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Abstract
Optimizing memory management is a major challenge of
embedded systems programming, as memory is scarce. Fur-
ther, embedded systems often have heterogeneous memory
architectures, complicating the task of memory allocation
during both compilation and migration. However, new op-
portunities for addressing these challenges have been created
by the recent emergence of managed runtimes for embedded
systems. By imposing structure on memory, these systems
have opened the doors for new techniques for analyzing and
optimizing memory usage within embedded systems. This
paper presents GEM (Graphs of Embedded Memory), a tool
which capitalizes on the structure that managed runtime sys-
tems provide in order to build memory graphs which facili-
tate memory analysis and optimization. At GEM’s core are a
set of fundamental graph transformations which can be lay-
ered to support a wide range of use cases, including inter-
active memory visualization, de-duplication of objects and
code, compilation for heterogeneous memory architectures,
and transparent migration. Moreover, since the same under-
lying infrastructure supports all of these orthogonal func-
tionalities, they can easily be applied together to comple-
ment each other.

1. Introduction
Managed runtime systems, already common in traditional
computing systems, are increasingly being adopted by em-
bedded systems programmers to increase productivity. Mod-
ern embedded runtime systems such as eLua [2], p14p [5],
Micro Python [7], and Owl [4] raise the abstraction level of
embedded systems programming by providing interpreters
for high-level languages and automating tasks such as thread
scheduling, garbage collection, and inter-process communi-
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cation. While the adoption of runtime systems has primarily
been motivated by aspirations of productivity, these systems
also provide new opportunities for improving memory anal-
ysis and optimization by imposing structure on memory.

Embedded systems exhibit a combination of resource
constraints and heterogeneity which makes it difficult, yet
essential, to carefully analyze and optimize memory. In
terms of resource constraints, a typical mid-range microcon-
troller may have only 32–256 KB of SRAM and 128 KB–
1 MB of flash, necessitating thoughtful management of
memory at both compile-time and runtime.

The task of memory management is further complicated
by heterogeneity; a single embedded system may consist of
multiple microcontrollers with varied proportions of SRAM
and flash. As an example, one member of STM32’s Cortex-
M series of microcontrollers has 256 KB of flash and 32 KB
of SRAM [39], while another has only 128 KB of flash, but
64 KB SRAM [38]. In a heterogeneous system, allocation
and data layout schemes could simply cater to the lowest
common denominator of each type of memory. However,
this is impractical due to the scarcity of memory; a more
flexible solution is needed.

Outside the domain of embedded systems, tools have
been developed to leverage the structure imposed by man-
aged runtime systems to model memory as a graph [8, 16,
26, 30, 32, 43]. By providing a clear and intuitive represen-
tation of the relationships between objects, graphs facilitate
visualization, analysis, and transformations across multiple
nodes. This is hugely valuable to memory transformation,
as inter-object references make it nearly impossible to op-
erate on a single object in isolation. Yet, existing tools use
memory graphs solely for visualization and analysis, trans-
forming only insofar as is necessary to display the graph.

The challenges faced by embedded systems motivate the
development of tools which use memory graphs not only
for analysis, but also for optimization. However, embed-
ded applications have traditionally been written in C, where
the unstructured memory layout and presence of unidentifi-
able pointers inhibits the construction of memory graphs. In
contrast, runtime systems for high-level languages organize



memory in a way that is amenable to graph-based analysis
and transformation.

This paper introduces GEM, a memory configuration tool
for embedded runtime systems which builds, analyzes, and
transforms graphs of the entire memory space of a program.
At its core is a set of fundamental transformation passes
that can be combined into high-level use cases. Addition-
ally, GEM includes a mechanism for installing a transformed
graph in memory, allowing these abstract graph transforma-
tions to impact the actual memory layout of the system. Due
to its flexible and extensible infrastructure, GEM has proven
valuable in a variety of scenarios. In particular, this paper
presents four key contributions:

• A versatile framework for combining low-level graph
transformations to achieve high-level use cases.
• A mechanism for installing graphs in memory.
• Four novel low-level transformations: splicing, splitting,

unpacking, and generic fine-grained de-duplication.
• Four high-level use cases: interactive visualization, ob-

ject and code de-duplication, compilation for heteroge-
neous memory architectures, and transparent migration.

