratio less than 1 are marked as repeated. This technique is used
in the CELERA assembler (see Section 4.11).

2. Consistency of forward-reverse links: For two contigs A and B, the distance between two is
estimated whenever there are at least two links. The mean and standard deviation, de-
noted by d(A,B) and ERR(A,B) respectively, are computed and used for detecting repeat
(super)contigs with two rule explained below.

(a) Rule1: If d(A,B) < −2000 − 4 × ERR(A,B) then the (super)contigs are marked as
repeated.

(b) Rule2: if contig A is linked to both B and C, then from d(A,B) and d(A,C) and the
lengths of B and C, we can compute d(B,C), the estimated gap or overlap length between
B and C. If d(B,C) < −2000 − 4 × ERR(B,C) then A is marked as repeated.

4.12.4 Supercontig assembly

Once contigs are assembled and repeat contigs are marked, supercontigs are built incrementally
using unmarked contigs. To make this procedure recursive, every contig becomes a supercontig and
then merged incrementally using a priority queue Q. During each round of merging, the following
steps are performed.

1. Extract from Q the pair of supercontigs, S1, S2, with the highest priority score.

2. Merge S1, S2, creating supercontig T.

3. Remove all pairs in Q where one of the two supercontigs is either S1 or S2.

4. Find all supercontigs W that share forward-reverse links to T, and insert (T,W) into Q.

5. Apply Rules 1 and 2 for marking repetitive supercontigs, to mark T or any supercontig W
linked to T. For any supercontig marked as repetitive, remove all pairs in Q containing it.

4.12.5 Filling gaps in supercontig

Gaps are filled using graph based algorithms.

1. First a Graph G = (V,E) is defined, where V is the set of contigs and an edge connects two
contigs if they are known to overlap. Then for every pair of contigs, the shortest path between
contigs A and B, dp(A,B), is computed.

2. The shortest path information is stored in a new graph, Gpaths(V,Epaths), where Epaths cor-
respond to the computed shortest paths.
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3. For every pair of contigs A,B that are consecutive in a supercontig S, ARACHNE attempts
to fill the gap as follows.

(a) If (A,B) is in EPATHS , that is, a path has already been computed for A,B, then simply
fill the gap with the contigs in the path.

(b) Otherwise, first find every contig T that shares forward-reverse links with W, and such
that from these links T is positioned between A and B in W (Fig. 12B). The set of all
such contigs is called the set of targets, VT .

(c) Using breadth-first search, look in GPATHS for a path from A to B that uses only nodes
in VT . If a path is found in GPATHS from A to B, this corresponds to a path p in G
from A to B. Use the ordered contigs in p to fill the gap between A and B.

4.13 EULER

In Section 4.4, we reviewed an approach, proposed by Idury and Waterman [17], to assemble
fragment data by combining sequencing by hybridization [5, 35] and shotgun sequencing. This
method has recently been further developed by Pevzner, Tang, and Waterman [34]. The proposed
approach uses the Eulerian superpath approach and does not employ the traditional ”overlap-
layout-consensus” approach. As in the Idury and Waterman approach, a de Bruijn graph, denoted
by G, is constructed using tuples of length l and the Eulerian path of the graph is computed for
sequence assembly (see Section 4.4). However, there are two major differences in two approaches,
of EULER and of Indury and Waterman.

1. Errors in fragments results in a tangle of erroneous edges, which becomes a major hurdle in
computing the Eulerian path. EULER tries to correct as many errors in fragments as possible
before computing the Eulerian path by solving the error correction problem.

2. EULER solves the Eulerian superpath problem where a series of transformations of an Eule-
rian graph and collection of paths to a new graph and collection of paths are made to compute
a solution to the sequence assembly problem.

4.13.1 Error correction and data corruption

To correct errors in the input shotgun data, we need to know the target sequence. However,
the target sequence is supposed to be assembled using the (erroneous) input shotgun data. This
seemingly impossible task is nicely formulated as computing Gl, the set of all tuples in G. Of
course, Gl is unknown but their strategy is to approximate Gl without knowing the sequence of
G. Two problem formulations are proposed to eliminate errors in the shotgun data, the spectral
alignment problem and the error correction problem. According to the authors’ experience, the error
correction problem formulation captures the specifics of DNA sequencing and it is more effective
that the the spectral alignment problem formulation. Thus we discuss the error correction problem
only.

