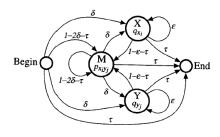
Pair HMMs and Pairwise Sequence Alignment

COMP 571 Luay Nakhleh, Rice University

Pair HMMs

- * Match state M: emission probability p_{ab} for emitting an aligned pair a:b
- * States X and Y: emission probabilities q_a for emitting symbol a against a gap
- * Emits a pairwise alignment instead of a single sequence

Pair HMMs



2

Pair HMMs And Alignments

- Start in the Begin state and repeat the following two steps:
 - (1) Pick the next state according to the transition probabilities leaving the current state
 - (2) Pick a symbol pair to be added to the alignment according to the emission probabilities in the new state

Viterbi Algorithm For Pair HMMs

Initialization:

$$v^M(0,0)=1. \ V^X(0,0)=v^Y(0,0)=0, \text{and} \ v^*(-1,j)=v^*(i,-1)=0.$$

Recurrence: i = 0, ..., n, j = 0, ..., m:

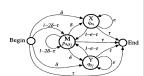
$$v^{M}(i, j) = p_{x_i y_j} \max \begin{cases} (1 - 2\delta - \tau)v^{M}(i - 1, j - 1) \\ (1 - \varepsilon - \tau)v^{X}(i - 1, j - 1) \\ (1 - \varepsilon - \tau)v^{Y}(j - 1, j - 1) \end{cases}$$

$$v^{X}(i, j) = q_{x_i} \max \begin{cases} \delta v^{M}(i - 1, j) \\ \varepsilon v^{X}(i - 1, j) \end{cases}$$

$$v^{Y}(i, j) = q_{y_j} \max \begin{cases} \delta v^{M}(i, j - 1) \\ \varepsilon v^{Y}(i, j - 1) \end{cases}$$

Termination:

$$v^E = \tau \max(v^M(n,m),v^X(n,m),v^Y(n,m)).$$

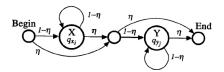


5

Pairwise Alignment Using HMMs

- * To find the best alignment, we keep pointers and trace back as usual
- To get the alignment itself, we keep track of which residues are emitted at each step in the path during the traceback

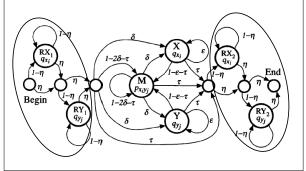
A Pair HMM For Local Alignment



* We need an HMM "component" that models the "irrelevant" (low score) parts, which are not part of the local alignment

7

A Pair HMM For Local Alignment



Full Probability Of The Two Sequences

- * A significant advantage of HMM approaches to alignment over standard PP approaches, is that HMMs allow for calculating the probability that a given pair of sequences are related according to the HMM by any alignment
- * This is achieved by summing over all alignments

$$P(x,y) = \sum_{\text{alignment } \pi} P(x,y,\pi)$$

Full Probability Of The Two Sequences

- * The way to calculate the sum is by using the forward algorithm
- f^k(i,j): the combined probability of all alignments up to (i,j) that end in state k

1	1	-1
	- 1	- 1

Forward Algorithm For Pair HMMs

Initialization:

$$\begin{split} f^M(0,0) &= 1. \ f^X(0,0) = f^Y(0,0) = 0. \\ \text{All } f^*(i,-1), f^*(-1,j) \text{ are set to } 0. \end{split}$$

Recursion:

$$\begin{split} f^M(i,j) &= p_{xiy} \left[(1-2\delta - \tau) f^M(i-1,j-1) + \\ & (1-\varepsilon - \tau) (f^X(i-1,j-1) + f^Y(i-1,j-1)) \right], \\ f^X(i,j) &= q_{xi} \left[\delta f^M(i-1,j) + \varepsilon f^X(i-1,j) \right], \\ f^Y(i,j) &= q_{yj} \left[\delta f^M(i,j-1) + \varepsilon f^Y(i,j-1) \right]. \end{split}$$

Termination:

$$f^E(n,m) = \tau \left[f^M(n,m) + f^X(n,m) + f^Y(n,m) \right].$$

Forward Algorithm For Pair HMMs

Initialization:

$$\begin{split} f^M(0,0) &= 1. \ f^X(0,0) = f^Y(0,0) = 0. \\ \text{All } f^*(i,-1), f^*(-1,j) \text{ are set to } 0. \end{split}$$

Recursion:

$$\begin{split} f^{M}(i,j) &= p_{x_{i}y_{j}} \left[(1-2\delta-\tau) f^{M}(i-1,j-1) + \\ & (1-\varepsilon-\tau) (f^{X}(i-1,j-1) + f^{Y}(i-1,j-1)) \right] . \\ f^{X}(i,j) &= q_{x_{i}} \left[\delta f^{M}(i-1,j) + \varepsilon f^{X}(i-1,j) \right] . \\ f^{Y}(i,j) &= q_{y_{j}} \left[\delta f^{M}(i,j-1) + \varepsilon f^{Y}(i,j-1) \right] . \end{split}$$