Evaluation of the four representative use cases showed
that GEM is instrumental in improving memory analysis and
optimization. For instance, its visualizer uncovered systemic
inefficiencies, and its de-duplication capability reclaimed up
to 24% of the flash consumed by language-level libraries.

The next section describes the context in which GEM op-
erates. Section 3 presents GEM’s infrastructure and transfor-
mations. Section 4 explains the workflow for each high-level
use case, and Section 5 evaluates these use cases. Section 6
discusses related work, and Section 7 concludes the paper.

2. Context
Memory optimization tools are particularly valuable at the
intersection of embedded systems and managed runtime sys-
tems. Embedded systems have much to gain from memory
optimization; runtime systems establish the order within the
memory space needed to achieve these gains.

GEM requires the memory organization to satisfy two
properties. First, all data must be stored in objects of well-
defined types known to the runtime system. Second, all ob-
jects must have explicit or implicit type and size identi-
fiers. The fundamental concepts behind GEM are gener-
alizable, and could be implemented for any runtime sys-
tem which meets these requirements, such as the Oracle
JVM or CPython. Because embedded systems face partic-
ularly stringent memory constraints, a prototype was built
for Owl [4, 9], an embedded Python runtime system repre-
sentative of managed runtime systems for embedded micro-
controllers.

Like CPython, Owl includes both a compiler and an in-
terpreter. Python source code is first compiled into code ob-

jects, which contain bytecodes. These bytecodes are then
executed by the interpreter at runtime. Owl stores the en-
tire Python program, including the code objects, as Python
objects. Each object includes a 4 B object descriptor spec-
ifying its type and size, and has fields containing data and
references to other objects.

These Python objects are distributed across SRAM and
flash. All runtime state, including threads and stack frames,
is allocated on the Python heap which resides in SRAM.
At compile-time, modules of Python library code are stored
in flash. Owl first compiles the modules using the standard
CPython compiler, generating one Python code object for
each module. Each code object includes the code itself —
a series of bytecodes, in the form of a string of bytes — as
well as metadata such as the filename and variable names.
Next, the Owl toolchain converts the compiled modules into
a “packed” format, using two special types: packed code
objects and packed tuples. Packed objects do not reference
other objects, instead storing constituent objects internally
as a contiguous array. This saves space by eliminating refer-
ences; further, this eliminates the need for a dynamic linker,
as each module is completely self-contained.

Finally, at boot-time, Owl allocates a global object on the
heap to hold the runtime state, including “module paths”
consisting of the addresses of the code objects for each
module. The module paths serve two purposes: they are used
to import modules at runtime, and they ensure that all of the
Python objects in flash are reachable from the heap.

Because Owl stores Python objects in both SRAM and
flash, GEM’s memory graphs have two components, one for
each memory region. These graphs could easily be expanded
to include components for additional memory regions, to
support systems with more complex memory hierarchies.

3. Tool Organization
Due to resource constraints, GEM operates offline, so that
it can build and manipulate graphs without using any of
the microcontroller’s precious memory space. This requires
a “host” machine with sufficient resources to run GEM. A
single host can serve a system of multiple microcontrollers,
and could be connected via either a serial port or a wireless
network. Further, this host need not be dedicated to GEM;
for instance, the host could also be used to perform other
deployment and management tasks required by the system.

GEM is composed of three layers. First is the mem-
ory transfer layer, which transports memory contents to and
from the microcontroller in a raw byte format using two
primitives, dump and memset. Next is the memory conver-
sion layer, which uses an auto-generated parser and unparser
to convert between two representations of memory: the raw
byte format from the previous layer and a graph format used
by the final layer. Last is the graph transformation layer,
which consists of transformation passes that operate on a



Figure 1. GEM architecture
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memory graph. Figure 1 depicts the GEM toolchain archi-
tecture.