The error correction problem Let S = {s1, ..., sn} be a collection of reads, and ∆ be an upper
bound on the number of errors in each DNA read, and l be an integer for the length of a pattern.
given S,∆ and l, introduce up to ∆ corrections in each read in S in such a way that |Sl|, i.e., the
set of all l-tuples from S, is minimized.
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The basic idea comes from an observation that a single error in a read s affects at most l l-tuples
in s and l l-tuples in the reverse complement of s that point to the same sequencing error (2d for
positions within a distance d < l from the endpoint of the reads). EULER employs the greedy
approach that looks for error corrections in the reads that reduce the size of Sl by 2l (or 2d for
positions close to the endpoints). This greedy procedure sometimes introduces errors rather than
correcting errors. For example, this procedure corrected 234,410 errors and introduced 1,452 errors
in the N. meningitidis genome project. the authors argue that introducing errors is not bad as long
as consistent overlaps can be detected so that false edges in the de Bruijin graph can be reduced
(the errors can be corrected later).

4.13.2 Eulerian superpath

Once the |Sl|, the set of all l-tuples from S = {s1, ..., sn}, is computed by solving the error correction
problem, the de Bruijin graph G(Sl) with vertex set Sl−1 (the set of all l − 1-tuples from S =
{s1, ..., sn}) is computed as follows. A directed edge from an l − 1-tuple v ∈ Sl−1 to another
w ∈ Sl−1 is added if Sl contains an l-tuple whose the first l − 1 prefix coincides with v and whose
the last l − 1 suffix coincides with w.

Terminologies A path v1, ..., vn in the graph is called repeat if indegree(v1) > 1, outdegree(vn)
> 1, and indegree(v1) = outdegree(vi) = 1 for 1 ≤ i ≤ n − 1. A read-path covers a repeat if it
contains an entrance into and an exit from this repeat. A repeat is called tangle if there is no
read-path containing this repeat.

Eulerian superpath problem Given an Eulerian graph and a collection of paths in this graph,
find an Eulerian graph path in this graph that contains all these paths as subpaths. The Eulerian
superpath problem is solved by transforming both the graph G and the system of paths P into
a new graph G1 and a new system of paths P1. Such transformation is called equivalent if there
exists a one-to-one correspondence between Eulerian superpaths in (G,P ) and (G1, P1). The goal
is to make a series of transformations

(G,P ) → (G1, P1) → ... → (Gk, Pk)

where the final system of paths Pk are single edge. Due the equivalent transformations, every
solution of the Eulerian superpath problem in (Gk, Pk) provides a solution of the Eulerian superpath
problem in (G,P ), i.e, contigs.

The transformations are implemented using two techniques, detachment and cut. The x,y-
detachment is a transformation that adds a new edge z=(vin, vout) and deletes the edges x and
y from G (see Figure 20 for more detail). The x-cut is a transformation that removes the edge
x from all paths that contain the edge (see Figure 21 for more detail). The authors claims that
detachments and cuts are powerful techniques to untangle the graph and to reduce the fragment
assembly to the Eulerian Path Problem for bacterial genomes that the authors used for.

4.13.3 Use of clone-mate information

There are two EULER programs that utilize the clone mate information, EULER-DB and EULER-
SF. EULER-DB tries to untangle repeats using the clone-mate information by treating each clone-
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mate pairs as artificial paths in the graph with their expected lengths. EULER-SF generates
scaffolds using the clone mate information.

5 Methods for Detecting Misassembly

The existence of repeats in the genome can easily lead to misassembly of contigs. The most ac-
curate method to detect such misassembled contigs is to perform wet-lab experiments. However,
this is time-consuming and requires a carefully designed experiments. Rouchka and States [42]
summarizes such techniques and proposed a computational technique for wet-lab experimental re-
sult for contig assembly verification. The wet-lab experiments discussed in the paper include high
clone coverage maps, multiple complete digest mapping, optical restriction mapping, and ordered
shotgun sequencing [42]. Recently, several computational techniques without using wet-lab exper-
iments have been developed. These techniques can be developed as separate computational tools
[23, 24] or embedded in the sequence assemblers. The assembly validation techniques embedded in
the sequence assemblers are reviewed in Sections 4.12, 4.11, and 4.10.