Termination:

$$\textbf{P(x,y)} \longrightarrow f^E(n,m) = \tau \left[f^M(n,m) + f^X(n,m) + f^Y(n,m) \right].$$

1	1	-2

Full Probability Of The Two Sequences

- P(x,y) gives the likelihood that x and y are related by some unspecified alignment, as opposed to being unrelated
- If there is an unambiguous best alignment, P(x,y) will be "dominated" by the single path corresponding to that alignment

How Correct Is The Alignment

* Vefine a posterior distribution $P(\pi|x,y)$ over all alignments given a pair of sequences x and y

$$P(\pi \mid x, y) = \frac{P(x, y, \pi)}{P(x, y)}$$

Probability that the optimal scoring alignment is correct:

$$P(\pi^* \mid x, y) = \frac{P(x, y, \pi^*)}{P(x, y)} = \frac{v^E(n, m)}{f^E(n, m)}$$

13-1

How Correct Is The Alignment

* Pefine a posterior distribution $P(\pi|x,y)$ over all alignments given a pair of sequences x and y

$$P(\pi \mid x, y) = \frac{P(x, y, \pi)}{P(x, y)}$$

Probability that the optimal scoring alignment is correct:

-Viterbi algorithm

$$P(\pi^* \mid x, y) = \frac{P(x, y, \pi^*)}{P(x, y)} = \frac{v^E(n, m)^*}{f^E(n, m)}$$

13-2

How Correct Is The Alignment

* Vefine a posterior distribution $P(\pi|x,y)$ over all alignments given a pair of sequences x and y

$$P(\pi \mid x, y) = \frac{P(x, y, \pi)}{P(x, y)}$$

Probability that the optimal scoring alignment is correct:

$$P(\pi^* \mid x, y) = \frac{P(x, y, \pi^*)}{P(x, y)} = \frac{v^E(n, m)}{f^E(n, m)}$$
Forward algorithm

14

13-3

- * Usually the probability that the optimal scoring alignment is correct, is extremely small!
- * Reason: there are many small variants of the best alignment that have nearly the same score

The Posterior Probability That Two Residues Are Aligned

- * If the probability of any single complete path being entirely correct is small, can we say something about the local accuracy of an alignment?
- It is useful to be able to give a reliability measure for each part of an alignment

1	5

SequenceAlignment-PairwiseHMM - February 13, 2017

- * The idea is:
 - * calculate the probability of all the alignments that pass through a specified matched pair of residues (x_i, y_i)
 - * Compare this value with the full probability of all alignments of the pair of sequences
 - * If the ratio is close to 1, then the match is highly reliable
 - * If the ratio is close to 0, then the match is unreliable

The Posterior Probability That Two Residues Are Aligned

- * Notation: $x_i \lozenge y_i$ denotes that x_i is aligned to y_i
- * We are interested in $P(x_i \lozenge y_i | x, y)$ $P(x_i \lozenge y_j \mid x, y) = \frac{P(x, y, x_i \lozenge y_j)}{P(x, y)}$
- * We have

$$P(x, y, x_i \lozenge y_j) = P(x_{1...i}, y_{1...j}, x_i \lozenge y_j) P(x_{i+1...n}, y_{j+1...m} \mid x_i \lozenge y_j)$$

- * P(x,y) is computed using the forward algorithm
- * $P(x,y,x, 0,y_i)$: the first term is computed by the forward algorithm, and the second is computed by the backward algorithm (= $b^{M}(i,j)$ in the backward algorithm)

17

Backward Algorithm For Pair HMMs

Initialization:

$$b^M(n,m)=b^X(n,m)=b^Y(n,m)=\tau.$$
 All $b^*(i,m+1),b^*(n+1,j)$ are set to 0.

Recursion: i = n, ..., 1, j = m, ..., 1 (except (n, m));

$$\begin{split} b^M(i,j) &= (1-2\delta-\tau)p_{x_{i+1}y_{j+1}}b^M(i+1,j+1) + \\ &\delta \left[q_{x_{i+1}}b^X(i+1,j) + q_{y_{j+1}}b^Y(i,j+1)\right]. \\ b^X(i,j) &= (1-\varepsilon-\tau)p_{x_{i+1}y_{j+1}}b^M(i+1,j+1) + \varepsilon q_{x_{i+1}}b^X(i+1,j). \\ b^Y(i,j) &= (1-\varepsilon-\tau)p_{x_{i+1}y_{j+1}}b^M(i+1,j+1) + \varepsilon q_{y_{j+1}}b^Y(i+1,j). \end{split}$$

Questions?	