Data-Driven Test Case Generation for Automated
Programming Assessment

Terry Tang
Rice University
terry.tang@rice.edu

Rebecca Smith
Rice University
ris@rice.edu

Scott Rixner
Rice University

rixner@rice.edu

Joe Warren
. Rice Univ_ersity
jwarren@rice.edu

ABSTRACT

Building high-quality test cases for programming problems
is an important part of any well-built Automated Program-
ming Assessment System. Traditionally, test cases are cre-
ated by human experts or using machine auto-generation
methods based on the problem definition and sample solu-
tions. Unfortunately, the human approach can not antic-
ipate the numerous ways that programmers can construct
erroneous solutions. The machine auto-generation methods
are complex, problem-specific, and time-consuming.

This paper proposes a fast, simple method for generating
high-quality test sets for a programming problem from an ex-
isting collection of student solutions for that problem. This
paper demonstrates the effectiveness of the proposed method
in online programming course assessments. The experiments
showed that, when applied to large collections of such pro-
grams, the method produces concise, human-understandable
test sets that provide better coverage than test sets built by
experts with rich teaching experience.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education—Computer science education

General Terms
Reliability, Verification

Keywords

Automated Programming Assessment System; Automatic
Test Case Generation; Data-Driven; MOOC

1. INTRODUCTION

Automated Programming Assessment (APA) systems
have been widely used in many areas to evaluate program

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

ITiCSE 16, July 09-13, 2016, Arequipa, Peru
© 2016 ACM. ISBN 978-1-4503-4231-5/16/07... $15.00
DOL http://dx.doi.org/10.1145/2899415.2899423

correctness and efficiency. Universities and companies have
built automated systems for judging programming competi-
tions, such as UVa [7], PC? [3], TopCoder [6], and Google
Code Jam [1]. Educators have created Leetcode [2], Ros-
alind [5], and Project Euler [4] to teach programming skills
and algorithms through problem-solving exercises. Recently,
many massive open online courses (MOOCs) have relied
heavily on automated assessment systems for grading pro-
gramming assignments [18].

The effectiveness and efficiency of an APA system is
largely determined by the quality of its test cases. Man-
ually building test cases is tedious and time-consuming, and
makes it difficult to guarantee a high level of error detection.
Thus, researchers have put a great deal of effort into test
case auto-generation to reduce human effort and increase
test quality [10, 16, 21].

Traditional software testing systems target a single ex-
isting piece of software, and are typically used to validate
software that is already believed to be largely correct. In
contrast, APA systems target a broad spectrum of programs
implementing a single specification, and are typically used as
a step in the incremental feedback-debugging cycle. As a re-
sult, they face additional requirements. First, they demand
fast execution to provide a rapid feedback cycle. Therefore,
they typically employ test suite reduction strategies [11] to
minimize the number of tests while retaining quality. Sec-
ond, they should be capable of assessing yet-to-come im-
plementations based on a problem description and a few
correct sample solutions. Third, APA systems often benefit
from presenting test cases in a logical order, e.g., increasing
complexity, particularly in the context of offering feedback
and partial credit to students in programming courses.

Shayma et al. [16], categorized traditional test case auto-
generation techniques into random-based, search-based, and
data mining-based methods. Random-based methods ran-
domly generate a large number of tests within a constrained
search space [8]. Given an existing piece of code, techniques
like mutation-driven selection [12] can be applied in random-
based methods to eliminate unimportant test cases. How-
ever, future submissions are hard to predict, and thus cannot
guide test selection in this way.

Search-based methods [15] use more advanced algorithms
such as genetic algorithms [14] and particle swarm optimiza-
tion [18] to directly search for high quality test cases. How-
ever, these methods are complex and computation inten-
sive. Moreover, they are not easily generalizable, requiring
problem-specific fitness function selection and tuning.

Data mining-based approaches have been proposed to re-
duce the number of test cases without losing coverage [17,
20, 22] by identifying hidden input-output (I/O) relations.
However, these methods are typically more complex, requir-
ing a large number of training samples and significant tuning
in order to achieve accurate predictions.

