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a b s t r a c t

Phylogenetic networks are a restricted class of directed acyclic graphs that model
evolutionary histories in the presence of reticulate evolutionary events, such as horizontal
gene transfer, hybrid speciation, and recombination. Characterizing a phylogenetic
network as a collection of trees and their branches has long been the basis for
several methods of reconstructing and evaluating phylogenetic networks. Further, these
characterizations have been used to understand molecular sequence evolution on
phylogenetic networks.

In this paper, we address theoretical questions with regard to phylogenetic networks,
their characterizations, and sequence evolution on them. In particular, we prove that the
problem of deciding whether a given tree is contained inside a network is NP-complete.
Further, we prove that the problem of deciding whether a branch of a given tree is also
a branch of a given network is polynomially equivalent to that of deciding whether the
evolution of a molecular character (site) on a network is governed by the infinite site
model. Exploiting this equivalence, we establish the NP-completeness of both problems,
and provide a parameterized algorithm that runs in time O(2k/2n2), where n is the total
number of nodes and k is the number of recombination nodes in the network, which
significantly improves upon the trivial brute-force O(2kn) time algorithm for the problem.
This reduction in time is significant, particularly when analyzing recombination hotspots.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Phylogenies, i.e., evolutionary histories, play a major role in representing the relationships among biological entities.
Their pervasiveness has led biologists, mathematicians, and computer scientists to design a variety of methods for their
reconstruction. Until recently, most of these methods were designed to construct trees. Yet, biologists have long recognized
that trees oversimplify our view of evolution in certain cases, since they cannot model events such as hybrid speciation,
horizontal gene transfer (HGT), and recombination. These events, which are collectively referred to as reticulation events
or reticulate evolutionary events, give rise to non-treelike evolutionary histories which are best modeled by phylogenetic
networks.

Reconstructing and evaluating the quality of phylogenetic networks is very important, given the emerging evidence of the
ubiquity of reticulation events and the evolutionary roles they play. Hybrid speciation is a main mode of evolution in large
groups of plants, fish, and frogs [19]. Horizontal gene transfer is believed to be ubiquitous among prokaryotic organisms [6,
26], and recent evidence shows massive HGT in some plants [25,3,4]. Interspecific recombination’s role in evolutionary
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genomics has long been acknowledged [35,34]. Finally, meiotic recombination plays a major role in genomic diversification
in populations, and detecting it bears great implications on genotype–phenotype associations [9,1,24].

Relationships between phylogenetic networks on one hand, and the trees and their branches on the other, have great
significance. From the computational perspective, these relationships form the basis for thewide array ofmethods that have
been devised for reconstructing phylogenetic networks; e.g., see [18,23] for extensive surveys of these methods. From the
biological perspective, these relationships shed light on howmolecular sequences evolve down these networks. Events such
as recombination, hybrid speciation, and lateral gene transfer break up the genomic history into many small pieces, each
of which has a strictly treelike pattern of descent [21]. Identifying these trees and reconciling their discordance is the basis
for several phylogenetic network reconstruction methods [22,11,8,33,20,2,30]. Understanding the relationship between a
phylogenetic network and its branches, particularly in terms of the clusters (or splits) of taxa that they induce, has been the
basis for another category of reconstruction methods, which includes the methods of [5,12]. Very recently, Nakhleh and
colleagues introduced new approaches for augmenting a tree into a phylogenetic network to fit the evolution of a set of
sequences based on the parsimony [28,13,15,16] and likelihood [14] criteria.

Almost all of the aforementionedmethods are based on understanding relationships among networks, trees, and clusters
of taxa. Further, some of them rely on analysis of the evolution of sequences on networks. In this paper, we provide a
theoretical treatment of the computational complexity of establishing some of these relationships. In [32,31], the authors
devised efficient algorithms for restricted cases of some of these problems, while leaving the computational complexity of
the general cases as open questions. In this paper, we prove that the problem of deciding whether a given tree is contained
inside a network is NP-complete. Further, we prove that the problem of deciding whether a branch of a given tree is also
a branch of a given network is polynomially equivalent to that of deciding whether the evolution of a molecular character
(site) on a network is governed by the infinite site model. Exploiting this equivalence, we establish the NP-completeness of
both problems, and provide a parameterized algorithm that runs in timeO(2k/2n2), where n is the total number of nodes and k
is the number of recombination nodes in the network, which significantly improves upon the trivial brute-force O(2kn) time
algorithm for the problem. This improvement is very significant in practice [29]. In [17], the authors considered the problem
of character compatibility on a different model of phylogenetic networks that is used in historical linguistics. Whereas the
NP-hardness result from that work is modified and used here, that is not the case, however, for the new parameterized
algorithm that we present. The algorithmic techniques used in [17] do not carry over to the biologically-motivated model
of phylogenetic networks that we consider in this paper.

2. Phylogenetic networks, trees, and the infinite site model

Let T = (V, E) be a tree, where V and E are the tree nodes and tree edges, respectively, and let L(T) denote its leaf set.
Further, let X be a set of taxa (species). Then, T is a phylogenetic tree over X if there is a bijection between X and L(T). A
tree T is said to be rooted if the set of edges E is directed and there is a single distinguished internal node r with in-degree 0.

A character c labeling the leaves of T is a function c : L(T) → {0, 1}. Biologically, such a character corresponds to a single
SNP, and the two states it takes are the two possible alleles that the SNP may exhibit.1 The commonly assumed model of
evolution of SNPs is the infinite site model, which states that when a character (site) mutates, it changes its state to a new one
that is not observed anywhere else in the tree. We denote by c(v) the state of character c for node v. A haplotype of length
` is a sequence of such characters c1 · · · c`. A full labeling, or labeling for short, for character c on the tree is an extension, ĉ,
of character c to label all the nodes of T; i.e., ĉ : V(T) → {0, 1} and ĉ(v) = c(v) for every v ∈ L(T). In this paper, we focus on
characters that exhibit exactly two states.

