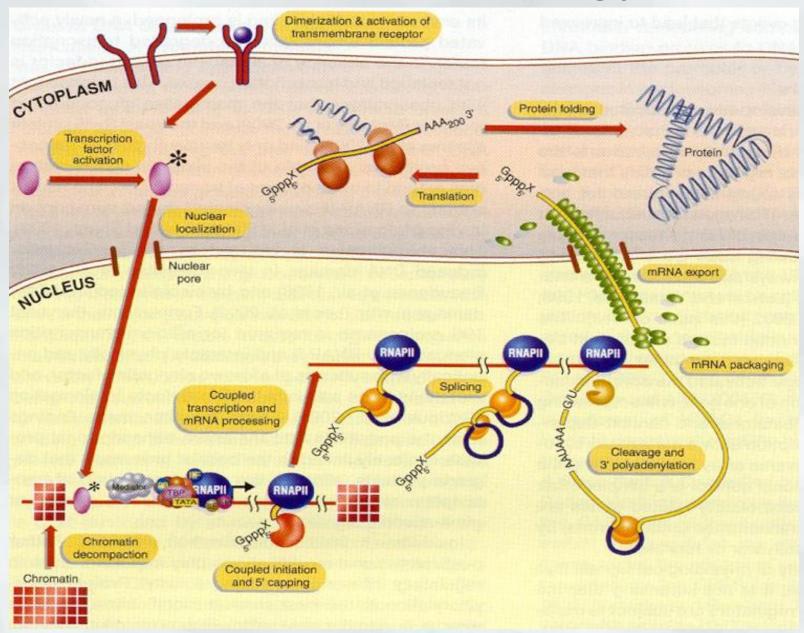
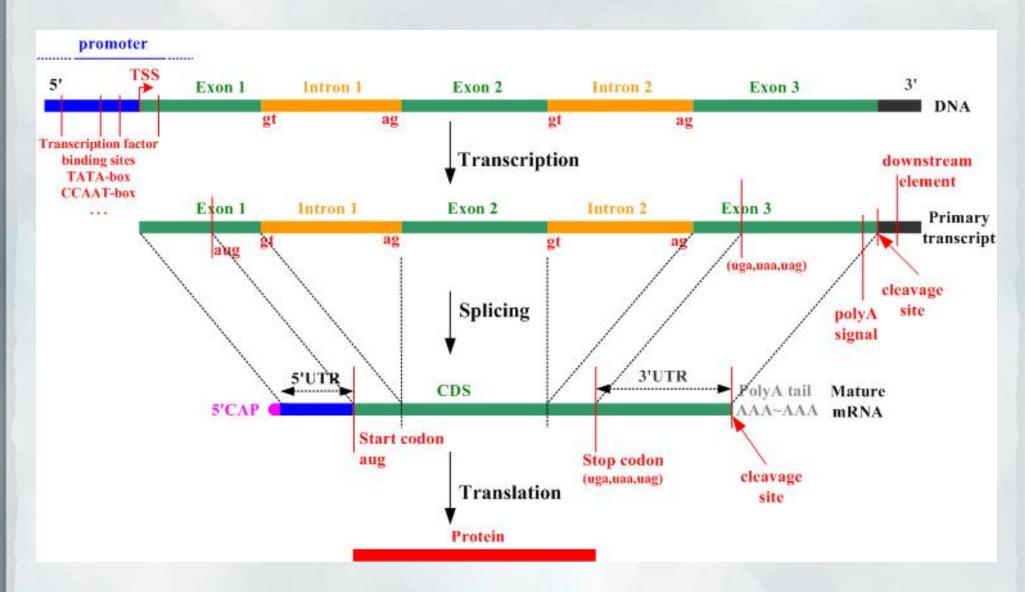
Discovery of Regulatory Elements by a Computational Method for Phylogenetic Footprinting


Mathieu Blanchette and Martin Tompa

Presented by Ben Bachman

What is a regulatory element?