Input Concise Test Set Generator

Config File
Base Test Set

Base Test Set
Generator

Reference
Solution

Student
Solutions

Concise Test Set Generator

’ Algorithm1 Algorithm 2 |« ¢
Concise Concise
Output Test Set 1 Test Set 2

Figure 1: FEAT Structure and Workflow

This paper describes a simple and easy-to-use toolchain
for creating high-quality test sets for automated assessment
systems, Feedback and Evaluation via Auto-generated Tests
(FEAT). It utilizes a collection of previously-submitted stu-
dent solutions to guide the test generation process, under
the assumption that no error is unique in a crowd-sourcing
scenario [13].

FEAT consists of three modules (Figure 1): the base test
set generator, the tester, and the concise test set genera-
tor. The first module auto-generates a large pool of test
cases for a particular programming assignment, based on an
instructor-provided problem specification. This pool is re-
ferred to as the base test set. The second module uses the
base test set to check the correctness of a training set of stu-
dent solutions against an instructor-provided reference solu-
tion. The third module uses the testing results to construct
concise test sets that are small subsets of the base test set.
These concise test sets are carefully chosen such that they
detect every erroneous solution that could be found using
the much larger base test set, while providing the efficiency
needed for use in an APA system.

The effectiveness of FEAT was tested in a series of as-
signments from massive open online courses [19]. The test
sets for these assignments were manually built by the au-
thors in the first course session, but were reported as in-
complete by students. Evaluation demonstrated that FEAT
generates superior test sets, providing students with higher-
quality feedback while freeing instructors from the tedious,
time-consuming work needed to use APA systems.

This paper presents three key contributions:

e Base test set generation: This paper proposes a
simple specification for the inputs to a programming
problem and describes an algorithm for creating a large
set of test cases based on this specification.

e Concise test set generation: Given a collection of
previous solutions to a programming problem, this pa-
per describes test reduction methods for selecting con-
cise subsets of the base test set with the property that
all programs that fail on the base test set also fail on
the concise test sets. Two types of concise test sets are
presented: approximately minimal and gradated.

e Comparison with expert test sets: Finally, this
paper compares the test coverage of these auto-
generated concise test sets to that of expert-generated
test sets, showing that the concise test sets provide
greater test coverage.

2. BASE TEST SET

This section presents the first module of the FEAT
toolchain: a generic, automated approach to generating an
expansive set of test cases based on a simple yet powerful
means of inductively defining the inputs of the function be-
ing tested. The resultant base test set B serves as the pool of
candidate tests from which the two concise test sets are ulti-
mately drawn (see Section 4). Further, this section presents
a method for assigning a complexity heuristic to each test
case. These heuristics enable the construction of gradated
test sets, designed to give students actionable feedback (see
Section 4.2).

FEAT employs a hybrid approach to base test set gener-
ation. A fully-exhaustive test set — i.e., all valid combina-
tions of arguments — is guaranteed to catch all incorrect
programs, but generating such a test set is often impossible
and nearly always computationally prohibitive. In contrast,
generating a random test set is tractable, but has a high
probability of missing edge cases. Thus, B is the union of
two disjoint test sets: an exhaustive set covering a manage-
able subset of the input domain, and a random set providing
partial coverage of the remaining portion of the domain.

2.1 Specifying the Domain for Test Cases

To generate the base test set, the user must specify four
pieces of information in a config file: parameter types, argu-
ment domains for both exhaustive and random generation,
and the desired number of random test cases.

Valid parameter types include all built-in Python types,
such as lists, dictionaries, strings, and integers, nested ar-
bitrarily deeply. Further, types may be classes, specified as
composites of built-in types. Argument domains bound the
values that FEAT will use as arguments for each parameter,
and may be continuous or discrete.

FEAT also provides three optional means of further con-
straining the arguments, to facilitate testing functions with
arbitrarily complex specifications. First, the config file lan-
guage includes keywords, such as sorted, for constraining
a single parameter. Second, dependencies may exist be-
tween parameters. The user can express such dependencies
by defining and using variables; Section 2.4 presents an ex-
ample of such a dependency.

Keywords and dependencies are lightweight, intuitive
means of expressing constraints, but they do not always suf-
fice. Thus, the user may provide a validation function with
parameters identical to those of the function being tested.
This function returns True if the arguments are valid, and
False otherwise. FEAT uses this function to post-process
its tentative base test set, discarding invalid cases.