Definition 2.1. A character c is compatible on tree T if there is a labeling ĉwhich extends c such that there exists exactly one
edge e = (u, v) ∈ E(T) where ĉ(u) 6= ĉ(v), and for all other edges e′

= (u′, v′) 6= e, ĉ(u′) = ĉ(v′).

Notice that if SNP c evolves under the infinite site model, then there is a tree on which it is compatible. Hence, the
compatibility criterion reflects this model of evolution. A sequence of characters c1 · · · ck is compatible on tree T if every
character ci, 1 ≤ i ≤ `, is compatible on T. By this definition of compatibility, it suffices to establish the computational
complexity of and develop algorithms for testing the compatibility of single characters. Therefore, from this point on, we
focus on the case of a single character. Testing whether a character is compatible on a tree T with n leaves can be done in
O(n) time, as shown in [27].

As explained in Section 1, when reticulation events occur, the evolutionary history of a set of sequences is best modeled
by a phylogenetic network. A phylogenetic network N = (V, E) is a rooted directed acyclic graph, with set L(N) of leaves,
such that there is a bijection between a set of taxa X and L(N). A network N has three types of nodes: (1) one node r with
in-degree 0, which corresponds to the root; (2) nodes with in-degree 1, which correspond to coalescence events; and (3)
nodes with in-degree 2, which correspond to recombination. Nodes with in-degree 2 can be called reticulation nodes. Fig. 1
shows an example of a phylogenetic network on four taxa A, B, C, and D.

A phylogenetic network N induces, or contains, a set of trees; these trees model the evolutionary histories of sets of non-
recombining segments (or, genes) in the genomic sequences.Wedenote byT (N) the set of all trees contained inside network

1 Even though SNPs may exhibit all four states (A, C, T, and G), bi-allelic SNPs, i.e., SNPs that exhibit two states, are the most common.



I.A. Kanj et al. / Theoretical Computer Science 401 (2008) 153–164 155

Fig. 1. A phylogenetic network N on four taxa A, B, C, and D, and the two trees T1 and T2 it contains. Character c1 , where c1(A) = c1(D) = 0 and
c1(B) = c1(C) = 1 is compatible on tree T1 , but not compatible on tree T2 . Character c2 , where c2(A) = c2(B) = 0 and c2(C) = c2(D) = 1 is compatible
on T2 but not on T1 . It can be easily checked that there does not exist any tree T on which both characters are compatible. However, both characters are
compatible on network N. The two horizontal edges in N are directed towards the parent of C.

N. Each such tree is obtained by the following two steps: (1) for each node of in-degree 2, remove one of the incoming edges,
and then (2) for every node x of in-degree and out-degree 1, whose parent is u and child is v, remove node x and its two
adjacent edges, and add a new edge from u to v. If node x is the root and its out-degree is 1, remove x and make its only
child the new root for the tree. Fig. 1 shows the two trees contained inside network N. The membership problem of trees
and networks, which is heavily used in network reconstruction methods, is formulated as follows.

Problem 1 (Tree Containment (TC)).

Input: A phylogenetic network N and tree T over the same set X of taxa.
Question: Is T ∈ T (N)?

In the next section, we prove that the TC problem is NP-complete. The notion of character compatibility is extended to
phylogenetic networks so as to reflect the biological fact that the evolutionary history of a character is modeled by one of
the trees inside the network.

Definition 2.2. A character c is compatible on network N if c is compatible on at least one tree T ∈ T (N).

The problem of testing the infinite site model on a phylogenetic network can be defined as follows.

Problem 2 (Infinite Site on Phylogenetic Networks (ISPN)).

Input: Phylogenetic network N and a binary character c labeling the leaves of N.
Question: Is c compatible on N?

Given a network N with k nodes of in-degree 2, the size of T (N) is O(2k). Therefore, The ISPN problem is solvable in O(2kn)
time, given the algorithm in [27] for solving the problem when N is a tree. In the next sections, we prove that ISPN is NP-
complete and introduce a more efficient algorithm for solving it.

Further, we establish equivalence between the ISPN problem and another problem from phylogenetics, namely the
Cluster Containment problem [31]. Let T be a phylogenetic tree on a set X of taxa. We say that edge e induces, or defines,
cluster X ⊆ X, where X is the set of all leaves reachable from the root of T through edge e. We denote by C(T) the set of all
clusters defined by tree T. This notion is extended to networks by C(N) = ∪T∈T (N)C(T). The Cluster Containment problem is
defined as follows.

Problem 3 (Cluster Containment (CC)).

Input: A phylogenetic Network N and set X of taxa.
Question: Is X ∈ C(N)?

In [31], a polynomial time algorithmwas devised for a restricted version of the CC problem, yet its complexity in the general
casewas left open.We show that CC and ISPN are polynomially equivalent, thus establishing NP-completeness of the former
problem as well.

3. Computational Complexity of the TC Problem

In this section we will prove that the TC problem is hard.

Theorem 3.1. The problem TC is NP-complete.

