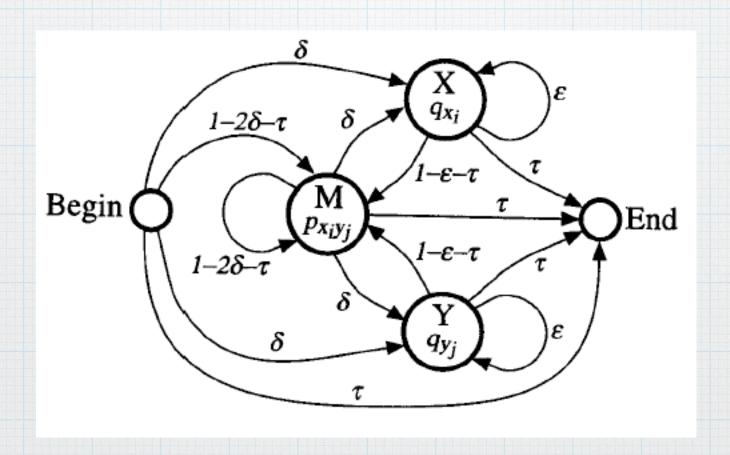
Pair HMMs and Pairwise Sequence Alignment

COMP 571 Luay Nakhleh, Rice University

Pair HMMs

- * Match state M: emission probability p_{ab} for emitting an aligned pair a:b
- * States X and Y: emission probabilities q_a for emitting symbol a against a gap
- * Emits a pairwise alignment instead of a single sequence

Pair HMMs



Pair HMMs And Alignments

- Start in the Begin state and repeat the following two steps:
 - (1) Pick the next state according to the transition probabilities leaving the current state
 - (2) Pick a symbol pair to be added to the alignment according to the emission probabilities in the new state

Viterbi Algorithm For Pair HMMs

Initialization:

$$v^M(0,0)=1. \ V^X(0,0)=v^Y(0,0)=0, \ {\rm and} \ v^*(-1,j)=v^*(i,-1)=0.$$

Recurrence: i = 0, ..., n, j = 0, ..., m:

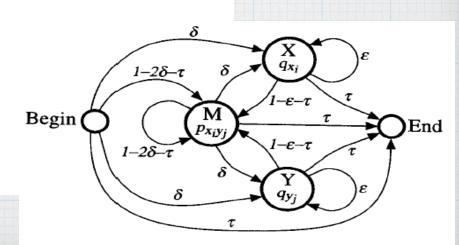
$$v^{M}(i,j) = p_{x_{i}y_{j}} \max \begin{cases} (1 - 2\delta - \tau)v^{M}(i-1,j-1) \\ (1 - \varepsilon - \tau)v^{X}(i-1,j-1) \\ (1 - \varepsilon - \tau)v^{Y}(i-1,j-1) \end{cases}$$

$$v^{X}(i,j) = q_{x_{i}} \max \begin{cases} \delta v^{M}(i-1,j) \\ \varepsilon v^{X}(i-1,j) \end{cases}$$

$$v^{Y}(i,j) = q_{y_j} \max \begin{cases} \delta v^{M}(i,j-1) \\ \varepsilon v^{Y}(i,j-1) \end{cases}$$

Termination:

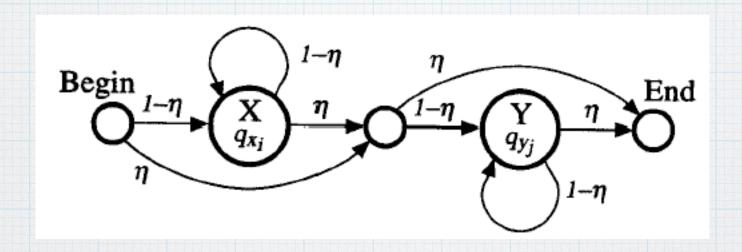
$$v^E = \tau \max(v^M(n,m), v^X(n,m), v^Y(n,m)).$$