5.1 A clone coverage analysis approach

A sequence assembly validation method based on the coverage of clone is proposed recently [23].
This approach works in three steps as below.

1. Contigs are oriented and ordered.

2. The estimated lengths for all library clone types are computed and clones are classified into
two classes, bad clones whose length deviate much from the expected clone length and good
clones whose length is within an acceptable range of the expected clone length.

3. A good-minus-bad clone coverage plot is computed for each contig by subtracting the number
of bad clones from the number of good clones.

The basic idea is simple. Any region where more bad clones are aligned than good clones is likely
to be misassembled. This approach successfully identified positions of misassembly, i.e., where the
misassebly begins and ends while many other approaches are intended to identify whether a contig
as a whole is misassebled or not.

5.1.1 Determination of contig orientations and orders

We define terminologies that denote different regions of a clone.

Definition 1 The forward fragment, C.f, is the sequence read at one end of a clone C and the

reverse fragment, C.r, is the sequence read at the other end of the clone C. The sequenced

region of a clone is a region covered by the fragments at both ends of the clone. The unsequenced

region of a clone is a region not covered by either C.f or C.r. Clone length of a clone C,
length(C), is the sum of the sequenced and unsequenced regions of the clone. Inner-clone length

is the length of unsequenced region. See Figure 22.
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Figure 22: Illustration of clone regions showing the sequenced regions (C.f and C.r) , unsequenced
region, clone length, and inner-clone length.

C.rC.f

C.f

Contig1 Contig2 Contig1 

RC(C.r)

length of C

RC(Contig2)

RC(C.r)C.f

Contig1 Contig2Contig1 Contig2

length of C

RC(C.r)
C.f

Figure 23: Contig ordering and determination of inter-contig clone length. RC(seq) denotes the
reverse complement of a sequence (seq).

Definition 2 An embedded clone, C, is a clone where C.f and C.r are aligned in the same contig.
An inter-contig clone, C, is a clone where C.f and C.r are aligned in two different contigs.

We compute the average clone length for each library clone type by computing the mean value
of all embedded clones. Because inter-contig linkages are not reliable, inter-contig clones are not
included when the average clone length is computed. However, all clones, including inter-contig
clones, are considered when we classify clones into good clones and bad clones (see Definition 4).
To compute the clone length of an inter-contig clone, orientation of contigs is first defined.

Definition 3 Contig ordering rule: Assume an inter-contig clone C that links two contigs,
Contig1 and Contig2. The two contigs can be ordered with respect to clone C. There are four
possible cases in terms of alignments of C.f and C.r in the contigs. If C.f is aligned in Contig1 and
C.r is aligned in Contig2, then the order is Contig1 followed by the reverse complement of Contig2.
If C.f is aligned in Contig1 and the reverse complement of C.r is aligned in Contig2, then the order
is Contig1 followed by Contig2. In the remaining two cases, contigs can be similarly ordered.
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Figure 24: The fragment coverage (left) and the clone coverage plot (right). There is a misasembled
region from 89,415 to 90,332 where the fragment coverages are not distinctly high but the valleys
in the clone coverage plot are distinct, effectively identifying the misassembled region.

5.1.2 The classification of clones

Given an order of contigs with respect to a clone C, the length of C can be easily computed (see
for Figure 23). Then, clones can be classified into good clones and bad clones with respect to the
clone length v.s the average clone length as described below.

Definition 4 An embedded clone C is a good clone, if length(C) < 2× the average clone length.
Otherwise, C is a bad clone.
An inter-contig clone C is a bad clone if length(C) ≥ 2× the average clone length.

Because the length of a gap between two contigs is not known, good clones cannot be reliably
defined for inter-contig clones.

Definition 5 seq(x,y) denotes a subsequence of a sequence seq from base position x to base
position y.