- In promoter region upstream of transcription
 - o sometimes in introns/UTR
- Regulates gene expression
- Not expressed itself
- Are conserved through evolution
- Implicated in many diseases:
 - Asthma
 - Thallassemia reduced hemoglobin
 - Rubinstein mental and physical retardation
 - Many cancers
- Problem: different properties than exons

How does this fit into biology?

G. Orphnides and D. Reinberg (2002) A Unified Theory of Gene Expression. Cell 108: 439-451.

How does this fit into biology?

http://kachkeis.com/img/essay3_pic1.jpg

Goal: Detection of TF Binding Site

- Currently analyze multiple promoters from coregulated genes, find conserved sequences
 - o Problems?
 - Must find the coregulated genes
 - Not all genes are coregulated with another
- Instead look at orthologous and paralogous genes in different species
 - Also uses evolutionary tree
 - Advantages:
 - Can work on single genes

Existing tools for the job?

- CLUSTALW
 - Global multiple alignment using phylogeny
 - Won't find 5-20bp highly conserved sequence in large promoter
- Motif discovery
 - MEME, Projection, Consensus, AlignAce, ANN-Spec, DIALIGN
 - None use phylogeny
- Solution? New tool "FootPrinter"

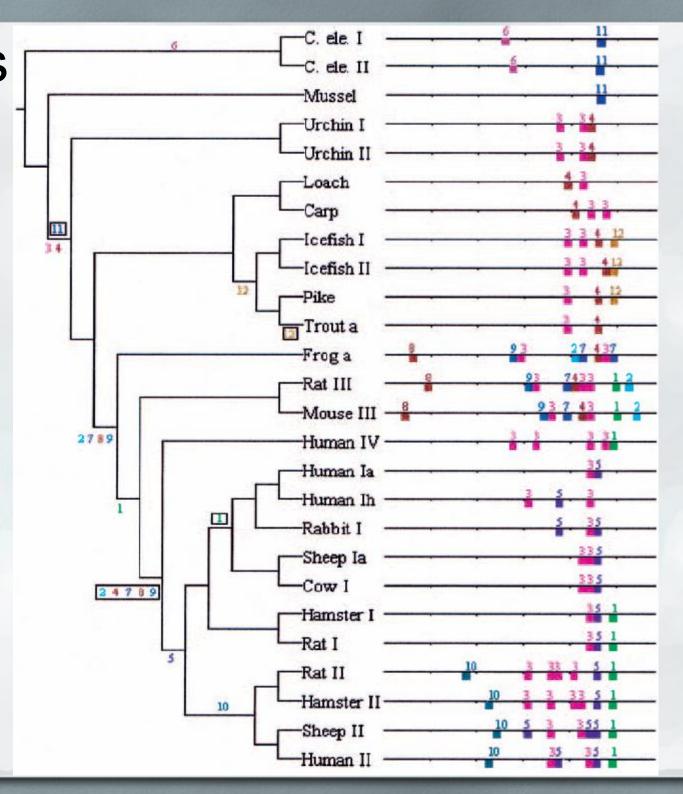
Method - Algorithm

- Dynamic programming
- For two related leaves, find the most parsimonious way to have all possible k-mers (4^k) for some value of k
 - Continue up the tree
 - Return k-mers under max parsimony score for clade
 - Work back to find locations
- Only allowed point mutations
- Allows motif loss part of parsimony score
- Requires little movement
- Validation simulated data with no conserved sequences

Method - Data Collection

- Taken from public databases
 - Genbank
 - Some already annotated
 - Some build by authors
 - ACUTS database
- Took phylogeny from previous papers
 - Taken to be gene tree (no lateral transfer)
 - Could also base it on global alignment
 - Multifurcating trees

Results


- Metallothionein Gene family
 - o many known regulatory elements
 - o proteins bind heavy metals and detoxify, antioxidant
 - Ran FootPrinter on 590 bp region upstream

