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Biological Components Have a 
Finite Turnover Time

• Most metabolites turn over within a minute in a cell

• mRNA molecules typically have 2-hour half-lives in 
human cells

• The renewal rate of skin is on the order of 5 days to 
a couple of weeks

• Therefore, most of the cells that are contained in an 
individual today were not there a few years ago

• However, we consider the individual to be the same
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Biological Components Have a 
Finite Turnover Time

• Components come and go

• The interconnections between cells and cellular 
components define the essence of a living process
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Components vs. Systems

• In systems biology, it is not so much the 
components themselves and their state that 
matters, but it is the state of the whole system that 
counts
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Links and Functional States of a 
System

• Links between molecular components are basically 
given by chemical reactions or associations between 
chemical components

• These links are therefore characterized and 
constrained by basic chemical rules 

• Multiple links between components form a 
network, and the network can have functional states

• Functional states of networks are constrained by 
various factors that are physiochemical, 
environmental, and biological in nature
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• The number of possible functional states of 
networks typically grows much faster than the 
number of components in the network

• The number of candidate functional states of a 
biological network far exceeds the number of 
biologically useful states to an organism

• Cells must select useful functional states by 
elaborate regulatory mechanisms  

Links and Functional States of a 
System
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Elucidating Metabolic Pathways

• Metabolism is broadly defined as the complex 
physical and chemical processes involved in the 
maintenance of life

• It is comprised of a vast repertoire of enzymatic 
reactions and transport processes used to convert 
thousands of organic compounds into the various 
molecules  necessary to support cellular life

• Metabolic objectives are achieved through a 
sophisticated control scheme that efficiently 
distributes and processes metabolic resources 
throughout the cell’s metabolic network 
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Elucidating Metabolic Pathways

• The obvious functional unit in metabolic networks is 
the actual enzyme or gene product executing a 
particular chemical reaction or facilitating a 
transport process

• The cell controls its metabolic pathways in a 
switchboard-like fashion, directing the distribution 
and processing of metabolites throughout its 
extensive map of pathways

• To understand the regulatory logic implemented by 
the cell to control the network it is imperative to 
elucidate the cell’s metabolic pathways  
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Elucidating Metabolic Pathways

• In this lecture, we will cover theoretical techniques, 
based on convex analysis, that have been used to 
identify metabolic pathways and analyze their 
properties

• The techniques have also been applied to analysis of 
regulatory networks (signal transduction networks)  
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• The set of chemical reactions that comprise a network can 
be represented as a set of chemical equations

• Embedded in these chemical equations is information about 
reaction stoichiometry (the quantitative relationships of the 
reaction’s reactants and products)

• Stoichiometry is invariant between organisms for the same 
reactions and does not change with pressure, temperature, or 
other conditions

• All this stoichiometric information can be represented in a 
matrix form; the stoichiometric matrix, denoted by S

Stoichiometry
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• Mathematically, the stoichiometric matrix S is a linear 
transformation of the flux* vector  

The Stoichiometric Matrix

v=(v1,v2,...,vn)
to a vector of derivatives of the concentration
vector

x=(x1,x2,...,xm)
as

dx

dt
= S · v

The dynamic mass balance equation

*Flux: the production or consumption of mass per unit area per unit time
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The Stoichiometric Matrix

Five metabolites
A,B,C,D,E

Four internal reactions, 
two of which are 

reversible, creating six 
internal fluxes
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The Stoichiometric Matrix

dxi

dt
=

∑

k

sikvk

dC

dt
= 0v1 + 1v2 − 1v3 − 1v4 + 1v5 − 1v6

Fluxes that form C Fluxes that degrade C
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• Each matrix A defines four fundamental subspaces

• The column space: the set of all possible linear 
combinations of the columns of A

• The row space: the set of all possible linear 
combinations of the rows of A

• The null space: the set of all vectors v for which Av=0

• The left null space:  the null space of AT

The Fundamental Subspaces of 
a Matrix
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• Writing the dynamic mass balance equation as 

The Column and Left Null Spaces 
of the Stoichiometric Matrix

dx

dt
= s1v1 + s2v2 + · · · + snvn

where si are the reaction vectors that form the
columns of S, it is clear that dx/dt is in the column
space of S