5.1.3 The good-minus-bad clone coverage analysis

Good clone coverage is computed by counting how many sequenced regions of good clones cover
the base position. Bad clone coverage is computed by counting how many sequenced regions of
bad clones cover each base position. The goal of this analysis is to compute how many good
(trustworthy) clones and bad (untrustworthy) clones are aligned in contigs. This simple analysis
is effective in identifying positions where misassembly begins and ends. For example, there is
a misassembled region from 77222 to 78496 base positions in the contig 7 in the assembly of
Mycoplasma genitalium genome generated using Phrap [36] with default parameters. Almost exact
positions can be identified using the good-minus-bad clone coverage plot in Figure 25. As shown
in Figure 24, this approach clearly discriminate misassembled regions from correctly assembled
regions.
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Figure 25: Expanded view of the two valley regions in Contig 7. Cross match found three parts
of C7 match different segments of the published genome: C7(34,78496) matches (351169,429610),
C7(77222,82533) matches (226188,231457), and C7(81660,117375) matches (314173,349879). The
boundaries of the misassembled regions are 77222, 78496, 81660, and 82533 base positions. The
start and end positions of the valley region (< 0) correspond to boundaries of misassembled regions.

5.2 A probabilistic approach

This approach[24] identifies misassembled regions using entropy plots that are computed using
statistics on the number of patterns per fragment. To compute entropy of fragments, we need
to construct a probability model that measures how much each aligned fragment contributes to
misassembly. The probability model is built using the fragment distribution, a measure used for
repeat handling in a sequence assembler called Amass[21]. We first describe how to collect the
fragment distribution from a shotgun data.

5.2.1 Fragment distribution

A fixed number of non-overlapping patterns from each fragment are selected at random positions.
Once all patterns are selected from all fragments, occurrences of the selected patterns are found
in the entire shotgun data using a fast multiple string pattern matching algorithms[26]. A plot
of the number of patterns in a fragment vs. the number of fragments is then generated. Figure
26 shows how to calculate the fragment distribution. Note that the fragment distribution is a
fragment-centric distribution that counts multiple pattern occurrences within a fragment.

The rationale behind using this distribution for repeats handling is as follows. We select patterns
that are long enough and therefore unlikely to occur by chance. For instance, if we use patterns of
16 bp, then patterns of that size occur only once by chance in a sequence of 4,294,967,296 bp (= 416)
as there are four characters in DNA. Thus, the common occurrences of a pattern reflect with high
probability true overlapping fragments. What we are collecting is a distribution of the number
of such patterns within a fragment. Because we consider multiple patterns and their positions
(within a fragment), the distribution should reflect the characteristic of the shotgun sequencing
strategy, i.e., random selection of fragments. Thus, the distribution is expected to look like a
normal distribution centered around a mean value. Repeats, of course, will distort the distribution
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Figure 26: A sample fragment distribution

since any pattern that belongs to a repeat will exhibit an increased number of pattern occurrences.
Thus, abnormally high number of pattern occurrences in a fragment with respect to the peak value
of the fragment distribution indicates possible repeats. Consequently, the higher the number of
patterns occurrences in a fragment, the more likely this fragment will contribute to misassembly.
The probability model simply reflects this observation.

5.2.2 The probabilistic model

From the fragment distribution, we construct a probability function that models how much each
fragment contributes to misassembly. As we discussed in the previous section, we expect the
fragment distribution to reflect the characteristic of the shotgun data, i.e., randomness of fragment
selection, when there are no significant repeats. Thus the contribution of a fragment to misassembly
can be seen by how much the fragment is deviated in terms of randomness of fragment selection.
One way to measure the degree of deviation is to compare the fragment distribution to the fragment
coverage distribution. Unfortunately, the coverage distribution is not known. However, it could be
approximated by sampling coverage distributions from many short assembled regions.

For now, we use an ad hoc probability model based on the observation that a fragment with more
pattern occurrences is likely to lead to misassembly. The probability that a fragment f contributes
to misassembly is computed as below:

prof(fi) =0.001 if number of patterns in fi < 2 × pv

0.01 if 2 × pv ≤ number of patterns in fi < 3 × pv

0.1 if 3 × pv ≤ number of patterns in fi < 4 × pv

0.889 if 4 × pv ≤ number of patterns in fi

where pv denotes the peak value in the fragment distribution.
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Figure 27: A fragment distribution from gmg shotgun data with 2 patterns of 16 bp per fragment.