Proof. TC is in NP, since given a network N, a tree T, and a certificate in the form of a tree T ′
∈ T (N) (equivalently, the

certificate can be the set of network edges used to induce the tree T ′), we can verify in polynomial time whether T = T ′. It
remains to be shown that TC is NP-hard. The proof is by a reduction from the Node-disjoint Paths problem, which is stated
as follows: given a directed graph G = (V, E) and a set of disjoint node pairs {(s1, t1), . . . , (sk, tk)}, does G contain kmutually
node-disjoint paths {p1, p2, . . . , pk}, where pi is a path from si to ti? The problem is NP-complete, even when G is a DAG [36].

We construct from DAG G = (V, E) a network N = (V ′, E′), where V ′
= V ∪ {S, L} ∪ {sli : 1 ≤ i ≤ k} ∪ {tli : 1 ≤ i ≤ k}

and E′
= E ∪ {(si, sli), (ti, tli), (S, si) : 1 ≤ i ≤ k} ∪ {(v, L) : v ∈ V, outdeg(v) = 0, and v 6= si, ti} ∪ {(S, v) : v ∈ V, indeg(v) =

0, and v 6= si, ti} ∪ {(S, L)}.
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Fig. 2. Illustrations of the reduction used in the proof of Theorem 3.1. (a) The network N constructed from G, and (b) the tree T. (c) Converting non-binary
trees generated by the reduction to binary ones.

The construction produces a network N with a unique root and set X = L ∪ {sli , tli : 1 ≤ i ≤ k} as its leaf set. Further,
given that G is a DAG, by construction so is N.

The tree T has set X of leaves, internal nodes si and the root S. Fig. 2(a) and (b) illustrate how network N and tree T
generated by the reduction. The reduction is clearly polynomial time. We now show that there are kmutually node-disjoint
paths in G, as specified above, if and only if T ∈ T (N).

Suppose that there are such k node-disjoint paths in G. The tree T ∈ T (N) can be obtained as follows: (1) remove all
network edges coming into the leaf L, if any, except the edge (S, L); (2) for each si, retain the edge (S, si), and delete all other
network edges coming into it, if any; (3) if a node v on a path from si to ti is a tree node, retain the edge coming into it.
Otherwise, v is a network node and we remove all network edges coming into it, except the edge lying on the path from si
to ti. The removal of network edges coming into v does not affect any other path from sj to tj, where j 6= i, because these
paths do not share any nodes; and, finally (4) every node v, including ti, on a path from si to ti is redundant in T, and hence
we perform forced contraction on all nodes v on the path, leaving tli as a child of si. The result of these four steps is the tree
T ∈ T (N).

Conversely, suppose thatG does not contain kmutually node-disjoint paths as specified above. There are two possibilities.
(1) There do not exist any paths between some pair (si, ti). Therefore, no combinations of different choices of network edges
in N would connect si with ti. Consequently, T /∈ T (N). (2) There are two paths si  ti and sj  tj, where j 6= i, that share at
least one common node v. Clearly v must be a network node, because there are at least two edges coming into it. Suppose
that we choose to retain the network edge coming into v that lies on the path si  ti. Then in order for N to induce T, there
must exist another path connecting the two nodes sj and tj. That path, then, must share at least one node with some other
path sm  tm; otherwise, all paths si  ti are node-disjoint, contradicting the assumption. If m = i, then it is not possible to
make both tli and tlj children of si and sj. In the case m 6= i, we must choose to retain the network lying on the path sj  tj.
Then, there exists another path connecting sm and tm, and this path shares a node with some other path, and so on. This
process must stop after a finite number of steps (because k is finite). Therefore, there must be two at least two leaves tli and
tlj connected to a node si, which means that T /∈ T (N). �

Even though the above reduction may produce non-binary trees, the problem is NP-hard for binary trees as well, since
the non-binary tree can be easily converted into a binary one, as illustrated in Fig. 2(c). Further, the reduction may generate
networks that contain nodes of in-degree higher than 2. However, such a network can be converted to one where all nodes
have in-degree at most 2, without affecting the correctness of the reduction, in the following way. For each node v of in-
degree d (d > 2), and u1, . . . , ud as its parents, (1) delete all edges (ui, v), for every 1 ≤ i < d; (2) add d − 2 new nodes
x1, . . . , xd−2; (3) add edges (xi, xi+1) for every 1 ≤ i < d − 2, and edge (xd−2, v); and (4) add edges (ui+1, xi) for every
1 ≤ i < d − 1 and edge (u1, x1). Clearly, the resulting network has nodes of in-degree at most 2.

4. The ISPN Problem: Complexity and a Parameterized Algorithm

4.1. NP-completeness of ISPN

Kanj et al. [17] proved the NP-completeness for the problem of character compatibility on phylogenetic networks when
the network edges are bi-directional. Wemodify their proof to make it work for the ISPN problem and present the theorem.

Theorem 4.1. ISPN is NP-complete.

Proof. To show ISPN is in NP, a nondeterministic Turing machine guesses a tree T ∈ T (N) for the input network N, and
verifies that the character is compatible on it, which can be done in linear time using the algorithm from [27].

We will reduce 3-SAT to ISPN. Given a formula ϕ = θ1 ∧ θ2 ∧ · · · ∧ θm, where each θi, 1 ≤ i ≤ m, is a disjunction of exactly
three literals, the 3-SAT problem asks if ϕ is satisfiable. Suppose that ϕ consists of n variables x1, x2, . . . , xn. For each variable
xi, we construct a variable gadget as follows.

• Create two nodes for xi and xi.
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Fig. 3. Illustrations of the reduction used in the proof of Theorem 4.1. (a) The variable gadget. (b) The clause gadget. (c) The network for ϕ = (x1 ∨ x2 ∨

x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3).

• Create two leaves corresponding with truth values false and true, and assign them the character α values 0 and 1,
respectively.

• From each of the nodes xi and xi, add two edges to the false and true leaves.