Table 1: Base Test Set Results on Student Solutions

Prob. Problem Base Test Set Size Num Student Num Incorrect Runtime
Index Module Function Exhaustive Random Total Solutions Solutions (hours)
1 2048 Game merge 781 219 1000 55523 39617 12:16
2 Graph Theory compute_in_degrees 285 215 500 5145 1577 0:16
3 Graph Theory in_degree_distribution 285 215 500 5109 2805 0:15
4 Graph Theory make_complete_graph 30 20 50 5120 1094 4:27
5 |[DNA Alignment build_scoring_matrix 864 136 1000 3374 1090 12:59
6 Yahtzee expected_value 627 373 1000 65217 37733 14:52
7 Yahtzee gen_all_holds 462 538 1000 57758 35597 51:15
8 Yahtzee score 461 539 1000 65652 26336 4:45

2.2 Auto-Generating Test Cases

Base test set generation has two phases: exhaustive gener-
ation and random generation. Exhaustive generation oper-
ates as follows. First, for each individual parameter, FEAT
recursively generates all possible arguments. During gener-
ation, FEAT maintains metadata for each argument: a set
of values for each variable that are compatible with that ar-
gument. FEAT uses this metadata to prune the search tree
when it encounters disjoint sets of compatible values for the
same variable across nested layers of the argument.

Once FEAT has amassed a set of consistent arguments
for each parameter, it takes the cross product of these sets
to generate all possible test cases, again pruning the search
upon incompatibility. Last, if a validation function was pro-
vided, it uses this function to filter the set of test cases.

Random generation is simpler. While the size of the ran-
dom test set is less than the target, FEAT randomly selects
a value for each variable. It then randomly selects each argu-
ment subject to these variable constraints. If the resultant
test case is not yet in B, it is added to the random test set.

2.3 Assigning Test Case Complexity

After generating B, FEAT assigns a floating point com-
plexity C[t] to each individual test case t. Complexity is
defined as C[t] = [[C[t;], where C[t;] is the complexity of
the i*" argument and C[t;] is the product of the average com-
plexity of each nested component. Component complexity
is the length for sequences and value for primitives. By de-
fault, each component of each argument is incorporated into
this heuristic. However, the user may optionally specify a
subset of arguments and/or components to use.

As an example, consider the list [1, 2, 3]. The complex-
ity of the list itself is its length (3.0), and the complexity of
its contents is the average value (2.0), for a default com-
plexity of 6.0. Imagine that the user declares the contents
irrelevant; in this case, the complexity will be 3.0.

2.4 Configuration Example

In the dice game Yahtzee, a player rolls a set of dice and
then holds some subset of the dice while re-rolling the re-
maining dice. Consider a function expected_value with
three inputs — the dice held (a sorted tuple of integers),
the number of sides on each die (an integer), and the num-
ber of dice to be re-rolled (an integer) — and computes the
expected value after the roll. Naturally, the values of the
held dice may not exceed the number of sides on the dice.

Figure 2 shows a sample config file for this function, with
syntax slightly condensed for brevity. Parameter types are
expressed under the [types] header using a combination
of keywords (sorted) and Python types (tuple, int), with
parentheses indicating nesting. For instance, sorted tuple

sorted tuple (i
0-3 (1-m); m; 1
2—8 (0—n); n; 0
[variables] m 1-6; n 6-10
[complexity] True (False); True; True
[num random] 545

[types]
[e domain]
[r domain |

nt); int; int

3
3

Figure 2: Sample Config File

(int) denotes a tuple of integers sorted in ascending order.
Exhaustive and random domains ([e domain] and [r do-
main]) for each parameter are expressed as inclusive ranges,
representing lengths for sequences and values for primitive
types. For instance, the first exhaustive domain (0-3 (1-
m)) stipulates that the tuple of held dice has a length on [0,
3], where each element in the tuple is an integer on [1, m].
Dependencies between parameters — in this example, the
fact that values representing rolled dice may not exceed the
number of sides — are captured using variables. Consider
the exhaustive case. The domain for the number of sides is
m, defined under the [variables] header as [1, 6], and the
upper bound on the values of the rolled dice is likewise m,
ensuring that no die’s value exceeds the number of sides.
Finally, the [complexity] header specifies which features
of the input define its complexity. Here, True (False);
True; True indicates that increasing the number of dice
held, number of sides, and number of dice rolled increases
the complexity of the test case, but changing the particular
values of the held dice does not affect the complexity.