5.2.3 Computing entropy

From the probability model, we compute entropy at base position p in a contig as below:

entropy(p) =
∑

p−δ≤pos(fi)≤p+δ

−prob(fi) × log(prob(fi))

where pos(fi) denotes the left end position of fi in the contig and δ is a user input parameter (by
default, it is the same as the window size used for the fragment distribution calculation).

As shown in Figure 28, this approach clearly discriminate misassembled regions from correctly
assembled regions.

6 Methods for Scaffold Generation

Recently developed sequence assembler packages include a scaffold generation module that generate
scaffolds of (pre)assembled contigs [34, 20, 30, 3, 15]. Here, we survey three scaffolding techniques,
CELERA scaffolder [16], and Gigassembler [20] (see Section 4.10 for CAP3 [15]). In contrast,
there is a proposal for a genome sequencing framework to enumerate scaffolds in an exploratory,
hierarchical fashion [25], which has been tested with much smaller genome, Agrobacterium [27].

6.1 Gigassembler

Gigassembler [20] is an algorithm to assemble contigs, map, mRNA, EST, and BAC end data and
generate scaffolds of a genome. It was used for the Human genome assembly on the public side [28].
This is a second-stage assembler after PHRAP [36] or any assemblers. The overview of assembly
process is as follows.

1. Decontaminating and repeat masking the sequence. Repeatmasker [40] is used to mask known
repeats and contaminants from bacteria, vectors, and others.

2. Aligning mRNA, EST, BAC end, and paired plasmid reads against initial sequence contigs.
See the paragraph “Bridging rafts with mRNA, ESTs, paired plasmid reads, BAC end data.”
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Figure 28: The fragment coverage (left) and the entropy plot (right). There is a misaasembled
region from 89,415 to 90,332 where the fragment coverages are not distinctly high but the peaks in
the entropy plot are distinct, effectively identifying the misassembled region.

3. Creating an input directory structure using map and other data. For the Human genome,
they used Washington University map data. A directory is created for a chromosome and a
subdirectory for each fingerprint clone contig.

4. For each fingerprint clone contig, aligning the initial sequence contigs within that contig
against each other.

5. Using the GigAssembler program within each fingerprint clone contig to merge overlapping
initial sequence contigs and to order and orient the resulting sequence contigs into scaffolds.
See the paragraph “Building a sequence path.”

6. Combining the contig assemblies into full chromosome assemblies.

6.1.1 Alignment of mRNA, ESTs, BAC Ends, and Paired Reads

Contigs are oriented and ordered by aligning mRNA, ESTs, BAC ends, and paired reads to contigs
using a program called psLayout, which works as follows.

1. Build up an index of all of the 10-mers in a 30-Mb subset of the target sequence, excluding
simple repeating elements from this index.

2. Break up the query sequence into overlapping 500-base regions.

3. Look up the 10-mers that occur in the 500-base region in the index and identify clusters of
matching 10-mers in the target sequence that represent likely areas of homology.

4. Do a detailed alignment between the 500-base region and the sections of the target sequence
identified in step 3. In the case of mRNAs and ESTs this alignment is done in a fashion that
tolerates introns.

5. Stitch together the alignments from overlapping 500-base regions using a dynamic program-
ming algorithm.
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PsLayout reports all matches above a certain minimal quality between query sequences and database
sequences. To reduce the effects of repeats, two techniques are used. The first technique is to use
repeats sequences (repeats are not masked although they are detected by RepeatMasker). The sec-
ond technique is to maintain “near best” matches only, which means discard matches (even good
ones) if they are below the best match.

6.1.2 The Gigassembler

The Gigassembler operates in many steps. Before detailing the each step, an overview is given
below.

1. Build merged sequence contigs, called rafts, from overlapping initial sequence contigs. See
the paragraph “The Construction of rafts.”

2. Build sequenced clone contigs, called barges, from overlapping clones. See the paragraph
“Ordering clones for constructing barges.”

3. Assign default coordinates to initial sequence contigs.

4. Build a raft-ordering graph. This is a directed graph with two types of nodes: rafts and
sequenced clone end points. See the paragraph “The raft-ordering graph.”