Across these three layers, GEM uses two representations
of memory. First, a PyMem, which is an intermediate repre-
sentation of the microcontroller’s entire memory space. This
simple container is used by the parser to aggregate objects
prior to building the graph. It includes a mapping for each
region of memory — in Owl, SRAM (heap) and flash (li-
brary code objects) — which associate memory addresses
with PyObjects. Each PyObject o has a type, a size,
and two name-to-value mappings of its fields: data(o):
data names(o) 7→data vals(o), for primitive types, and
pyptrs(o): pyptrs names(o) 7→pyptrs vals(o), for
pointers to other Python objects.

Frame objects include a third mapping: cptrs, which in-
cludes pointers that are not base addresses of Python objects.
These are not arbitrary pointers, but well-defined pointers
into other Python objects. In particular, there are three: the
instruction pointer, the stack pointer, and a pointer to the last
stack slot. The first of these points into a separate bytecode
object; the others point within this same frame object.

Ultimately, GEM’s graph transformation layer operates
on a MemGraph. This is a directed graph of memory which,
like the PyMem, encompasses multiple regions of memory.
Each node corresponds to a PyObject, and edges run from
a given PyObject to the nodes of each of the objects in its
pyptrs vals set. Formally, a MemGraph is a graph G =
(V,E) such that V (G) = {u | u is a PyObject} and
E(G) = {(u, v | address(v) ∈ pyptrs vals(u)}.

3.1 Memory Transfer Layer
GEM provides two commands, dump and memset, which
transfer a byte string representation of the memory space
between the microcontroller and the host machine. These
operations allow the memory transformations made by GEM
to affect the actual layout of memory on the microcontroller.

The first of these, dump, consists of three stages. In each
stage, GEM compiles and sends over the connection a func-
tion call which, upon execution by the interpreter on the mi-
crocontroller, causes the microcontroller to send heap data

back to GEM. GEM first queries for metadata including the
base address of the heap. It then requests the heap contents,
beginning at this base address. Last, GEM fetches all of the
Python code objects stored in flash.

The reverse of dump is memset, which overwrites the
heap on the microcontroller. The heap being memset need
not have originated from the destination device. However,
if the source and destination are different microcontrollers,
the base addresses of the heaps and the contents of flash may
also be different. Therefore, memset does not blindly replace
the heap. Instead, GEM first dumps the memory of the desti-
nation device, and then splices the SRAM (heap) component
from the source into the flash component from the destina-
tion using a technique that will be described in greater detail
in Section 3.3.5. Finally, GEM prepares to place the heap on
the destination device by shifting all intra-heap references
by the difference between the source and destination base
addresses, using a reference-updating technique that will be
described in Section 3.3.1.

After constructing the spliced graph, GEM unparses this
graph and initiates an overwrite by compiling and sending
a custom MEMSET bytecode to the destination device. Un-
like dump, memset cannot be implemented as a function call,
since overwriting the heap obliterates the call stack. GEM
then sends the heap contents and metadata over the con-
nection in a byte format. In executing the MEMSET byte-
code, the microcontroller reads the heap contents and meta-
data, overwriting both. Once MEMSET completes, the pro-
gram automatically resumes execution from the exact point
at which its memory was dumped.

3.2 Memory Conversion Layer
While graphs are highly amenable to analysis and transfor-
mation, they are not compact enough to serve as the memory
format on the microcontroller. Instead, objects in memory
are laid out as a contiguous array of bytes. GEM provides a
parser and unparser to convert between the byte format and
the MemGraph format. These include top-level parse and
unparse functions which take in a byte string or graph, re-
spectively, as well as parse <type> and unparse <type>

functions for each Python object type and for free blocks.
The top-level parse function first builds an intermediate

PyMem representation by reading the byte string and process-
ing one object at a time. It interprets the first four bytes of
each object as an object descriptor, extracts the size and type,
and dispatches a call to the appropriate type-specific func-
tion, which creates a PyObject or free block. It then maps
the object’s address to the newly-created PyObject. Once
the entire string has been processed, the parser builds the
MemGraph by iterating over the PyObjects, inserting them
as nodes, and adding edges for each of their pyptrs.