The gadget built in this way ensures that, if α is compatible on the network we are constructing, nodes xi and xi cannot be
connected to the same leaf. Therefore, xi and xi will not receive the same truth value. Fig. 3(a) illustrates a variable gadget.

For each clause θi = li1 ∨ li2 ∨ li3 , we construct a clause gadget as follows.

• Create a new leaf node corresponding to θi and assign the α value 1 to it.
• Add three edges from nodes corresponding to li1 , li2 and li3 in variable gadgets to this leaf.

The formula ϕ is satisfiable if and only if every disjunction θi is satisfiable, and θi is satisfiable if and only if at least one of
its literals is assigned true. The clause gadget ensures that, if α is compatible on the network, each clause will have at least
one literal assigned true. Fig. 3(b) illustrates a clause gadget.

From these variable and clause gadgets, we build a network N by creating two nodes F and T and add edges from them
to all literal nodes xi and xi in the variable gadgets. We then create a root and connect two edges from it to nodes F and T.
It is easy to verify that the resulting network satisfies the properties of a phylogenetic network mentioned above. Fig. 2(c)
illustrates the reduction.

Suppose that the formula ϕ is satisfiable. Then, there is a truth assignment that makes all disjunctions θi true. We label
nodes corresponding to literal li as 1 if it is assigned true, and 0 if it is assigned false. We also label node T and the root of N
as 1, and node F as 0. We next prove that we can induce a tree from N such that all nodes labeled 0 are connected and so is
the set of nodes labeled 1. That tree is induced by retaining:

• edges from T to literal nodes labeled 1, and edges from F to literal nodes labeled 0;
• edges from literal nodes labeled 1 to leaves labeled 1 in the variable gadget, and edges from literal nodes 0 to leaves 0 in

the variable gadget; and
• edges from literal nodes labeled 1 to the leaves corresponding to clauses.

It is easy to see that in the tree induced, all nodes labeled 0 form a connected component while nodes 1 also form another
connected component. Therefore, the character α is compatible on N.

Conversely, suppose that the character α is compatible on N. Then, there exists a tree that is induced from N and that α is
compatible on. If the edge coming from li to the leaf corresponding to a disjunction ϕj in ϕ is chosen to induce that tree, we
assign true to li; all other literals are assigned false. First, this is a legal truth assignment.We have to assign both xi and xi truth
value true if in the tree induced, they both connect to leaves 1 corresponding clauses in ϕ. But this cannot happen because
the leaf 0 in the variable clause must belong either to node xi or node xi, and because the character α is compatible on this
tree. Second, this assignment satisfies every disjunction ϕj because at least one of its literal, li, is assigned true. Therefore, ϕ
is satisfiable.

The reduction above clearly can be performed in polynomial time. Therefore, 3-SAT is reducible to ISPN. Since 3-SAT is
NP-complete, it follows that ISPN is NP-complete.

Remark. As defined in Section 2, the in-degree of a node v in a phylogenetic network is bounded by 2. However, the
reduction we devised in this section may generate a node whose in-degree is 3 (see Fig. 3(c) in the appendix). To satisfy
the constraint on the in-degree of nodes, the phylogenetic network produced by the reduction can be modified as follows.
For every node v, with edges (u1, v), (u2, v), (u3, v) incident into it, we do the following: (1) delete edges(u1, v) and (u2, v);
(2) add a new node x; and (3) add edges (u1, x), (u2, x), and (x, v). This transformation does not affect the correctness of the
reduction. Further, it takes O(n) time, where n is the number of leaves in the network, and the resulting network satisfies all
conditions of the definition in Section 2. �
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4.2. A Parameterized Algorithm for ISPN

A Prelude to the Algorithm

An instance of a parameterized problem is a pair consisting of an input instance x of size n and a parameter k. A
parameterized problem is fixed-parameter tractable if it can be solved in time f (k)nO(1), where f is a computable function of the
parameter k. We refer the reader to [7] for a detailed discussion on parameterized complexity. A parameterized algorithm
for an intractable problem implies that the exponential growth in the running time of the algorithm can be confined to
the parameter rather than the input size. Therefore, if the parameter is small, as is the case for many practical instances of
NP-hard problems, the algorithm can derive a solution to an instance of the problem in a feasible amount of time.

Naturally, the ISPN problem can be parameterized by the number of recombination nodes (nodes of in-degree 2)
k in the phylogenetic network, which is usually much smaller than the total number of nodes in the network [29].
Every recombination node in N has two incoming edges, and hence two possible parents. Deciding the parent of each
recombination node in N induces a tree from N, and N is compatible if and only if there exists an induced tree from N that is
compatible. Since there areO(2k) such induced trees, the ISPN problem can be solved inO(2kn) time,where n is the number of
nodes in N, by enumerating all possible induced trees then checkingwhether any of them is compatible using the linear time
algorithm described in [27]. We shall improve on this trivial upper bound next by presenting a simple branch-and-search
algorithm that runs in O(2k/2n2) time.

For two nodes u and v in N, we denote by the ordered pair (u, v) the directed edge from u to v (in case the edge exists in
N). A node u in N is an internal node if u is not a leaf in N, that is, if the out-degree of u is greater than 0.

Definition 4.2. For a node u ∈ N we define the weight of u, denoted wt(u), to be the in-degree of u minus 1 if u is not the
root of N, and to be 0 if u is the root of N.

