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Abstract. Phylogenetic networks model evolutionary histories in the presence of
non-treelike events such as hybrid speciation and horizontal gene transfer. In spite
of their widely acknowledged importance, very little is known about phylogenetic
networks, which have so far been studied mostly for specific datasets.
Even when the evolutionary history of a set of species is non-treelike, individual
genes in these species usually evolve in a treelike fashion. An important ques-
tion, then, is whether a gene tree is “contained” inside a species network. This
information is used to detect the presence of events such as horizontal gene trans-
fer and hybrid speciation. Another question of interest for biologists is whether a
group of taxa forms a clade based on a given phylogeny. This can be efficiently
answered when the phylogeny is a tree simply by inspecting the edges of the tree,
whereas no efficient solution currently exists for the problem when the phylogeny
is a network. In this paper, we give polynomial-time algorithms for answering the
above two questions.

1 Introduction

Phylogenies are the main tool for representing the relationships among biological en-
tities. Their pervasiveness has led biologists, mathematicians, and computer scientists
to design a variety of methods for their reconstruction. Furthermore, extensive studies
have been focused on the performance of these methods under different models and
settings, as well as on the combinatorial and biological properties of trees (e.g., [7, 2]).
However, almost all such methods construct trees, and almost all studies have been
aimed at trees. Yet, biologists have long recognized that trees oversimplify our view of
evolution, since they cannot take into account such events as hybridization, lateral gene
transfer, and recombination. These non-tree events give rise to edges that connect nodes
on different branches of a tree, giving rise to a directed acyclic graph structure that is
usually called a phylogenetic network.

A gene tree is a model of how a gene evolves through duplication, loss, and nu-
cleotide substitution. Gene trees can differ from one another as well as from the species
phylogeny. Such differences arise during the evolutionary process due to events such as
duplication and loss, whereby each genome may end up with multiple copies of a given
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gene—but not necessarily the same copies that survive in another genome. Unless the
genome is very well sampled, only a subset (sometimes only one copy, in fact) of the
gene is used in phylogenetic analyses. As a result, the phylogeny for the gene may not
agree with the species phylogeny, nor with the phylogeny for another gene. Because
the gene copy has a single ancestral copy, barring recombination, the resulting history
is a branching tree. Point mutations can cause some of the copies to be imperfect rep-
resentations of the original, but this process does not compromise the existence of the
(gene) tree. Events such as recombination, hybrid speciation, and lateral gene transfer
break up the genomic history into many small pieces, each of which has a strictly tree-
like pattern of descent [4]. Thus, within a species phylogeny, many tangled gene trees
can be found, one for each nonrecombined locus in the genome. Incongruence among
gene trees is a powerful tool for detecting recombination, hybrid speciation, and other
non-treelike evolutionary events (e.g., see [6]). While testing for incongruence between
two (gene) trees can be done in a straightforward manner, it is not as simple for testing
the incongruence between a tree and a network, since the number of trees “inside” a
network grows exponentially with the number of non-treelike events. In this paper, we
give the first polynomial-time algorithm for solving this problem.

A phylogeny can be viewed as a collection of clusters of taxa (each defined as the
set of leaves in a subtree). Various approaches for reconstructing phylogenies (trees and
networks) have been proposed based on this view (see, e.g., [1, 3]). An interesting bio-
logical question, then, is whether a group of taxa forms a cluster in a given phylogeny.
This question can be answered in a straightforward manner when the phylogeny is a
tree, since each edge in a tree defines a unique cluster. However, the number of clusters
in a phylogenetic network grows exponentially with the number of non-treelike events,
and hence an efficient algorithm for solving the problem is not straightforward. In this
paper, we present the first polynomial-time algorithm for solving this problem.

2 Phylogenetic Trees and Networks

A rooted phylogenetic tree is a rooted tree without redundant nodes (nodes of indegree
and outdegree 1) and whose leaves are labelled distinctively (by a set of taxa). An
unrooted phylogenetic tree is a rooted phylogenetic tree with the root suppressed. Every
edge e in an unrooted leaf-labeled tree T defines a bipartition (or, split) π(e) on the
leaves (induced by the deletion of e), so that we can define the set Π(T ) = {π(e): e ∈
E(T )}. Every edge e in a rooted leaf-labeled tree T defines a cluster c(e) of leaves
(those leaves that are reachable from the root through e), so that we can define the set
C(T ) = {c(e): e ∈ E(T )}. A clade of a rooted tree T is the entire subtree rooted at a
node of T ; the set of all leaves in a clade correspond to a cluster of T .