Pairwise Alignment Using HMMs

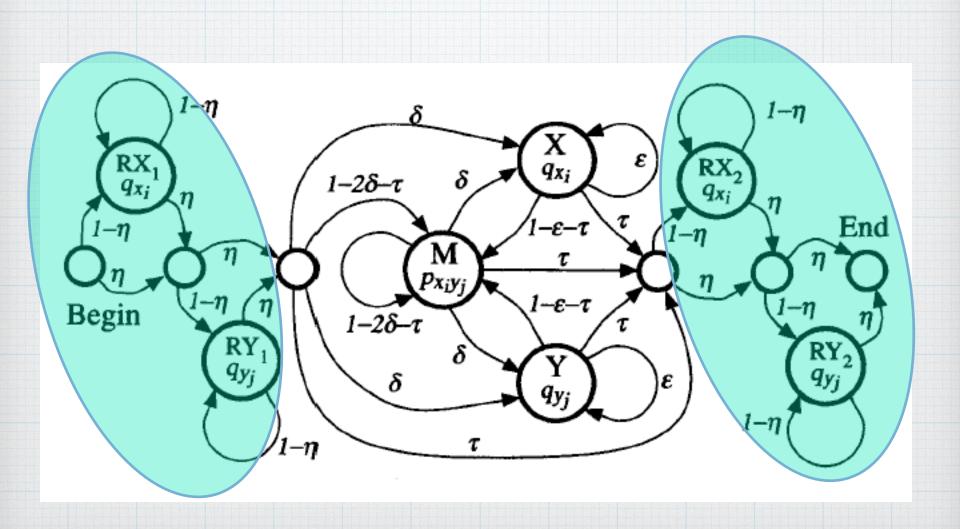
- * To find the best alignment, we keep pointers and trace back as usual
- * To get the alignment itself, we keep track of which residues are emitted at each step in the path during the traceback

A Pair HMM For Local Alignment



* We need an HMM "component" that models the "irrelevant" (low score) parts, which are not part of the local alignment

A Pair HMM For Local Alignment



Full Probability Of The Two Sequences

- * A significant advantage of HMM approaches to alignment over standard DP approaches, is that HMMs allow for calculating the probability that a given pair of sequences are related according to the HMM by any alignment
- * This is achieved by summing over all alignments

$$P(x,y) = \sum_{\text{alignment } \pi} P(x,y,\pi)$$

Full Probability Of The Two Sequences

- * The way to calculate the sum is by using the forward algorithm
- * fk(i,j): the combined probability of all alignments up to (i,j) that end in state k

Forward Algorithm For Pair HMMs

Initialization:

$$f^M(0,0) = 1$$
. $f^X(0,0) = f^Y(0,0) = 0$.
All $f^*(i,-1)$, $f^*(-1,j)$ are set to 0.

Recursion:

$$\begin{split} f^{M}(i,j) &= p_{x_{i}y_{j}} \left[(1-2\delta-\tau)f^{M}(i-1,j-1) + \\ & (1-\varepsilon-\tau)(f^{X}(i-1,j-1) + f^{Y}(i-1,j-1)) \right]. \\ f^{X}(i,j) &= q_{x_{i}} \left[\delta f^{M}(i-1,j) + \varepsilon f^{X}(i-1,j) \right]. \\ f^{Y}(i,j) &= q_{y_{j}} \left[\delta f^{M}(i,j-1) + \varepsilon f^{Y}(i,j-1) \right]. \end{split}$$

Termination:

$$f^E(n,m) = \tau \left[f^M(n,m) + f^X(n,m) + f^Y(n,m) \right].$$

Forward Algorithm For Pair HMMs

Initialization:

$$f^M(0,0)=1.\ f^X(0,0)=f^Y(0,0)=0.$$
 All $f^*(i,-1), f^*(-1,j)$ are set to 0.

Recursion:

$$\begin{split} f^{M}(i,j) &= p_{x_{i}y_{j}} \left[(1-2\delta-\tau)f^{M}(i-1,j-1) + \\ & (1-\varepsilon-\tau)(f^{X}(i-1,j-1) + f^{Y}(i-1,j-1)) \right]. \\ f^{X}(i,j) &= q_{x_{i}} \left[\delta f^{M}(i-1,j) + \varepsilon f^{X}(i-1,j) \right]. \\ f^{Y}(i,j) &= q_{y_{j}} \left[\delta f^{M}(i,j-1) + \varepsilon f^{Y}(i,j-1) \right]. \end{split}$$