• The reaction vectors are structural features of the 
network and are fixed 

• The fluxes vi are scalar quantities and represent the 
flux through reaction i 

• The fluxes are variables

• The vectors in the left null space are orthogonal to the 
column space; these vectors represent a mass 
conservation
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• The flux vector can be decomposed into a dynamic 
component and a steady state component:

The Row and Null Spaces of 
the Stoichiometric Matrix

v = vdyn + vss

• The steady state component satisfies

Svss = 0

and vss is thus in the null space of S

• The dynamic component of the flux vector vdyn is 
orthogonal to the null space and consequently it is 
in the row space of S
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The Null Space of S
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• The (right) null space of S is defined by 

• Thus, all the steady-state flux distributions, vss, are 
found in the null space

• The null space is spanned by a set of basis vectors 
that form the columns of matrix R that satisfies 
SR=0

• A set of linear basis vectors is not unique, but once 
the set is chosen, the weights (wi) for a particular 
vss are unique

Svss = 0
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Example
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Example

The set of linear equations can be solved using v4 and v6 as 
free variables to give

r1 and r2 form a basis
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Example

For any numerical values of v4 and v6, a flux vector will be 
computed that lies in the null space
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Example
Any steady-state flux distribution is a unique linear combination
of the two basis vectors. For example, 
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Example

This set of basis vectors, although mathematically valid, is chemically 
unsatisfactory. The reason is that the second basis vector, r2, represents
fluxes through irreversible elementary reactions, v2 and v3, in the 
reverse direction, and it thus represents a chemically unrealistic event

The problem with the acceptability of this basis stems from the fact that
the flux through an elementary reaction can only be positive, i.e., vi≥0. 
A negative coefficient in the corresponding row in the basis vector that 
multiplies the flux is thus undesirable 
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Example
We can combine the basis vectors to eliminate all negative elements in 
them. This combination is achieved by transforming the set of basis vectors
by

In this new basis, p1=r1, whereas p2=r1+r2
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• The introduction of nonnegative basis vectors leads 
to convex analysis

• Convex analysis is based on equalities (in this case, 
Sv=0) and inequalities (in this case, 0≤vi≤vi,max)

• It leads to the definition of a set of nonnegative 
generating vectors

Linear vs. Convex Bases
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From Reactions To Pathways To 
Networks, and Back to Pathways

“Pathways are concepts, but networks are reality.”
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• Biochemically meaningful steady-state flux solutions can be 
represented by a nonnegative linear combination of convex 
basis vectors as 

Extreme Pathways

• The vectors pi are a unique convex 
generating set, but αi may not be unique 
for a given vss

• These vectors correspond to the edges 
of a cone

• They also correspond to pathways when 
represented on a flux map and are called 
extreme pathways, since they lie at the 
edges of the bounded null space in its 
conical representation   

vss =
∑

αipi where 0 ≤ αi ≤ αi,max

Extreme pathways
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• Every point within the cone (C) can be written as a 
nonnegative linear combination of the extreme pathways 
as 

Extreme Pathways
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Putting It All Together: Convex 
Analysis of Metabolic Networks

• A cellular metabolic reaction 
network is a collection of 
enzymatic reactions and 
transport processes that serve 
to replenish and drain the 
relative amounts of certain 
metabolites

• A system boundary can be 
drawn around all these types of 
physically occurring reactions, 
which constitute internal fluxes 
operating inside the network
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Putting It All Together: Convex 
Analysis of Metabolic Networks

• The system is closed to the passage of certain 
metabolites while others are allowed to enter and/or 
exit they system based on external sources and/or 
sinks which are operating on the network as a whole

• The existence of an external source/sink on a 
metabolite necessitates the introduction of an 
exchange flux, which serves to allow a metabolite to 
enter or exit the theoretical system boundary  
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Putting It All Together: Convex 
Analysis of Metabolic Networks

• All internal fluxes are denoted by vi, for i∈[1,nI], where nI is 
the number of internal fluxes

• All exchange fluxes are denoted by bi, for i∈[1,nE], where nE 
is the total number of exchange fluxes 