3. TESTING STUDENT SOLUTIONS

Once the base test set has been created, student solutions
can be tested. Tests are first run on a reference solution to
acquire the expected results, and then run on a corpus of
student solutions, S, to ascertain correctness.

Recall that the goal of running the base test set on S is
not merely to check these particular solutions. Rather, these
solutions serve as a training set to identify high-quality test
cases — those that trip up many erroneous solutions — and
to derive the concise test sets (see Section 4). The concise
test sets can then be used to efficiently test future solutions.

The tester maintains a mapping D of each solution, S;, to
the set of test cases that it failed on, B; (i.e., B; = DI[Si]).
This data enables selection of a concise subset of B without
sacrificing coverage of any known incorrect solutions.

FEAT was used to generate and run base test sets for eight
problems from four different programming assignments. Ta-
ble 1 shows the inputs (|B], |S|) and outputs (number of
incorrect solutions identified, runtime) of the tester.

The number of student solutions tested ranged from 3639—
73156; between 20-78% of those solutions proved incor-
rect. The size of the base test set was typically config-

ured to 500-1000 test cases, with one exception: gener-
ate_complete_graph, which takes as its input an integer
and generates a complete graph with that many nodes. In
this case, the simplicity of the parameter types led to dimin-
ishing returns as the size of B was increased.

Using such an extensive training set leads to strong cover-
age, but demands tradeoffs in time. Runtime varied greatly,
influenced by |B| and |S|; the minimum was 15 minutes, and
the maximum was 51 hours. This non-trivial runtime moti-
vates the use of a data-driven approach like FEAT, as per-
forming semantic analysis on each training solution would
likely prove computationally prohibitive. Further, Section 5
will show that |S| can be reduced substantially while main-
taining over 95% of the original coverage.

4. CONCISE TEST SETS

The base test set is designed to provide broad coverage,
but is ill-suited for direct use in APA systems as its large
size would slow the feedback cycle. This section describes
two algorithms for extracting concise test sets from B. The
first algorithm constructs an approximately minimal test set
M with the property that every solution in S which fails on
some element in B also fails on some element in M. The
second algorithm generates a gradated test set G that is
similar in size to M, but favors lower complexity.

4.1 Approximately Minimal Test Sets

As stated in Section 3, the tester computes a subset B; of
B for which the solution S; disagrees with the reference so-
lution. The goal of concise test set generation is to compute
a subset M of B that contains at least one test case from
each non-empty B;. In other words, M has the property
that B; N M # 0 over all B;.

This problem corresponds to the classical hitting set prob-
lem, which is known to be NP-hard. Fortunately, there ex-
ists a simple greedy methods utilizing GRE heuristics [21]
for computing a hitting set whose size is guaranteed to be
within log(|B|) of the optimal size.

FEAT maintains a family F' of the sets B; that is dynami-
cally updated as the algorithm proceeds. The GRE heuristic
is coverage, where the coverage of a test case ¢t with respect
to F' is defined as the number of sets in F' that contain t. M
is then constructed using a three-step iterative strategy:

1. Compute the test case t that has maximal coverage;

2. Add this test case t to M;

3. Remove those sets in F' that contain ¢.

This process continues until F' is empty. Since each entry
in F' corresponds to one student solution, this guarantees

that M has the same coverage as B. The pseudo-code for
this algorithm is as follows:

rAlgorithm 4.1: ApPROXMINIMALTESTSET(D, B, S))

M+ 0, F« 0
for each S; € S
F+ FU{B;}
while F # 0
t < argmax,.p|{Bi € F|t € B;}|
do { M « MU {t}
F «+ F\{B; € F|t € B;}
return (M)

Table 2: Test Set Size Comparison

Function Base Concise Test Set
Test Set [Minimal | Gradated
merge 1000 31 39
compute_in_degrees 500 4 5
in_degree_distribution 500 5 7
make_complete_graph 50 3 3
build_scoring _matrix 1000 2 3
expected_value 1000 12 19
gen_all_holds 1000 6 9
score 1000 9 14

4.2 Gradated Complexity Test Sets

Since Algorithm 4.1 repeatedly chooses test cases with
maximal coverage, the resultant M is significantly smaller
than B. However, it has one major drawback: the test cases
in M tend to have high complexity, which is inconsistent
with good testing practice. If used in an APA system, it
may cause the system to report that a user failed a complex
test case when a simpler example would be more valuable
to the learning process.