5. Add information from mRNAs, ESTs, paired plasmid reads, BAC end pairs, and ordering
information from the sequencing centers. The resulting graph is called a bridge graph. See
the paragraph “Bridging rafts with mRNA, ESTs, paired plasmid reads, BAC end data.”

6. Walk the bridge graph to get an ordering of rafts. Each bridge is walked in the order of the
default coordinates assigned in step 3 subject to the constraint that if a raft has predecessors,
all the predecessors must be walked before the raft is walked.

7. A sequence path through each raft is built. See the paragraph “Building a sequence path.”

8. Build the final sequence for the fingerprint clone contig by inserting the appropriate number
of Ns between raft sequence paths.

The Construction of rafts A score to each aligning pair is assigned, and then the alignments
are processed from the best scoring alignment to least ones. The raft building procedure is similar
to the contig building procedure with analogy of rafts to contigs and with analogy of input contig
sequences to fragment reads. The main issue is the scoring function. The scoring function strongly
favors overlaps that are unique, weakly favors overlaps that are repeat masked, strongly discourages
sequence mismatches and inserts within the aligning blocks, and moderately discourages tails (the
shorter end of a contig in an alignment).

Ordering clones for constructing barges Barges are constructed in a similar fashion where
the clone overlap is the sum of all initial sequence contig overlaps. The overlaps are used to order
the clones in the following manner.

1. Clones that are completely enclosed by another clone are put aside.
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2. A clone is selected and the most overlapping other clone is joined with it to initialize an
ordered list of clones.

3. Given an ordered list of clones ABCD, though there are still clones in the fingerprint clone
contig that significantly overlap clones in this list, the clone X that overlaps as much as
possible with another element on the list is selected and inserted into the list as follows:

(a) If X overlaps A but not B, the order becomes XABCD.

(b) If X overlaps A and B, and overlap(A,B) < overlap(A,X) and overlap(A,B) < over-
lap(B,X) then the order becomes AXBCD. Here, overlap(A,B) is the total number of
bases in the overlaps between the initial sequence contigs of A and the initial sequence
contigs of B.

(c) Otherwise, above two steps are repeated, shifting the list so that C is considered in place
of B and B in place of A.

(d) If there are still clones left in the fingerprint clone contig that have not been added to
the ordered list after the iterations of the above steps cease, then a new barge is started
to accommodate the remaining clones.

4. The order of the clones in each barge is compared to the fingerprint map, and if the barge
looks backwards the order of its clones is reversed.

5. Barge coordinates are given in the following manner:

(a) The first clone is given an offset of zero.

(b) For the nth clone, Offset(n + 1) = Offset(n) + Size(n) Overlap(n,n + 1), where the size
of a clone is defined as the total length of all its initial sequence contigs.

6. Clones that are completely enclosed are given the coordinate: Offset(inner) = Offset(outer)
+ (Size(outer) Size(inner))/2

The raft-ordering graph Once the orientation and order of clones are determined while con-
structing barges, rafts (merged sequence contigs) can be ordered. To understand what is happening
at this stage, see Fig. 29.

Bridging rafts with mRNA, ESTs, paired plasmid reads, BAC end data This informa-
tion is used to connect rafts in the raft ordering graph in a three-step process. The resulting graph
is called a bridge graph.

1. Build a bridge out of alignments of other data with initial sequence contigs.

2. Scoring the bridge. The score function for bridges is the sum of two factors. The first factor
is based on the type of the information. mRNA information is given the highest weight, then
paired plasmid reads, information provided by the sequencing centers, ESTs, and BAC end
matches, in that order.