Termination:

$$f^{E}(n,m) = \tau \left[f^{M}(n,m) + f^{X}(n,m) + f^{Y}(n,m) \right].$$

Full Probability Of The Two Sequences

- * P(x,y) gives the likelihood that x and y are related by some unspecified alignment, as opposed to being unrelated
- * If there is an unambiguous best alignment, P(x,y) will be "dominated" by the single path corresponding to that alignment

How Correct Is The Alignment

* Define a posterior distribution $P(\pi|x,y)$ over all alignments given a pair of sequences x and y

$$P(\pi \mid x, y) = \frac{P(x, y, \pi)}{P(x, y)}$$

Probability that the optimal scoring alignment is correct:

$$P(\pi^* \mid x, y) = \frac{P(x, y, \pi^*)}{P(x, y)} = \frac{v^E(n, m)}{f^E(n, m)}$$

How Correct Is The Alignment

* Define a posterior distribution $P(\pi|x,y)$ over all alignments given a pair of sequences x and y

$$P(\pi \mid x, y) = \frac{P(x, y, \pi)}{P(x, y)}$$

Probability that the optimal scoring alignment is correct:

$$P(\pi^* \mid x, y) = \frac{P(x, y, \pi^*)}{P(x, y)} = \frac{v^E(n, m)}{f^E(n, m)}$$
 Viterbi algorithm

How Correct Is The Alignment

* Define a posterior distribution $P(\pi|x,y)$ over all alignments given a pair of sequences x and y

$$P(\pi \mid x, y) = \frac{P(x, y, \pi)}{P(x, y)}$$

Probability that the optimal scoring alignment is correct:

$$P(\pi^* \mid x, y) = \frac{P(x, y, \pi^*)}{P(x, y)} = \frac{v^E(n, m)}{f^E(n, m)}$$
Forward algorithm

- * Usually the probability that the optimal scoring alignment is correct, is extremely small!
- * Reason: there are many small variants of the best alignment that have nearly the same score

The Posterior Probability That Two Residues Are Aligned

- * If the probability of any single complete path being entirely correct is small, can we say something about the local accuracy of an alignment?
- * It is useful to be able to give a reliability measure for each part of an alignment

The Posterior Probability That Two Residues Are Aligned

* The idea is:

- * calculate the probability of all the alignments that pass through a specified matched pair of residues (x_i, y_j)
- * Compare this value with the full probability of all alignments of the pair of sequences
- * If the ratio is close to 1, then the match is highly reliable
- * If the ratio is close to 0, then the match is unreliable

The Posterior Probability That Two Residues Are Aligned

- * Notation: $x_i \lozenge y_j$ denotes that x_i is aligned to y_j
- * We are interested in $P(x_i \lozenge y_i | x, y)$

$$P(x_i \lozenge y_j \mid x, y) = \frac{P(x, y, x_i \lozenge y_j)}{P(x, y)}$$

* We have

$$P(x,y,x_i \lozenge y_j) = P(x_{1...i},y_{1...j},x_i \lozenge y_j)P(x_{i+1...n},y_{j+1...m} \mid x_i \lozenge y_j)$$

- * P(x,y) is computed using the forward algorithm
- * $P(x,y,x_i \lozenge y_j)$: the first term is computed by the forward algorithm, and the second is computed by the backward algorithm (= $b^M(i,j)$) in the backward algorithm)

Backward Algorithm For Pair HMMs

Initialization:

$$b^{M}(n,m) = b^{X}(n,m) = b^{Y}(n,m) = \tau.$$

All $b^{*}(i,m+1)$, $b^{*}(n+1,j)$ are set to 0.

Recursion: i = n, ..., 1, j = m, ..., 1 (except (n, m));

$$\begin{split} b^M(i,j) &= (1-2\delta-\tau) p_{x_{i+1}y_{j+1}} b^M(i+1,j+1) + \\ &\quad \delta \left[q_{x_{i+1}} b^X(i+1,j) + q_{y_{j+1}} b^Y(i,j+1) \right]. \\ b^X(i,j) &= (1-\varepsilon-\tau) p_{x_{i+1}y_{j+1}} b^M(i+1,j+1) + \varepsilon q_{x_{i+1}} b^X(i+1,j). \\ b^Y(i,j) &= (1-\varepsilon-\tau) p_{x_{i+1}y_{j+1}} b^M(i+1,j+1) + \varepsilon q_{y_{i+1}} b^Y(i+1,j). \end{split}$$

Questions?