Initially, every recombination node in N has weight 1 and every other node has weight 0. Therefore, the number of
recombination nodes in N, which is the parameter k, is equal to

∑
u∈N wt(u). The branch-and-search algorithm will branch

by reducing the weight of some nodes in N, that is, by removing incoming edges to certain nodes. Therefore, during the
execution of the algorithm, the network N may no longer satisfy the initial definition of a phylogenetic network (the nodes
in N have in-degree 0, 1, or 2 and only the leaves in N are labeled), and we will refer to it by the network N. When the weight
of every node inN becomes 0, the algorithmwill checkwhether the resulting tree is compatible. As the algorithmprogresses,
the weight of a recombination node can either increase or decrease due to the operations performed by the algorithm. If
the weight of a recombination node becomes 0, then the node ceases to be a recombination node. It is also possible that the
weight of a recombination node exceeds 1. We formalize this notion in the following definition.

Definition 4.3. A node u in N is a said to be a recombination node if it is weight is greater or equal to 1, otherwise, u is said
to be a non-recombination node.

An important notion to the algorithm is the notion of a partition node. If N is compatible and T is a compatible induced
tree from N, then there will be a node p in T at which the nodes will be partitioned into two sets: all the nodes in the subtree
of T rooted at p will be labeled with the one label (either 0 or 1), and all the remaining nodes in T will be labeled with the
other label. We formally define this notion next.

Definition 4.4. Let N be a network. A node p in N is said to be a partition node if there exists an induced compatible tree T
from N such that there is a valid labeling for the nodes in T with all the nodes in the subtree rooted at p in T labeled with the
same label, and all the other nodes in T labeled with the other label.

While applying the branch-and-search process, the algorithm will label some of the internal nodes in the network.
Therefore, the network will get partially labeled as the algorithm progresses. In many cases the (resulting) network can be
simplified, or even, its compatibility can be inferred easily.Wedescribe next someof the scenarios inwhich the compatibility
of the network can be directly decided.We also describe some operations that simplify the network. The algorithmwillmake
use of these operations and simplifications.

Proposition 4.5. If there is at most one leaf of label 0 (similarly 1) in N then N is compatible.

Proof. If there is at most one leaf in N of label 0, then every induced tree from N is compatible. This can be seen by picking
an arbitrary induced tree from N and labeling all its internal nodes 1. �

Proposition 4.6. Let u ∈ N be a node. Suppose that u has two children that are non-recombination nodes. Suppose further that
these two children have different labels and none of them is a partition node. Then N is not compatible.

Proof. Since the two children of u are non-recombination nodes, they will remain children of u in any tree induced from N.
Since the two children have different labels and none of them is a partition node, no labeling of a tree induced from N will
make that tree compatible. �

Proposition 4.7. If a labeled node u ∈ N has a non-recombination child v such that label(v) 6= label(u) and v is not a partition
node, then N is not compatible.
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Proof. The proof of this proposition is very similar to that of Proposition 4.6. �

Propositions 4.5–4.7, illustrate some of the cases when the compatibility of N can be decided directly and easily.
The proof of the following proposition can be easily verified by the interested reader.

Proposition 4.8. Let u be a recombination node in N and let (u′, u) be an incoming edge to u. Suppose that label(u) 6= label(u′).
Let N′ be the network resulting from N by removing the edge (u′, u). Then N is compatible if and only if N′ is. Moreover, if p is a
partition node in N then p is also a partition node in N′.

Proposition 4.8 implies that we can remove every edge incoming to a recombination node from a node with different
label, provided that the recombination node is not a partition node. When removing such an edge, the weight of the
recombination node needs to be decreased by 1.

Proposition 4.9. Let u be a labeled non-recombination node in N with the incoming edge (u′, u). Suppose that u′ is unlabeled. Let
N′ be the network obtained from N by setting label(u′) = label(u) if u is not the partition node, and label(u′) = 1 − label(u) if u is
the partition node. Then N is compatible and p is a partition node in N if and only if N′ is compatible and p is a partition node in N′.

Proof. Since u is a not a recombination node, u remains a child of u′ in any induced tree from N. Therefore, if N is compatible,
in any valid labeling of a compatible tree induced from N we have: label(u′) = label(u) in case u is the partition node, and
label(u′) 6= label(u) (and hence label(u′) = 1 − label(u)) in case u is not the partition node. �

According to Proposition 4.9, we can always label a node u′ having an edge (u′, u) to a labeled non-recombination node
u (provided that a partition node is given).

The proof of the following proposition can be easily verified by the interested reader.

Proposition 4.10. Let u be a node in N and let (u′, u) be an incoming edge to u. Suppose that label(u) = label(u′). Suppose further
that u is a recombination node and let (u′′, u) be another incoming edge to u. Let N′ be the network resulting from N by removing
the edge (u′′, u). Then N is compatible with a partition node p if and only if N′ is compatible with a partition node p.

From Proposition 4.10, if a node u in N has the same label as another node u′ where (u′, u) is an edge in N, then we can
remove all the other incoming edges to u.

Proposition 4.11. Let w be a node in N such that all its children are leaves labeled with the same label. Let N′ be the network
obtained from N by: (1) replacing w and its children with a leaf w′ labeled with the same label as the children of w, (2) making
every incoming edge to w an incoming edge to w′, and (3) making every incoming edge to a child of w an incoming edge to w′.
Then N is compatible if and only if N′ is. Moreover, if p is a partition node of N then p is also a partition node of N′, unless p is either
w or one of its children, and in which case w′ is a partition node in N′.