Evolutionary events such as hybrid speciation and lateral gene transfer result in
networks of relationships. In hybrid speciation, two lineages recombine to create a new
species, as symbolized in Fig. 1(a). Prior to hybridization, each site on each homolog
has evolved in a tree-like fashion, although, due to meiotic recombination, different
strings of sites may have different histories. Thus, each site in the homologs of the
parents of the hybrid evolved in a tree-like fashion on one of the trees contained inside
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(or induced by) the network representing the hybridization event, as illustrated in Fig.
1(b) and Fig. 1(c).
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Fig. 1. A network with a single hybrid speciation event, and its two induced trees.

2.1 Phylogenetic Networks: Model and Properties

We adopt the general model of (reduced) phylogenetic networks given in [5].

Definition 1. A phylogenetic network is a connected directed acyclic graph N =
(V,E), where V can be partitioned into {r} ∪ Tr(N) ∪Nt(N) ∪ L(N), where:

1. Node r is the root; it has indegree 0.
2. Set Tr(N) is the set of tree nodes; each node u in Tr(N) has indegree 1 and

outdegree > 1.
3. Set Nt(N) is the set of network nodes; each node v in Nt(N) has indegree 2 and

outdegree 1.
4. Set L(N) is the set of leaf nodes (taxa); each node x in L(N) has indegree 1

and outdegree 0. Each node x in L(N) is labeled uniquely by an integer i, where
1 ≤ i ≤ |L(N)|.

Figure 1(a) shows an example of a phylogenetic network. Given a network N , we clas-
sify its edges as tree edges and network edges. An edge e = (u, v) is a tree edge if v is
a tree node or a leaf; otherwise, it is a network edge. We say that network N is binary
if the root and all tree nodes of N have outdegree 2. In this paper, and unless noted
otherwise, all networks are binary. Further, we assume that if u is a tree node and (u, v)
and (u,w) are the two edges incident from u, then at least one of the two nodes v and
w is a tree node.

A forced contraction is an operation on a graph in which we delete a redundant
node and replace the two edges incident to it by a single edge. We generalize the clade
concept to networks as follows. Given a network N , we say that the DAG N ′, rooted
at node x, is a network clade of N , if there exists an edge e = (u, x) in N whose
removal disconnects N , thus creating two components, one of which is N ′ (rooted at
x). If network clade N ′ does not contain network nodes, i.e., N ′ is a tree, we refer to
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N ′ simply as a clade. Given a network N , and a clade N ′, we say that N ′ is maximal if
N does not contain any clade N ′′ such that N ′ ⊂ N ′′.

If there is a directed path from node u to node v (u 6= v) in a directed tree T , we say
that u is above v and that v is below u, both denoted by u > v. We say that node u in
N is a lowest network node if (1) u is a network node, and (2) for any network node v,
v 6= u, we have u 6Ã v. We write N |L′ , where L′ ⊂ L(N), to denote the subgraph N ′

obtained fromN by removing all leaves not in L′, and then applying forced contraction
operations and removal of nodes of outdegree 0 (other than the leaves in L′).

2.2 The Relationship Between Networks and Trees

There is a fundamental biological relationship between (species) networks and (gene)
trees, as described above. We now formalize this concept mathematically.

Let N be a network with p network nodes h1, h2, . . . , hp. Further, assume that the
two edges incident into hi are ei1 and ei2 . An inheritance profile, IP , for N is a set
of size p which contains exactly one of the two edges ei1 and ei2 for each network
nodes hi. A rooted tree T is induced by (or, contained in) a network N if there exists an
inheritance profile IP such that T can be obtained fromN as follows: for network node
hi, if ei1 ∈ IP , remove edge ei2 ; otherwise, remove edge ei1 (and then apply forced
contraction operations to the resultant graph). Biologically, the evolutionary history of
a gene within the species network corresponds to a tree T induced by N . Associated
with this tree is an inheritance profile IP that determines how to obtain T from N ; in
this case, we say that IP is a valid inheritance profile that induces T . We denote by
T (N) the set of all trees induced by network N . A network N induces (or, contains) a
cluster C, C ⊆ L(N), if there exists a tree T such that N induces T and C is a cluster
of T . We denote by C(N) the set of all clusters induced by network N .