One possible solution to this problem is to run the test
cases in M in order of their complexity to ensure that a user
solution fails on the simplest test in M first. However, this
approach can fall victim to the situation where Algorithm
4.1 selects few simple tests.

A better solution is to balance the coverage of a test case
versus its complexity when choosing a new test case. Algo-
rithm 4.2 computes the gradated test set G by assigning a
score to each test case: the ratio of its current coverage to
the square of its complexity. In each iteration, Algorithm 4.2
selects the test case t with the highest score. Ties are bro-
ken by choosing the test case with lower complexity. After
selecting t, the algorithm updates set family F' by remov-
ing those test cases sets that have been covered by ¢. The
pseudo-code below outlines the process:

Algorithm 4.2: GRADATEDTESTSET(D, B, S,C)

G+ 0, F+ 0
for each S, € S
do B; D[Sl]
F+ FU{B;}
while F' # ()
t « argmax, . p|{B; € F|t € B;}| / (C[t])*
do ¢ G+ GU{t}
F « F\{B; € F|t € B;}
return (G)

J

Table 2 shows the size of M and G for the same eight prob-
lems introduced in Section 3; in each case, both concise test
sets are substantially smaller than the corresponding base
test set. While each |G| is greater than or equal to the cor-
responding |M|, the gradated test sets benefit from gradual
growth in complexity. Figure 3 compares the complexities of
the tests in M and G for the problem expected_value. M
contains complex test cases with random ordering, shown as
M-Original and sorted as M-Sorted. In contrast, G achieves
the same coverage as M with notably less complexity.

The auto-generated gradated test sets were deployed in
a programming MOOC. The APA system for that MOOC
tests student’ programs against sorted tests cases in G from

o
I
8

8

~——— M - Original
M — Sorted
——G

2
8

Test Case Complexity Scores

1 2 3 a4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Indices of Test Cases

Figure 3: Comparison of test case complexities in two con-
cise test sets for the problem expected value

easy to complex. The system provides partial credit to erro-
neous programs based on which tests in GG that they fail,
rather than making a binary correct/incorrect judgment.
Following the test-driven development principle [9], the sys-
tem also returns the first — and therefore simplest — failed
test case to the student, aiding the student in debugging
their code. Students repeat this practice until they are satis-
fied with their scores, practicing their coding and debugging
skills in the meanwhile.

S. METHOD SENSITIVITY ANALYSIS

Since FEAT selects test cases based on their results on
the training set, the error detection ability of the resultant
concise test sets on future programs is driven by the number
and quality of programs in this training set. Too few or too
similar programs can bias the test selection, leading to false
positive verdicts on future submissions. On the other hand,
a large training set will slow the testing phase, and may
be difficult to come by. Thus, it is necessary to study the
relationship between training set size and test set coverage
in order to navigate these tradeoffs.

100%
o
95% ™
90% ---2-M
—&—3-M
85%
—>e4-M

80% 5

5% Minimal Concise Test Set —o-6:M
7-M

8-M

70%

65%
0.78% 1.56% 3.13% 6.25% 12.50% 25.00% 50.00% 100.00%

100% e
95% ; - M
f’ 16

90% —&-2-G
—4—=3-G

85%
4G

80% —=#=5-G

75% ~0-6-G

Gradated Concise Test Set 7-G

70% 8-G

Percentage of Incorrect Programs in P Identified By Concise Test Sets

65%
0.78% 1.56% 3.13% 6.25% 12.50% 25.00% 50.00% 100.00%

Percentage of Programs in P Used to Generate Concise Test Sets (In Binary Logarithmic Scale)

Figure 4: FEAT’s coverage with respect to |S|

FEAT’s sensitivity to training set size was evaluated on
the same eight problems analyzed in Sections 3 and 4. For
each problem, 1000 solutions were randomly selected to serve

as the test pool P. From this pool, the percentage of pro-
grams randomly selected to serve as the training set S was
gradually increased from 0.78125% — 100%. The resultant
concise test sets were then used to evaluate all programs in
P. To account for the randomness in the selection of S, this
process was repeated five times for each problem. Figure 4
shows the average coverage for each training set size.