Proof. If N′ is compatible, then since w′ is labeled 0, by replacing w′ with w and its children and labeling w 0, we obtain a
compatible induced tree from N. Conversely, suppose that N is compatible and consider an induced compatible tree from
N. If we remove w and all its leaf-children from T except one leaf-child that we rename w′, the resulting tree is an induced
compatible tree from N′. The statement about the partition node can be easily verified by the reader. �

The above proposition describes an operation that applies to a node w whose children are leaves labeled with the same
label. The operation collapses the node together with its children to a single leaf w′. In particular, if a node w has a single
child which is a leaf, then this operation replaces w and its leaf-child with a single leaf w′. Note that the weight of the new
node w′ should be set to the the weight of w plus the sum of the weights of all the children of w.

We describe below a procedure that simplifies the network according to the operations and simplifications described
above. The procedure Simplify is given in Fig. 4.

Proposition 4.12. Let N be a network with a given partition node p. If the procedure Simplify decides the instance N, then its
decision is correct, and if it applies an operation to N to obtain a network N′ with a partition node p′, then N is compatible with p
as a partition node if and only if N′ is compatible with p′ as a partition node.

Proof. The correctness of the decision made in step 2 of Simplify follows from Proposition 4.5. The correctness of the
decision made in step 3 follows from the fact that N has at least two leaves of each label at this point (by step 2), and
that leaves have no outgoing edges. The correctness of the decisions made in steps 4 and 5 of Simplify follow from
Propositions 4.6 and 4.7, respectively.

The correctness of the operation performed in step 1 is easy to see. The correctness of the operations performed in steps
6–9 follows from Propositions 4.8–4.11, respectively. �

Lemma 4.13. Let N be a network with a partition node p and suppose that the procedure Simplify if applied to N does not decide
N nor does it perform any operation to N. Then there exists a node w ∈ N satisfying the following properties: (1) w has at least
two children and all the children of w are leaves; (2) there are at least two children of w with different labels; (3) w is unlabeled;
and (4) every child of w is a recombination node.
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Fig. 4. The procedure Simplify.

Fig. 5. The algorithm ISPN-Solver.

Proof. Let ` be a leaf inN such that the root-leaf path P to ` hasmaximum length. Note that `must exist by step 1 of Simplify
(every path starting at the root of N must lead to a leaf). Let w be the parent of ` on the path P. By the maximality of P, all
the children of wmust be leaves. If all the children of w are labeled with the same label, then step 9 of Simplifywould apply
to w. This shows that w has at least two children labeled with different labels, and properties (1) and (2) about w have been
established.

Suppose, to get a contradiction, that w is labeled. Let u be a child of w such that label(u) 6= label(w).
By step 6 of Simplify, u must be a non-recombination node otherwise the edge (w, u) would be removed. By step 5

of Simplify, v must be a partition node. But then by step 3 of Simplify the procedure would have rejected the instance,
contradicting the statement of the lemma. It follows that w is unlabeled establishing property (3) about w.

Finally, if w had a child that is a non-recombination node, then by step 7 of Simplify, w would have been labeled
contradicting property (3) shown above. This establishes property (4) about w and completes the proof. �

The Algorithm

The algorithm ISPN-Solver is given in Fig. 5. The algorithm implicitly assumes that the partition node p is given. This
assumption can be removed by trying every node in N as the partition node, then calling the algorithm with that node
as the partition node. This will increase the running time of the algorithm by an O(n) factor. If the algorithm ISPN-Solver
returns true on any of these calls then N must be compatible. To keep the presentation of the algorithm concise, we will
not enumerate the partition nodes, but we will compensate for that by multiplying the running time of the algorithm by a
linear factor at the end.

The algorithm ISPN-Solver is a branch-and-search process. Each stage of the algorithm starts with an instance (N, k) of
the problem, where k is the total weight of all the nodes in N, and then tries to reduce k either by branching or by simplifying
the network. Then the algorithm recursively works on the reduced instances. We implicitly assume that after each step, the
network N and the parameter k are updated accordingly.

Theorem 4.14. The algorithm ISPN-Solver correctly decides in time O(2k/2n) whether a phylogenetic network with a given
partition node is compatible or not.

Proof. Since we are going to try every node as the partition node, it suffices to show that the algorithm ISPN-Solver, which
works under the assumption that the partition node is given, makes the correct decision.
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Step 1 of the subroutine is correct because if k = 0 then N must be a phylogenetic tree, and the compatibility of N can be
checked in linear time [27]. The correctness of step 2 follows from Proposition 4.12. Since Step 3 tries every possible label
for w (there are only two possible labels for w), the correctness of the algorithm follows.

To analyze the running time of the algorithm ISPN-Solver, notice that the algorithm is a branch-and-bound process and
its execution can be depicted by a search tree. The running time of the algorithm is proportional to the number of root-to-leaf
paths, or equivalently the number of leaves in the search tree, multiplied by the time spent along each such path. Therefore,
the main step in the analysis of the algorithm is deriving an upper bound on the number of leaves in the search tree. Let T
be the search tree for the algorithm ISPN-Solver on an input instance (N, k), and let T(k) be the number of leaves in T . Let
w be a node that the algorithm ISPN-Solver branches on in step 3.

Since all the children of w are leaves, the children of w are all labeled. Since all the children of w are recombination nodes
by property (3) of Lemma 4.13, when the algorithm labels w in each of the two branches, at least one incoming edge to each
child of w having the same label as wwill be removed by step 8 of Simplifywhen applied next to the network. On the other
hand, an incoming edge to every child of wwhose label is different from wwill be removed by step 6 of Simplify. Therefore,
for every child of w, the weight of the child will be decreased by at least 1 in the next call to Simplify. Since w has at least
two children by property (2) of Lemma 4.13, the total weight k of all the nodes in N is reduced by at least 2 in every side of
the branch. It follows that the number of leaves T(k) of the search tree T satisfies the recurrence relation T(k) ≤ 2T(k − 2),
and T(k) = O(2k/2).