• Thermodynamic information can be used to determine if a 
chemical reaction can proceed in the forward and reverse 
directions or it is irreversible thus physically constraining 
the direction of the reaction
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Putting It All Together: Convex 
Analysis of Metabolic Networks

• All internal reactions that are considered to be capable of 
operating in a reversible fashion are considered (for 
mathematical purposes only) as two fluxes occurring in 
opposite directions, therefore constraining all internal 
fluxes to be nonnegative

• There can only be one exchange flux per metabolite, 
whose activity represents the net production and 
consumption of the metabolite by the system

• Thus, nE can never exceed the number of metabolites in 
the system
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Putting It All Together: Convex 
Analysis of Metabolic Networks

• The activity of these exchange fluxes is considered to be 
positive if the metabolite is exiting the system, and negative 
if the metabolite is entering the system or being consumed 
by the system

• For all metabolites in which a source or sink may be 
present, the exchange flux can operate in a bidirectional 
manner and is therefore unconstrained
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• A simple, yet informative, analysis of a metabolic system may involve 
studying the systems structural characteristics or invariant 
properties − those depending neither on the state of the 
environment nor on the internal state of the system, but only on its 
structure

• The stoichiometry of a biochemical reaction network is the primary 
invariant property that describes the architecture and topology of 
the network
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Dynamic Mass Balance

v=(v1,v2,...,vn): flux vector

x=(x1,x2,...,xm): vector of derivatives of the concentration vector 

dx

dt
= S · v

S: Stoichiometric matrix
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Steady-state Analysis

• The desired pathway structure should be an invariant 
property of the network (along with stoichiometry)

• This can be achieved by imposing a steady-state condition:

S·v=0

39



Constraints

• All internal fluxes must be nonnegative:

vi≥0, ∀i
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Constraints

• For external fluxes, we have:
αj≤bj≤βj,  ∀j

• If only a source (input) exists, only αj is set to negative 
infinity and βj is set to zero

• If only a sink (output) exists on the metabolite, αj is set to 
zero and βj is set to positive infinity

• If both a source and a sink are present on the metabolite, 
then the exchange flux is bidirectional with αj set to 
negative infinity and βj set to positive infinity, leaving the 
exchange flux unconstrained 
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Example

42



Example
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Topological Analysis of (mass-balanced) 
Regulatory Networks Using Extreme 

Pathways
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• Various modeling approaches have been successfully 
used to investigate particular features of small-scale 
signaling networks

• However, large-scale analyses of signaling networks 
have been lacking, due in part to (1) a paucity of 
values for kinetic parameters, (2) concerns regarding 
the accuracy of existing values for kinetic data, (3) 
strong computational demands of kinetic analyses, 
and (4) limited scalability from small signaling 
modules using kinetic models
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• Obtaining the extreme pathways of a mass-balanced 
signaling networks allows for analyses focused and 
based solely on the structure (topology, or 
connectivity) of a signaling network 
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Categories of Signal 
Transduction Events

Classification of signal transduction input–output relationships. The classical case of 
a transduced signal relates a single input to a single output (A). Some outputs 
require the concatenation of multiple inputs (B). Other signaling interactions occur in 
which the transduction of a single input generates multiple outputs, a type of 
signaling pleiotropy (C). Complex signaling events arise as multiple inputs trigger 
interacting signaling cascades that result in multiple outputs (D).
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Prototypic Signaling Network
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Reaction Listing
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System Inputs and Outputs
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• Signaling reactions, like those just described, are 
subject to mass balance and thermodynamic 
constraints, and consequently can be analyzed using 
network-based pathways, including extreme 
currents, elementary modes, and extreme pathways

• We focus here on extreme pathways and their use 
in characterizing topological properties of the 
signaling network
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• There are a total of 211 extreme pathways

• These extreme pathways can be studied for 

1. feasibility of input/output relationships

2. quantitative analysis of crosstalk

3. pathway redundancy

4. participation of reactions in the extreme pathways

5. correlated reaction sets
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• An assessment of the feasibility of input/output relationships 
can be performed with extreme pathway analysis because all 
possible routes through a network can be described by 
nonnegative combinations of the extreme pathways