Species ^(b)	Motif (length) (position)(c)	Score (species) ^(d)	Ref. ^(e)
Human (Ia, Ih, II, IV),	1. GCTATAAAc (8) (Human II, -103)	2 (see Figure 1)	1.1
rat (I, II, III), mouse	2. CATGCGCAGg (9) (Rat III, -143)	2	
(III), hamster (I, II),	 ccgTgTgCAg (8) (Human II, −239) 	9 (*)	1.2
sheep (la, II), rabbit	CGTGTGCAgge (8) (Human II, -156)	9 (*)	1.3
(I), cow (I), frog (a),	4. TTTGCACACG (10) (Pike, -142)	4	1.4
trout (a), pike, icefish	5. tgcgcccgg (8) (Human II, - 222)	5	1.5
(I, II), carp, loach,	TGCACTCG (8) (Human II, -126)	4	1.6
urchin (I, II), mussel,	 TAACTGATAAA (10) (C. ele. I, −324) 	0	
C. elegans (I, II)	7. TACACTCAG (9) (Rat III, -207)	1	
	8. TCCCACCAA (9) (Rat III, -497)	1	
	9. CAGGCACCT (9) (Rat III, -284)	1	
	10. TGCACACGG (9) (Human II, -374)	1	1.7
	11. tgtacattgtga (9) (C. elegans I, -129)	2	
	12. GCTTTAAAA (9) (Pike, -114)	0	

Results - Metallothionein

- Looked for 7, 8, 9, and 10-mers
 - vary parameters for statistical significance
- Found MREs, which bind to MTF-1 (required)
 - Metal Response Elements often have multiple copies
- Found TATA box, expected in most promoters
- Seven novel sequences
 - Non-mammallian

Results

Results - Insulin

- Smaller set of data available
 - Closely related
- Lower max parsimony score
 - 8,9,10-mers with 0,1,1 parsimony
- Found four known true positives
- Missed others
 - Too many mutations
- Claim: with more data, more would be found
- Claim: search for longer motifs, more mutations
 - 12 and 15-mers didn't find anything

Results

- C-myc Intron 2
 - Intron previously shown to have part in regulation
 - ~1000 bp
 - Found 10 conserved motifs
 - All but 1 are novel
- Other regions
 - C-myc Promoter four known, five novel
 - C-fos Promoter five known, three novel
 - C-fos first intron three motifs found
 - Growth hormone 1 five known, three novel

Discussion - False Negatives

- Binding Sites found only in a small clade
 - would need many samples
- Too short
 - would result in many false positives
- Insertions/Deletions
 - FootPrinter can handle, but false positives
- High parsimony score
- Implementation can't handle:
 - Two conserved sequences with unconserved in between
 - TGACnnnnnGCGG
 - Different substitution costs

Discussion - Other Methods

- CLUSTALW fails at highly diverged sequences
- DIALIGN mostly gets the same results as FootPrinter
 - FootPrinter did much better in metallothionein
 - Claim: Footprinter does better with weakly conserved motifs
- MEME
 - o ignores phylogeny
 - o ignores motif order
 - o did well in general, but not for metallothionein
- Quantitative comparison difficult
 - No definitive list to determine false positives/negatives

Comments

- No experimental validation of novel motifs
 - Can't tell if novel sequences are true positives
- Several unproven claims
 - would beat others in certain situations
- No quantification of performance
- Parameter selection unexplored

Conclusions

- May be better than other algorithms
 - Not definitively shown
 - Only one data set showed improvement
- More sequence would be useful
 - Most sequencing focuses on exome

Six years later...

- google scholar results
 - 168 Citations on this Footprinter paper, 92 on a later one
 - 228 hits for "FootPrinter"
- No where near CLUSTALW or DIALIGN hit counts, but seeing usage
- Example
 - o http://genome.cs.mcgill.ca/cgi-bin/FootPrinter3.0/FootPrinterInput2.pl