As mentioned before, deciding whether a cluster or a tree are induced by a given
network plays a significant role in solving major biological problems such as network
reconstruction, gene tree and species network relationships. We now formalize the two
decision problems.

Problem 1. (THE NETWORK-TREE CONTAINMENT PROBLEM)

Input: A phylogenetic network N and a tree T .
Question: Does N contain T ?

Problem 2. (THE NETWORK-CLUSTER CONTAINMENT PROBLEM)

Input: A phylogenetic network N and a cluster C.
Question: Does N contain C?

A trivial approach for solving the Network-Cluster Containment Problem is to find
“the” lowest common ancestor, x, of C in the network N , and test whether the cluster
is contained in the network clade rooted at x. This approach may fail for (at least) two
reasons: (1) xmay not be unique in a network, and (2) the network clade rooted at xmay
contain many of the network nodes of N , in which case the search for a solution would
take time that is exponential in the number of network nodes, and hence, probably the
network size. In Section 5 we give polynomial time algorithms for these two problems.
In order to obtain these results, we first introduce the concept of network decomposition
which forms the basis for our algorithms.
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3 Network Decomposition

Before we give the technical details of our algorithms, we describe the network repre-
sentation we use, which is vital for achieving the running times of the algorithms in the
next sections. We assume that a network N is represented using an n × n adjacency
matrix MN , where n is the number of nodes in the network. We have MN [u, v] = 1
if there is an edge (u, v) ∈ E(N), and MN [u, v] = 0 otherwise. Using this represen-
tation, a forced contraction operation takes O(1) time, and an edge deletion takes O(1)
time, as well.

3.1 Preprocessing Networks

An SH-loop (speciation-hybridization) is a cycle that contains only network edges, and
that consists of two paths p1 and p2, such that p1 and p2 starting from the same tree
node v0, pass through two sets of network nodes, and end at the same network node v1.
Let e1 = (v0, x) and e2 = (v0, y) be the two network edges incident from v0. We break
the SH-loop by removing either e1 or e2, and applying forced contraction operations to
all redundant nodes. We repeat the same process until N is SH-loop-free, i.e., N does
not contain any SH-loops.

Theorem 1. A network N = (V,E) can be preprocessed in O(|E(N)|2) time.

Proposition 1. Let N be a phylogenetic network, and let N ′ be the network obtained
after the preprocessing. Then, T (N) = T (N ′).

3.2 Maximal Clades and Connections

Unless noted otherwise, all networks are SH-loop free. Given a phylogenetic network
N , we seek to decompose N into maximal-size clades and disjoint subgraphs of N that
connect those clades. To formalize this, we first define some concepts.

Given a node x in network N , we say that a network node y (y 6= x) in N is x-
convergent if any directed path from y to a leaf ofN passes through x. Given a maximal
clade A of N , and the root a of A, we say that subgraph J of N is the connection of
A if J is the subgraph obtained by restricting N to all a-convergent nodes and their
incident edges.

Lemma 1. Let A and J be a clade and its connection, respectively, in a network N .
Then, when reversing the orientation of its edges, J has a rooted tree topology, where
each leaf is a tree node in N and each internal node is a network node in N . Further,
the root of J is a lowest network node.

Definition 2. A T-decomposition of a network N is an ordered set of pairs D =
{(Ai, Ji)}1≤i≤m, where Ai and Ji are a maximal clade and its connection, respec-
tively, in Ni (Ni is obtained by removing the subgraphs Ai−1 and Ji−1 from Ni−1,
except for the leaves of Ji−1, i.e., the tree nodes, and applying forced contraction oper-
ations to the resultant graph; for the base case, N1 = N ); m is the cardinality of the
decomposition.
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Theorem 2. A T-decomposition of a network N is computable in O(|Nt(N)||V (N)|)
time.