• A feasible input/output relationship signifies that with the 
available signaling inputs there exists a valid combination of 
the extreme pathways that describes the given signaling 
output

• Analysis is represented as an “input/output feasibility 
matrix”

Feasibility of Input/Output Relationships
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• Extreme pathway analysis can be used to quantitatively 
analyze the interconnection of multiple inputs and multiple 
outputs of signaling pathways, which has been called 
crosstalk

• Herein, crosstalk is the nonnegative linear combination of 
extreme pathways of a signaling network

• The pairwise combination of extreme pathways is the 
simplest form of crosstalk

Crosstalk Analysis
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• As such, crosstalk can be classified into nine categories 
based on extreme pathways

Crosstalk Analysis

• These classifications are topological, and thus do not 
account for changes in the activity level of a reaction
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Crosstalk analysis of the prototypic signaling network 
following the classification scheme on the previous 
slide. With 211 extreme pathways, there are a total of 
22,155 [=(2112-211)/2] pair-wise comparisons.

57



• Two extreme pathways with identical inputs and/or outputs 
represent two systemically independent routes by which a 
network can be utilized to reach the same objective

Pathway Redundancy
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• There were 135 distinct input/output states of the 
211 extreme pathways

• This result suggests that on average the prototypical 
signaling network can convert an identical set of 
inputs to an identical set of outputs using two 
systemically independent routes
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Completely redundant extreme pathways. Pathways 88 and 108 have 
identical inputs and outputs and yet use different internal reactions.
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• The number of redundant output states with 
different inputs was also calculated

• There were 17 distinct output states in the set of 
extreme pathways for the network
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Because extreme pathways are systemically independent, the 
combinatorial effect of the multiple pathways that produce W_p,
W2_p, and W3_p cannot explain the redundancy in the output

of WW2W3_ppp. Rather, the redundancy is a result of emergent
uses of the network to produce the particular transcription 

factor.

62



• The number of extreme pathways that a particular reaction 
participates in can be computed efficiently

• Disrupting or regulating the activity of highly connected 
reactions would influence a large number of extreme 
pathways, or functional network states

• The percentage (of a total of 211) of extreme pathways that 
use each individual reaction in the prototypic signaling 
network was computed

Reaction Participation
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The prototypic signaling network is 
tightly coupled to energy metabolism
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Greater degree of variability in the synthesis of the 
transcription factor W2_p
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• From the set of extreme pathways for a network, correlated 
reaction sets can be calculated

• Correlated reaction sets are a collection of reactions that 
are either always present or always absent in all of the 
extreme pathways 

• Effectively, these sets of reactions function together in a 
given network, although the reactions themselves may not 
be adjacent in a network map

Correlated Reaction Sets
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• The correlated reactions for the prototypic signaling 
network were computed and are summarized in the 
following table

Correlated Reaction Sets
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• The correlated reactions for the prototypic signaling 
network were computed and are summarized in the 
following table

Correlated Reaction Sets

Expected grouping of ATP and ADP
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• The correlated reactions for the prototypic signaling 
network were computed and are summarized in the 
following table

Correlated Reaction Sets
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• The correlated reactions for the prototypic signaling 
network were computed and are summarized in the 
following table

Correlated Reaction Sets

Input, receptor, reaction, and output
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• The correlated reactions for the prototypic signaling 
network were computed and are summarized in the 
following table

Correlated Reaction Sets
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• The correlated reactions for the prototypic signaling 
network were computed and are summarized in the 
following table

Correlated Reaction Sets

Input and reaction only
(receptors are not specific to the particular ligand)
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• The correlated reactions for the prototypic signaling 
network were computed and are summarized in the 
following table

Correlated Reaction Sets
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• The correlated reactions for the prototypic signaling 
network were computed and are summarized in the 
following table

Correlated Reaction Sets

The formation of the TF complexes
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• The correlated reactions for the prototypic signaling 
network were computed and are summarized in the 
following table

Correlated Reaction Sets
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• The correlated reactions for the prototypic signaling 
network were computed and are summarized in the 
following table

Correlated Reaction Sets

Non-obvious correlated reaction sets
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