Conversely, unparse receives a MemGraph and outputs a
byte string. It first constructs a sorted list of the addresses of
all heap nodes in the graph. None of GEM’s transformations
introduce gaps in the address space, so these addresses will



be contiguous assuming that GEM was given a valid image
when it initially built the graph. It then unparses each object
in order by invoking the appropriate unparse <type> func-
tion to obtain a byte string representation of that object. Last,
it concatenates the byte strings for the individual objects to
form a complete representation of the heap.

Moreover, GEM auto-generates all of the type-specific
functions at compile-time. It passes the header files contain-
ing the type definitions through pycparser [6], and uses
a custom visitor to process each type definition. For each
type, a list of tuples of (field name, field type, field size)
is output to an intermediate file. This metadata is used by
the parser generator to auto-generate the parse <type> and
unparse <type> functions. The parse functions classify
each field into data, pyptrs, or cptrs according to type,
and advance the index into the byte string based on the field’s
size and the amount of padding between fields. The unparse
functions fetch and unparse each field in order, concatenat-
ing the results together and adding padding as needed.

This auto-generation adds robustness to the parser and
unparser. As new types are introduced to the runtime sys-
tem, or fields are added or removed from existing types, no
maintenance is required. Likewise, Owl accepts configura-
tion options, specified as C defines, which may affect the
type definitions; GEM’s parser generator ensures that the
parser and unparser are always consistent with the current
configuration. Further, this auto-generation makes GEM ex-
tensible to other systems. With minor modifications to the
parser generator, GEM could generate a parser and unparser
for any system whose memory layout adheres to the princi-
ples outlined in Section 2.

3.3 Graph Transformation Layer
Converting the memory space into a graph unlocks a multi-
tude of possible transformations; this section presents seven
that are currently supported by GEM. Strategic composition
of these transformations enables use cases including, but by
no means limited to, the four that will be presented in Sec-
tion 4.

3.3.1 Updating References
Moving even a single object in memory requires updating all
references to it to reflect its new address. GEM provides two
means of updating references. First, GEM can be given an
offset by which to shift the entire heap; this involves shifting
all intra-heap pyptrs and cptrs by this offset.

Second, given a mapping of old to new addresses, GEM
can relocate all objects to their new addresses. To accom-
plish this, GEM iterates over the pyptrs and cptrs of each
object. If it encounters a pyptr that is a key in the old-to-
new mapping, it updates the reference to point to the corre-
sponding new address. Updating the cptrs is slightly more
complicated; while these references may not match any of
the keys in the old-to-new mapping, they may point into an
object whose base address is a key in the mapping. Thus,

GEM checks if the base address of the object into which each
cptr points has been shifted, and if so shifts the cptr by the
difference between that object’s old and new addresses.

3.3.2 Allocation and Garbage Collection
GEM requires a memory allocator and garbage collector.
These need not use the same algorithms as the runtime sys-
tem, as long as they maintain the proper structure of the free
list. However, both the memory allocator and garbage col-
lector within GEM mimic those used by Owl, for simplicity.

The memory allocator is first fit, splitting the free block
if it significantly exceeds the requested size. Owl’s garbage
collector performs mark-and-sweep collection. GEM sup-
plements this with an optional compacting pass, effectively
providing mark-compact collection. Compaction moves all
live objects into contiguous addresses, aided by the refer-
ence updating technique from Section 3.3.1, and then coa-
lesces the free list.

3.3.3 Eliminating Duplicates
To identify duplicates, GEM builds a set of object “pools”
using a deep equality checker. This equality checker takes a
pair of PyObjects, directly compares their data and cptrs,
and recursively compares their pyptrs. Objects deemed
equal are placed in the same pool. Finally, pools of size one
— representing unique objects — are filtered out.

Using the remaining pools of duplicates, GEM can free
large chunks of memory by eliminating redundancies. For
each pool, GEM chooses one representative object, and uses
the technique from Section 3.3.1 to update all references to
other objects in the pool to point to the representative. It then
uses the garbage collector described in Section 3.3.2 to free
the non-representative duplicates.