Let (u, v) be a terminal edge (i.e., and edge incident with a leaf) that belongs to con-
nection Ji; v is a tree node in N . If N is binary, then for the three edges incident to
v, two belong to the same component, because v is suppressed in the ith step in the
decomposition algorithm. We define ι(u, v) to be the index of this component. It is
straightforward to show that ι(u, v) > i. Finally, we show that exactly one terminal
edge from each component in a T-decomposition is used to induce a tree T .

Lemma 2. If T is a tree induced by a network N , and D is a T-decomposition of N ,
then exactly one terminal edge from each connection in D is used to induce that tree.

3.3 Dependency Graphs

Given a network N and its T-decomposition D, we define the dependency digraph
KN,D as follows.

Definition 3. Given a network N and its T-decomposition D = {(Ai, Ji)}1≤i≤m, the
dependency graph is a directed multigraphKN,D, where node vi inKN,D corresponds
to the pair (Ai, Ji) in D, and edge (vi, vj) (i > j) in KN,D corresponds to a terminal
edge connecting Jj and Ji in N .

In other words, KN,D is the graph resulting from replacing each component (Ai, Ji) in
D by a single node vi, and hence,KN,D is necessarily connected. IfKN,D had a cycle,
then N would be cyclic. Therefore, we have the following result.

Proposition 2. The dependency graph KN,D is connected and acyclic, and is com-
putable in O(|Nt(N)||V (N)|) time. Moreover, (vi, vj) is an edge in KN,D only if
i > j.

4 Reduced Inheritance Profiles and the Cluster Lemma

Given a T-decomposition D of cardinality m, a reduced inheritance profile is a set of
size m that contains exactly one terminal edge per connection in the decomposition.
We only keep the terminal edges because all inheritance profiles having the same set of
terminal edges necessarily induce the same tree. A reduced inheritance profile extends
into an inheritance profile in a straightforward manner, as no edges in the reduced in-
heritance profile are incident with the same network node. We say that a reduced inheri-
tance profile is valid if it induces a tree. The following results show the correspondence
between inheritance profiles and reduced inheritance profiles.

Proposition 3. Let D be a T-decomposition of a network N . Then,

1. For each valid reduced inheritance profile IP there exists a valid inheritance profile
IP ′ that contains IP and induces the same tree.

2. For each valid inheritance profile IP ′ there exists a unique valid reduced inheri-
tance profile IP that induces the same tree.
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The dependency graph can be seen as a compact representation, mainly for reduced
inheritance profiles.

Lemma 3. Let D be a T-decomposition of a network N , KN,D be the dependency
graph, and IP be a valid reduced inheritance profile. Then, KN,D, restricted to the
edges in IP , forms a tree.

We are now in position to show the correlation between clusters and a T-decomposition
of a network – a result that forms the basis for our algorithms.

Lemma 4. (Cluster Lemma) Let D = {(Ai, Ji)}1≤i≤m be a T-decomposition of a
network N . Each cluster C induced by N can be written as C = ∪jCj , where each Cj

is an element of {L(Ai) : 1 ≤ i ≤ m}, except for at most one of the Cj’s, which may
be a proper subset of an element of {L(Ai) : 1 ≤ i ≤ m}.

Corollary 1. Let D = {(Ai, Ji)}1≤i≤m be a T-decomposition of a network N , IP be
a reduced inheritance profile, and C be a cluster. Then, when restricted to the nodes
whose corresponding maximal clades have nonempty intersection with C and to the
edges in IP , the dependency graph KN,D forms a tree. Further, the root of that tree
has the highest index.

Corollary 1 gives an algorithm for computing the component that contains the node
which “determines” a cluster C.

5 Polynomial-time Algorithms for the Decision Problems

5.1 Deciding the Network-Cluster Containment Problem

We are finally in a position to describe a polynomial-time algorithm for deciding the
Network-Cluster Containment Problem. The algorithm is given in Fig. 2. Let D =
{Ai, Ji}1≤i≤m be a T-decomposition of a network N , and let C ⊂ L(N) be a cluster.
We define the set ψ(C) = {i : 1 ≤ i ≤ m and L(Ai) ⊆ C}. The basic idea is to
compute a set EC of edges that are incompatible with C, i.e., edges that cannot co-exist
with C in the same tree induced by N .