3. Add bridges one at a time, best scoring first, to the ordering graph.
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Figure 29: How to build a raft-ordering graph. Six initial contigs (a1,a2,b1,b2,c1,c2) are aligned
to three clones (A,B,C) (top figure), an ordering graph of clone starts and ends is given (middle
figure), and the final raft-ordering graph after adding in rafts to the ordering graph (bottom figure).
Form the top figure, we can construct three rafts, a1b1a2, b2c1, and c2, based on their overlaps.
Then an ordering graph of clone starts and ends can be constructed based on the positions of clone
start and end positions as in the middle figure. The node names As and Ae denotes the start and
the end of a clone A respectively. Finally, the three rafts are added to the ordering graph as in the
bottom figure.
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Building a sequence path

1. Find the longest, most finished initial sequence contig that passes though each section of the
raft.

2. Put the best initial sequence contig for the first part of the raft into the sequence path.

3. Find an alignment between the best initial sequence contig for the first part of the raft and
the best initial sequence contig for the second part of the raft.

4. Search for a ‘crossover point’ in the alignment where it would be reasonable to switch the
sequence path to the next initial sequence contig. This crossover point is ideally 250 bases from
the end of the larger, more finished initial sequence contig, but may be adjusted depending
on the exact alignment.

5. Repeat steps 3 and 4 to extend the sequence path until the end of the raft is reached.

6.2 The CELERA Scaffolder

The CELERA Scaffolder[16] uses a greedy algorithm using the graph structure. The input data is
CELERA scaffolds (see Section 4.11) and BAC sequences available in the public domain. The goal
is to generate scaffolds of a genome using the both data. We briefly sketch the algorithm.

1. The bactig graph is constructed by a transitive reduction technique on bundled clone mate
edge sets. See “Bactig graph construction” below.

2. Bactig orders are determined by a greedy path-merging algorithm. See “The path-merging
algorithm” below.

6.2.1 Bactig graph construction

Bactigs are contiguous sequences from a common source region obtained by shotgun strategy and
assembly process. In the input data, there are four different types of library clones of lengths, 2k,
10k, 50k, and 100k. The graph is constructed in three steps.

1. The initial graph: A bactig graph G is a weighted, undirected multi-graph, without self loops.
Each bactig Bi gives rises to precisely two nodes v, w in the graph and an edge e connecting
v and w. Then, an edge e is associated with a standard deviation σ(e) of length variation.

2. Edge bundling: Let M denote the set of mate edges between nodes, v and w. Edges are
bundled by first greedily choosing a median-length mate edge e′ ∈ M , whose length l(e′) is
within 3σ(e) of l(e) and then bundling all of these with e. The weight of an edge e w(e) is 1 if
e is a simple mate edge and

∑k
i=1 w(ei) if e is obtained by bundling k mate edges {e1, ..., ek}.

3. Transitive reduction: This step is to transitively reduce long mate edges. Recall that there
are four types of library clones of lengths, 2k, 10k, 50k, and 100k. By transitively reducing
long edges from larger clone library, there is no jumping edges in the ordering, which can
cause ambiguity in ordering. A mate edge e from v to w can be transitively reduced on to the
path p if e and P have approximately the same length (three times of variation). If this is
the case, the edge e is removed from the graph and the weight for every mate edge mi in P
is increased by w(e). In this way, the final bactig graph is constructed.
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6.2.2 The path-merging algorithm

First, the bactig ordering problem is defined and a heuristic algorithm called a greedy path-merging
algorithm is proposed. They classified edges into happy edges and unhappy edges. The happy edge
is an edge whose length is within three times of length variations. Otherwise, an edge is unhappy.11

The bactig ordering problem Given a bactig graph G, find an ordering φ of G that maximizes
the sum of weights of happy edges.

The path-merging algorithm works as follows. Initially, all bactigs are selected. An edge e is
selected in the descending order of weight. Then two paths P1 and P2 incident to e are considered
for merging. If merging the two paths gains as much weight for happy edges as for unhappy edges,
the two paths are merged. Refer to [16] for more detail).

6.3 An exploratory genome sequencing framework

A genome sequencing framework[25] is developed as an effort for microbial genomics project at
DuPont, and has been successful in assembling several bacterial genomes including Agrobacterium
[27]. A schematic overview of the whole procedure is depicted in Figure 30.

This search framework is not designed to determine single base reads accurately but to search
for a set of correctly assembled contigs and their orderings. To achieve this task, two issues should
be addressed:

1. How do we know whether contigs are assembled correctly? We developed several methods
for identifying misassembled regions in contig assembly: clone coverage analysis [23] and a
probabilistic approach [24].