Now consider a root-leaf path in the search tree T . On every node of this path the algorithm might need to call the
procedure Simplify, which could take O(n) time since the size of N is O(n). However, this need not be the case with a careful
implementation of this procedure. Instead of calling this procedure at each node of N, we only call it on the nodes on which
the operation is applicable. The time spent by the procedure in each such call is proportional to the number of nodes/edges
removed plus the number of nodes labeled in the call. Since we can only have O(n) nodes/edges, the total time spent by the
procedure on a root-leaf path of T is proportional to the size of the network, which is O(n). It follows that the running time
of the algorithm is O(2k/2n). �

Corollary 4.15. The ISPN problem can be solved in time O(2k/2n2), where n is the number of nodes and k is the number of
recombination nodes, respectively, in the phylogenetic network.

5. The cluster containment problem

Let T be phylogenetic tree on set X of taxa and rooted at node r. Each edge e = (u, v) induces a cluster ce of taxa, which
is the set of leaves reachable from root r only through v. It is easy to see that the leaves in ce are exactly the leaves of the
subtree rooted at v. A cluster ce is contained in a network N if it is a cluster in a tree induced from N.

We can easily determine if a cluster c is in a tree by finding the least common ancestor lca(c) of leaves in c, and then
comparing the leaf set under lca(c) and c. The CC problem is hard because there are many different trees that can be induced
from the network N. We will prove that CC is NP-hard by reducing the problem ISPN to it.

Theorem 5.1. The problem CC is NP-hard.

Proof. The proof is by a Turing reduction from the ISPN problem. Let 〈N,α〉 be an instance of the ISPN problem. Assume the
Cluster Containment problem is in P, and algorithm M solves it in polynomial time. We generate a program M′ that solves
the problem ISPN in polynomial time as follows:

• From 〈N,α〉, generate two instances 〈N, x〉 and 〈N, x〉, where x = {y ∈ L : α(y) = 1} and x = L − x.
• M′ outputs M(〈N, x〉) ∨ M(〈N, x〉).

It is easy to see that the construction is computable in polynomial time. We now show the correctness of the reduction.
Assume 〈N,α〉 is a yes-instance of the ISPN problem (i.e., character α is compatible on network N). If α(r) = 0, where r is

the root, then x is a cluster of N, and therefore M(〈N, x〉) ∨ M(〈N, x〉) is true. The case where α(r) = 1 is similar.
Now, assume that 〈N,α〉 is a no-instance of the ISPN problem (i.e., character α is not compatible on network N). Then, α

is not compatible on any tree T, for all T ∈ T (N). Then, for any tree T, and any labeling of T, any subtree t of T that contains
all the leaves labeled with 0 must contain at least one leaf labeled with 1 (similarly, any subtree t of T that contains all
the leaves labeled with 1, must contain at least one leaf labeled with 0). Hence, neither x nor x is a cluster of N. Therefore,
M(〈N, x〉) ∨ M(〈N, x〉) is false. �

Theorem 5.2. The problems CC and ISPN are polynomially equivalent.

Proof. The proof for Theorem5.1 shows thatwe can polynomially reduce ISPN to CC.We need to show the reverse direction,
that is, CC can be polynomially reduced to ISPN. Let 〈N, c〉 be an instance of the problem of cluster containment. We build an
instance 〈N′,α〉 of ISPN as follows.

• Create a new node r′ that will be the new root for N′.
• Connect r′ to r(N), and create a new leaf X and also connect r′ to it.
• Label leaves in c as 1 while label all other leaves, including leaf X, as 0.

The construction is clearly done in linear time in the size of N.
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Fig. 6. The network in (a) is an example of a galled network. It has two reticulation nodes x and y and their associated galls are illustrated with dashed
triangles. Note that these dashed triangles do not intersect with each other. The network in (b) is a general network because the reticulation node y is on
recombination cycles associated with x, which are shown as dashed polygons.

Assume that c is a cluster in N. There must be a tree T induced from network N and an internal edge e = (u, v) such that
c = ce. We label all internal nodes in the subtree rooted at v, including v, as 1. All other internal nodes in N′ are labeled 0. By
labeling in this way, all nodes assigned value 1 form a connected component and all nodes assigned value 0 form another
connected component. Therefore, α is compatible on N′.

Now assume that c is not a cluster in N. Let c be the set of leaves in network N that are not in c. There are two cases: c
is also not a cluster in N, and c is a cluster in N. If both c and c are not clusters in N, then, by an argument similar to that in
proof of Theorem 5.1, α is not compatible on N. In the other case, the root of N must be labeled 1 as leaves in c are in order
to make α compatible. However, leaves in c and X are labeled 0, and they are separated by this node. Therefore, α cannot be
compatible on N′.

This shows that CC is reducible to ISPN in linear time. Note also that the number of recombination nodes in both instances
is the same. �

Corollary 5.3. The CC problem when parameterized by the number of recombination nodes k in the network is solvable in time
O(2k/2n2), where n is the number of nodes in the network.

6. Galled networks

In this section, we address a biologically-motivated restricted class of phylogenetic networks, called gt-networks,
proposed by Wang et al. [37] and Gusfield et al. [10]. We adopt the definitions of [33].

Definition 6.1. LetN be a phylogenetic network inwhich the in-degree of every node is atmost 2, and letwbe anode that has
two directed paths out of it that meet at a node x of in-degree 2. These two directed paths together define a recombination
cycle Q . Node w is called the coalescent node of Q , and x is the recombination node of Q .