Theorem 3. Algorithm TestCinN(N ,C) decides the Network-Cluster Containment Prob-
lem in O(|V (N)|2) time.

Corollary 2. Given any network N , a phylogenetic tree T , and a cluster C in T , N
induces T if and only if NC induces T .

5.2 Deciding the Network-Tree Containment Problem

Using algorithm TestCinN(N ,C), Fig. 3 describes our polynomial-time algorithm for
deciding the Network-Tree Containment Problem.

Theorem 4. Algorithm TestTinN(N ,T ) decides the Network-Tree Containment Prob-
lem in O(|V (N)||L(N)|) time.
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Algorithm TestCinN(N ,C)

1. Compute a T-decomposition D = ((A1, J1), . . . , (Am, Jm = ∅)).
2. Test if C can be decomposed into the following form:

S

i∈ψ(C) L(Ai)∪L
′, where L′ = ∅ or

L′ ⊂ L(Al) for some l. If not, return NO. If L′ = ∅ then let l = maxi∈ψ(C) i.
3. Partition V = V (KN,D) into two sets: VC = {vi|i ∈ ψ(C)} and VC = V − VC . Compute

the set EC = {eij = (vi, vj)|eij ∈ E(KN,D), vi ∈ VC , vj ∈ VC , j 6= l}.
4. If L′ 6= ∅, test if L′ is a cluster of Al. If not, return NO; otherwise:

(a) Let v′ be the root of the clade whose leaf set is L′.
(b) For each terminal edge (u, v) in Ai, for some i ∈ ψ(C) and ι(u, v) = l, (edge (u, v)

connects the i’th component to the l’th component), add (u, v) to EC if u is not a de-
scendant of v′ in Ni.

5. Remove all terminal edges in N and that correspond to edges in EC (and apply forced con-
traction operations); let the result be NC . If NC is connected, return YES. Otherwise, return
NO.

Fig. 2. Algorithm TestCinN for deciding the NETWORK-CLUSTER CONTAINMENT PROBLEM.

Algorithm TestTinN(N ,T )

1. Compute a T-decomposition D = ((A1, J1), . . . , (Am, Jm = ∅)).
2. For each nontrivial cluster C in T (C 6= L(N) and |C| > 1), call TestCinN(N ,C); update N

by removing EC from N .
3. If N is connected, return YES; otherwise, return NO.

Fig. 3. Algorithm TestTinN for deciding the NETWORK-TREE CONTAINMENT PROBLEM.

References

[1] D. Bryant and V. Moulton. NeighborNet: An agglomerative method for the construction of
planar phylogenetic networks. In R. Guigo and D. Gusfield, editors, Proc. 2nd Workshop Al-
gorithms in Bioinformatics (WABI’02), volume 2452 of Lecture Notes in Computer Science,
pages 375–391. Springer Verlag, 2002.

[2] J. Felsenstein. Inferring Phylogenies. Sinauer Associates, Inc., Sunderland, MA, 2003.
[3] D.H. Huson. SplitsTree: A program for analyzing and visualizing evolutionary data. Bioin-

formatics, 14(1):68–73, 1998.
[4] W.P. Maddison. Gene trees in species trees. Systematic Biology, 46(3):523–536, 1997.
[5] B.M.E. Moret, L. Nakhleh, T. Warnow, C.R. Linder, A. Tholse, A. Padolina, J. Sun, and

R. Timme. Phylogenetic networks: modeling, reconstructibility, and accuracy. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 1(1):13–23, 2004.

[6] L. Nakhleh, T. Warnow, and C.R. Linder. Reconstructing reticulate evolution in species
– theory and practice. In Proceedings of the Eighth Annual International Conference on
Research in Computational Molecular Biology (RECOMB 2004), pages 337–346, 2004.

[7] D.L. Swofford, G.J. Olsen, P.J. Waddell, and D.M. Hillis. Phylogenetic inference. In D.M.
Hillis, B.K. Mable, and C. Moritz, editors, Molecular Systematics, pages 407–514. Sinauer
Assoc., Sunderland, Mass., 1996.