While GEM can consolidate all types of objects, in prac-
tice it only does so for immutable objects, as combining dis-
tinct mutable objects would violate the semantics of Python.
Despite this, GEM finds substantial opportunities for de-
duplication, as Python has many immutable types including
booleans, integers, floating points, strings, and tuples.

3.3.4 Unpacking Objects
As described in Section 2, Owl contains packed types which
embed their constituents within themselves. During graph
construction (Section 3.2), GEM generates individual nodes
for the top-level object and each constituent, drawing edges
from the top-level object to each constituent.

Unpacking a packed object consists of allocating an
equivalent unpacked object and freeing the original object.
First, GEM allocates the top-level unpacked object using the
memory allocator from Section 3.3.2. Second, GEM creates
references from the unpacked top-level object to the exist-
ing nodes for the constituents. Constituents which are them-
selves packed are unpacked recursively. As an example, fig-
ure 2 shows the same tuple before and after being unpacked.



Figure 2. Unpacking a packed tuple
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After:
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Taken alone, unpacking consumes additional space, due
to the extra layer of indirection. However, unpacked objects
present opportunities for fine-grained de-duplication. Thus,
unpacking can be a valuable asset when taken in conjunction
with de-duplication, as will be shown in Section 5.2.

3.3.5 Splicing and Splitting
In addition to the intra-graph transformations discussed
in Sections 3.3.1–3.3.4, GEM offers two transformations
which operate on multiple graphs: splicing and splitting.

Splicing takes a source and destination graph and fuses
one or more components of the source into one or more
components of the destination. Splicing can be done with or
without de-duplication; this section describes GEM’s default
behavior, which includes de-duplication. As an example,
Figure 3 depicts splicing the entire source graph with the
destination flash.

To accomplish this, GEM classifies the objects in the
source component(s) to be spliced into two categories: those
for which equivalent objects are present in the destination
component(s), and those that have no equivalent in the des-
tination component(s). This is achieved via an inter-graph
duplicate search, using the procedure from Section 3.3.3.
Once again, duplicates are only sought amongst immutable
objects, to preserve program semantics.

For objects in the former category, no allocation is
needed; GEM simply constructs a mapping from source
addresses to destination addresses. For each unique object
in the latter category, GEM allocates an equivalent object
within the SRAM portion of the spliced graph, using the
memory allocator from Section 3.3.2. During allocation,
GEM updates the aforementioned mapping to map the orig-
inal addresses of these objects to the addresses of the newly-
allocated equivalents. Finally, GEM updates all references
within the spliced graph according to this mapping, using
the second technique from Section 3.3.1.

Splitting takes a single-component graph and partitions
its objects into multiple components. GEM’s splitting frame-
work allows the user to input a custom algorithm for parti-
tioning the objects. However, several different partitioning

Figure 3. Splicing source graph into destination graph
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algorithms are already built into GEM, one of which will be
presented in Section 4.3.1. GEM uses the input algorithm
to split the objects into two disjoint subsets, and then con-
structs new graphs representing each subset. To eliminate the
gaps introduced by partitioning the objects, GEM applies the
compaction pass from Section 3.3.2 to each new graph.

4. Use Cases
The transformations and mechanisms described in Section 3
serve as building blocks which can be combined to support a
multitude of use cases. To illustrate the versatility of GEM,
this section presents four sample use cases. First, GEM can
be augmented with a GUI to visualize the memory space.
Second, it can be used to de-duplicate at compile-time, sub-
stantively decreasing code size. Also at compile-time, GEM
can customize the layout of code across SRAM and flash,
allowing the same runtime system to be deployed on a wide
spectrum of memory architectures. Fourth, GEM can be used
at runtime to transparently migrate a running program.

4.1 Memory Visualization
Extracting meaningful information from a raw heap dump is
quite challenging. Thus, GEM supports a graphical visual-
izer which provides an organized view of the entire memory
space of the microcontroller. This visualizer allows the user
to easily view how objects are laid out in memory, see which
objects are live at a given point in execution, and identify
the most costly objects. The techniques from Section 3.3 are
used to find and display duplicate objects and unreachable
objects. GEM’s visualizer is highly interactive, allowing the
user to sort, search, navigate, and inspect objects.