Intuitively, the percentage of incorrect programs in P iden-
tified by FEAT’s concise test sets increases with |S|. More
surprisingly, for all eight problems, using a mere 12.5% of
the programs in P achieved over 95% test coverage of P. In
other words, the test coverage of the generated concise test
sets does not increase linearly with respect to the number
of training programs. Rather, it increases quickly when |S|
is small and then plateaus. This suggests that FEAT can
generate concise test sets with good coverage even using a
reasonably small number of training programs.

These results also shows that more challenging problems,
such as merge (1-M, 1-G) — for which 71% of student so-
lutions were identified as incorrect (see Table 1) — tend to
require a larger training set in order achieve high coverage,
as there is a wider variety of ways in which students may
err. As shown in Figure 4, the coverage of merge increases
more gradually than that of easier problems. Yet, coverage
still increases nonlinearly and eventually reaches a plateau.

6. COMPARISON WITH EXPERT TESTS

The gradated concise test sets computed by Algorithm
4.2 were deployed in the second session of the authors’ pro-
gramming MOOC. Student response was positive, with no
reports of incorrect solutions passing the machine grader’s
tests. Additionally, this section presents a more methodolog-
ical analysis of the coverage of the concise test sets versus
the instructor-created test sets used in the first session of the
MOOC. All student solutions for the eight problems studied
in previous sections were analyzed.

Table 3 reports the results of comparing the coverage of
the expert test sets and the auto-generated concise test sets.
Recall that both M and G have the same coverage as their
common base test set B. Thus, the “C” in the headings of
this table simultaneously represents the results from B, M,
and G. The four columns in the table indicate, respectively,
the number of student solutions that pass both test sets, fail
both test sets, pass the expert and fail the concise, and fail
the expert and pass the concise.

Most importantly, note that the entries in Column 4 are
very small — often zero — compared to those of the other
columns. This reflects the fact that the concise test set
caught almost all of the errors that the expert test caught.
The expert test set occasionally caught a few incorrect solu-
tions that were not identified by the concise test sets; how-
ever, this was rare, as this situation only occurs when a
solution does not fail any of the tests in the base set. In
this situation, the expert test set usually included tests that
exploited problem knowledge that was not encoded in the
configuration file provided to FEAT.

Another important observation is that, for many prob-
lems, the values in column three were large in comparison to
column two. This indicates that the expert test set failed to
detect a non-trivial fraction of the programs marked incor-
rect by the concise test set. For example, the expert test set
for score allowed almost two-thirds of the solutions marked
incorrect by the concise test set to pass. This indicates that

the expert test set had substantial deficiencies, correlating
with the student complaints from the first session.

Table 3: Test Result Comparison

Function vV E x B VE|XE

v C x C xC|vC
merge 15860 | 37776 1838 25
compute_in_degrees 3562 1555 21 6
in_degree_distribution 2301 2742 61 3
make_complete_graph 4025 865 229 0
build_scoring matrix 2283 1030 60 0
expected_value 27256 | 34573 2923 3
gen_all_holds 11424 | 31576 669 0
score 39316 9320 | 17016 0

* Note: v E means “correct on expert test set” and x C
means “incorrect on concise test set” and so on so forth

7. CONCLUSION AND FUTURE WORK

This paper introduced a data-driven approach to generat-
ing high-quality concise test sets for feedback and assessment
in programming courses, as well as an implementation of this
method in the FEAT toolchain. FEAT incorporates concise
test set generation algorithms for producing near minimal
test sets and slightly larger gradated test sets with simpler
cases. The gradated test sets are designed to be student-
friendly for feedback and evaluation. With simpler tests,
the students can more easily understand and debug prob-
lems with their programs. Both algorithms take advantage
of a diverse pool of student solutions, resulting in superior
coverage as compared to expert-generated tests.