Definition 6.2. A recombination cycle in a phylogenetic network that shares no nodes with any other recombination cycle
is called a gall.

Definition 6.3. We denote by Qw
x a gall whose coalescent node isw andwhose recombination node is x. We denote by E(Qw

x )
the set of all edges on gall Q; formally, E(Qw

x ) = {e : e is an edge on a directed path from w to x}.

When the context is clear, we simply write Q for a gall, without explicitly naming the coalescent and recombination nodes.

Definition 6.4. A phylogenetic network N is called a galled network if every reticulation cycle is a gall.

Fig. 6 shows examples of a galled and a general network. In the general network in Fig. 6(b) recombination node x
is associated with two reticulation cycles. Observe that based on the definition of galled networks, each recombination
node is associated with exactly one gall, and that all nodes on the cycle defined by a gall have in-degree 1, except for the
recombination node, which has in-degree 2.

We recall that a set of taxa is a cluster of N if it is a cluster of at least one induced tree of N, and N induces a tree by
retaining one reticulation edge (and deleting the other one) for each reticulation node.

We now prove that the number of clusters in a galled network is linear in the number of leaves.
It is straightforward to establish that any edge that does not lie on a gall in a galled network contributes only a single

cluster to the overall set of clusters of the network, which we formalize as follows.

Lemma 6.5. Let e = (u, v) be an edge such that e /∈ E(Qw
x ) for any gall Q in a galled network N. Further, let N1 and N2 be the two

subnetworks obtained from deleting edge e in N, where N1 is the subnetwork that contains node u, and we attached a leaf α to it,
and N2 is the subnetwork rooted at node v. Then,

|C(N)| = |C(N1)| + |C(N2)|.
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Further, we now show that the number of clusters contributed by the set of edges in a gall is linear in the number of edges
in that gall.

Lemma 6.6. Let Qw
x be a gall, with pl and pr the two parents of x, in galled network N. Further, denote by El the set of edges whose

both endpoints lie on the path from w to pl, and by Er the set of edges whose both endpoints lie on the path from w to pr . Let Tl and
Tr be the two trees induced from N that differ only in the edges incident into x; that is, Tl has edge (pl, x), while Tr has edge (pr, x).
Then,

|C(Tl)4C(Tr)| = 2(|El| + |Er|),

where A4B is the symmetric difference of two sets A and B.

Proof. Let S be the subnetwork of N rooted at node x. Notice that S is also a galled network. Then, T ′

l and T ′

r , the two trees
obtained from Tl and Tr by restricting them to leaves in L(N) − L(S), are isomorphic, and hence C(T ′

l ) = C(T ′

r). Notice that T ′

l

contains all edges in El, and T ′

r contains all edges in Er . Let Cl and Cr be the sets of clusters of T ′

l and T ′

r induced by the edges in
El and Er , respectively. Then, we have

• C(Tl) = C(T ′

l ) − Cl ∪ {c ∪ L(X) : c ∈ Cl}, and
• C(Tr) = C(T ′

r) − Cr ∪ {c ∪ L(X) : c ∈ Cr}.

Therefore,

|C(Tl)4C(Tr)| = 2|Cl| + 2|Cr| = 2(|El| + |Er|). �

The combination of Lemmas 6.5 and 6.6 has two important consequences. First, a cluster induced by an edge e that is
not in any gall is the same in all induced trees. Second, breaking a gall in two different ways only affects clusters induced by
edges in that gall, not clusters induced by the other edges.

Lemma 6.7. In any galled network with n leaves, the number of reticulation nodes is at most n−1, and hence the number of galls
in N is at most n − 1.

Proof. Consider any phylogenetic tree T with n leaves. The number of internal nodes in T is at most n − 1 (which only
happens when T is binary). If we add a new reticulation edge (p(x), x) to T in order to buid a network N, then Qw

x has at least
one internal node of T. Galls in N cannot share any internal node in T. We also note that new nodes p(x) and x cannot be
shared with other galls in N. Therefore, we can have at most n − 1 galls in N. �

Lemma 6.8. Let N = (V, E) be a galled network with n leaves. Then, |C(N)| = O(n).

Proof. Let R be the set of reticulation nodes of N, and let E = E \
⋃

x∈R E(Q
w
x ). By Lemma 6.5, clusters induced by edges

in E are the same in all induced trees. Further, by Lemma 6.6, breaking a gall Qw
x in two different ways creates at most

2|E(Qw
x )| different clusters, regardless of any combination of breaking all other galls. Therefore, the number of different

clusters induced by N is at most |E| + 2
∑

x∈R |E(Qw
x )| = |E| +

∑
x∈R |E(Qw

x )|.
Any two galls in N do not share any nodes, so

∑
x∈R |E(Qw

x )| is bounded by |E|. From Lemma 6.7, the number of edges in a
galled network is at most (2n − 2) + (n − 1) = 3n − 3. Therefore, the number of clusters induced by a galled network is at
most 6n − 6, which completes the proof. �

Given this series of results, we now show that the Cluster Containment Problem is in P for galled networks.

Theorem 6.9. The Cluster Containment Problem is solvable in polynomial time on galled networks.

Proof. Given a network N with n leaves, every cluster induced by N has at most n leaves, and thus checking whether two
clusters are equal takes polynomial time. The number of clusters induced by N, as shown in Lemma 6.8, is O(n). Therefore,
checking whether a given cluster X is equal to one of clusters induced by N takes polynomial time. �

Given the polynomial equivalence of the CC and ISPN problems, and the fact the reduction in the proof of Theorem 5.2
does not modify the network, we obtain the following corollary.

Corollary 6.10. The ISPN problem is solvable in polynomial time on galled networks.
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