2. How can we utilize clone mate information? When fragments are read, two end sequences
of the same clone are usually read; this method is known as double barreled sequencing [31].
Several assembly packages were successful in incorporating the clone mate information into
the assembler [44] and generation of scaffolds of contigs [48]. However, utilization of this
information is quite limited mainly due to the fact that two end fragments of a clone, say of
10kb, are not connected and connecting the two end fragments by aligning other fragments
becomes a small scale sequence assembly problem itself. In general, multiple library clone
types of different sizes (2kb, 10kb, 40kb, and 100kb) are strategically used for genome-scale
sequencing. This makes the utilization of clone information even harder. The framework
in Figure 30 is designed to combinatorially enumerate sequence assemblies in an iterative,
hierarchical fashion. The hierarchy is necessary to utilize clones of various length. An iterative
procedure is necessary since we are not sure of contig ordering or clone layout. As the iterative
procedure proceeds, it is the users who make a decision on whether the current assembly is
correct or not; thus, the procedure needs user input.

This approach can be viewed as “a hypothesis generation and validation paradigm” in search
of a set of correctly assembled contigs and their ordering. All decisions made at user interaction
points are hypotheses that will be subsequently tested with larger clones in the next step. This
approach was successful in assembling several genome sequences. For example, 502 contigs in the

11Interestingly, a contig validation method [23] classifies clones into bad clones and good clones (see Section 5.1
also).

52



a set of DNA fragments

a set of contigs

clone linkage
information

Large clone
linkage
information

a set of groups of contigs

a set of groups of groups

 

Ordering Contigs

Sequence Assembler

Ordering Groups

Assembly validation

Split Contigs

Figure 30: A framework for genome sequencing. This framework is to search for a set of correctly
assembled contigs and their ordering in an iterative fashion.

Phrap assembly of the Agrobacterium shotgun data were grouped and ordered into only 15 sets of
contigs (the largest set longer than 2Mb) using a web interface in a single iteration of our genome
sequencing framework. Given that there are four replicons in Agrobacterium genome, this result is
very encouraging and closer to complete sequencing.

7 Discussion

7.1 Trends in Genome Sequencing

Genome sequencing still remains an open problem. However, recent advances in computational
techniques made it possible to sequence very large eucharyotic genomes including Drosophila
melanogaster [30] and the Human genome [28, 48].

We will discuss recent recent trends in genome sequencing strategies.12

1. To achieve very large scale genome sequencing, it is necessary to have the input shotgun data
of very high quality (see [30]). Otherwise, is is not possible to distinguish repeats from errors
in the shotgun data. What is really interesting is that recent assemblers attempt to correct
errors in the input shotgun data before sequence assembly [34, 3]. There is no guarantee to
correct errors without knowing the target sequence. Indeed, EULER names this procedure as
data corruption instead of error correction. Nonetheless this is a proven technique that works
for difficult sequence assembly.

2. Repeat boundaries are identified before sequence assembly and contigs are assembled up
to the boundaries [30, 3]. Like the error correction, there is no guarantee to identify the

12This discussion is preliminary and is not intended to extensively cover all issues in achieving such very large scale
genome sequencing.
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repeat boundaries correctly without knowing the target sequence, but this is another proven
technique.

3. Computational techniques to ensure the correctness of contigs assembly becomes more impor-
tant. Correctness can be checked using the characteristics of the shotgun data, i.e., random
sampling.13 There are two ways to utilize the characteristics of data, on the fragment level
[30, 3, 15, 44] and on the clone level [3, 15, 23]. There is also an interesting approach based
on pattern statistics [24].

4. Clone-mate information and base call quality values become an essential data for genome
sequencing.

7.2 Incompleteness of the survey

Genome sequencing is a very important problem in biology but it is a very difficult computational
problem. As a result, there has been a lot of research on computational techniques. Although
we surveyed 13 different assembly programs and several computational techniques on sequence
assembly validation and scaffold generation, this survey is not complete by any means. There
are many assemblers we wished to include. Among them are STROLL [6], a trie-based sequence
assembler, and the Staden package [39], which is also widely used sequence assembly package. In
addition, the genome sequencing is still unresolved14 and more sophisticated techniques will be
continuously developed.
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