For the problems studied, 1.3-64.6% of the known in-
correct programs were identified as incorrect by the auto-
generated test sets, but erroneously deemed correct by the
expert test set. Moreover, only 0-0.4% of the known in-
correct programs were identified as incorrect by the expert
test set, but erroneously deemed correct by the generated
test sets. This highlights the advantages of utilizing student
submissions to generate tests.

FEAT exploits a relatively large base test set in order
to find incorrect programs. The fact that a few programs
were identified as incorrect by the expert tests but not the
auto-generated concise tests means that students made er-
rors that were not exercised by any tests in the base test
set. To increase coverage, the base test set could be ex-
panded, either by adding more random test cases or by more
targeted selection of additional test cases. One method to
identify valuable additional test cases would be to incorpo-
rate semantic analysis of the reference solution or student
solutions. The challenge would be to optimize the analysis
so that it is feasible to apply to a large collection of solutions.

Another interesting question for future study is the re-
lationship between the problem specification and the size
of the resulting concise test set. For some problems, only a
small number of tests were needed; for others, the size of the
size of the concise test set was larger, indicating that there
were more ways for a student to err. Quantifying this rela-
tionship may shed some light on the “difficulty” of various
programming problems.

8. ACKNOWLEDGEMENTS

This material is based upon work supported by NSF
Award CCF-1320860: ”Computer-Aided Grading, Feed-
back, and Assignment Creation in Massive Online Program-
ming Courses” as well as an NSF Graduate Research Fellow-
ship under Grant No. 1450681.

[9]

(10]

(1]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

REFERENCES

Google Code Jam. https://code.google.com/codejam.
LeetCode. https://leetcode.com/.

PC?. http://www.ecs.csus.edu/pc2/.

Project Euler. https://projecteuler.net/.

Rosalind. http://rosalind.info/problems/.

TopCoder. https://www.topcoder.com/.

UVa. https://uva.onlinejudge.org/.

A. Arcuri, M. Z. Igbal, and L. Briand. Random
testing: Theoretical results and practical implications.
Software Engineering, IEEE Transactions on,
38(2):258-277, 2012.

K. Beck. Test-driven development: by example.
Addison-Wesley Professional, 2003.

A. Belinfante, L. Frantzen, and C. Schallhart. 14 tools
for test case generation. In Model-Based Testing of
Reactive Systems, pages 391-438. Springer, 2005.

T. Y. Chen and M. F. Lau. A new heuristic for test
suite reduction. Information and Software Technology,
40(5):347-354, 1998.

G. Fraser and A. Zeller. Mutation-driven generation of
unit tests and oracles. Software Engineering, IEEE
Transactions on, 38(2):278-292, 2012.

A. Kittur. Crowdsourcing, collaboration and
creativity. ACM Crossroads, 17(2):22-26, 2010.

R. Kumar, S. Singh, and G. Gopal. Automatic test
case generation using genetic algorithm. International
Journal of Scientific & Engineering Research (IJSER),
4(6):1135-1141, 2013.

P. McMinn. Search-based software test data
generation: a survey. Software testing, Verification
and reliability, 14(2):105-156, 2004.

S. M. Mohi-Aldeen, S. Deris, and R. Mohamad.
Systematic mapping study in automatic test case
generation. 2014.

K. Muthyala and R. Naidu. A novel approach to test
suite reduction using data mining. Indian Journal of
Computer Science and Engineering, 2(3):500-505,
2011.

S. Srikant and V. Aggarwal. A system to grade
computer programming skills using machine learning.
In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 1887-1896. ACM, 2014.

T. Tang, S. Rixner, and J. Warren. An environment
for learning interactive programming. In Proceedings
of the 45th ACM technical symposium on Computer
science education, pages 671-676. ACM, 2014.

L. Wu, B. Liu, Y. Jin, and X. Xije. Using
back-propagation neural networks for functional
software testing. In Anti-counterfeiting, Security and
Identification, 2008. ASID 2008. 2nd International
Conference on, pages 272-275. IEEE, 2008.

S. Yoo and M. Harman. Regression testing
minimization, selection and prioritization: a survey.
Software Testing, Verification and Reliability,
22(2):67-120, 2012.

7. Zhang and Y. Zhou. A fuzzy logic based approach
for software testing. International journal of pattern
recognition and artificial intelligence, 21(04):709-722,
2007.