4.1.1 User Interface
The GUI for GEM’s visualizer is divided into three vertical
panes, as shown in Figure 4. The left pane is a glossary of all
objects in memory. It contains two sub-panes, one for SRAM
and one for flash. Objects can be sorted by address, size,
type, or value. A search bar enables lookup by address, and
menu options allow for moving sequentially to the previous
or next address. Selecting an object in the left pane updates
several object-specific facets of the middle and right panes.

The middle pane offers six different display options.
Three of these are specific to the selected object: textual



Figure 4. Graphical display for GEM’s interactive memory visualizer
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“parent” and “child” displays, plus a graphical “ringschart”
display. An object’s parent set consists of objects that refer-
ence it; its child set contains those objects that it references.

The graphical display is based on the open-source Linux
Graphical Disk Usage Analyzer [1]. It displays a subset
of the graph as a ringschart centered around the selected
item. The center of the ringschart shows the total size of the
weakly-connected component rooted in the selected object,
broken down into SRAM and flash consumption. Each sec-
tor of the ringschart represents a reference to an object, and
has an arc length proportional to the size of that object rela-
tive to sizes its “sibling” objects.

Hovering over a sector of the ringschart highlights that
sector and spawns tooltips from its children, annotating them
with type and size. If there are aliases, only one reference to
the aliased object (sector in the ringschart) is colorized, with
the rest displayed in grey. Hovering over a sector highlights
all of its aliases. Rather than displaying the entire component
rooted in the selected object, the GUI limits the depth of
the rings to a number that can be configured via “zoom in”
and “zoom out” options in the drop-down menu. It then
annotates branches of the ringschart that are deeper than
can be displayed. Clicking on a sector in the ringschart is
equivalent to selecting the corresponding object from the left
pane: the ringschart is re-centered around the selection, and
all other object-specific panes are re-rendered.

The middle pane also includes three views of general
properties of the graph: “roots”, garbage, and duplicates. The
roots view lists the addresses and types of the roots of the
graph: global objects in memory which are not referenced by
any other objects, and from which jointly all live objects are
reachable. The garbage view lists objects that are not reach-
able from these roots. Last, the duplicates view displays each
object pool — found using the technique from Section 3.3.3
— by listing the addresses of all objects in that pool.

The contents of the right pane are also specific to the
selected object. This pane serves as an aggregated display
for compound objects. It has special display modes for lists,
tuples, sets, dictionaries, frames, threads, and code objects.

For instance, in Figure 4, the selected object is a thread, and
the right pane displays the stack of frames running in that
thread. Each frame is tagged with the name, attributes, global
variables, and local variables of the function to which it
corresponds; each variable is tagged with its name, address,
and current value.

4.2 De-duplication
The standard CPython compiler generates code objects that
are fraught with duplicates. These code objects are then
placed in read-only memory, from which they cannot be con-
solidated at runtime. The duplicates are relatively harmless
on a desktop machine with vast resources. However, in an
embedded system where memory is precious, eliminating
duplicate objects within the Python code is critically im-
portant. GEM uniquely applies de-duplication to code ob-
jects at compile-time. Thus, the savings that GEM achieves
are completely orthogonal to those of runtime de-duplication
techniques such as interning.

For correctness, GEM limits de-duplication to immutable
objects. In reality, this is no limitation at all, as all of the con-
stants referenced by the Python code objects belong to im-
mutable types. Due to the prevalence of duplicates, GEM’s
de-duplication yields substantial memory gains, as will be
shown in Section 5.2.

4.2.1 Workflow
At a high-level, de-duplication proceeds as follows:

1. Build a graph of the library code, in Owl’s default packed
format, using the parser from Section 3.2.

2. Unpack the library modules, as described in Sec-
tion 3.3.4.

3. Eliminate duplicates, as described in Section 3.3.3, using
the compacting garbage collector to eliminate any gaps.

4. Unparse the graph using the unparser from Section 3.2.

5. Output the unparsed image to a C file, which will then be
compiled into the runtime system by the Owl toolchain.



6. Post-compilation, find the base runtime address of the
image and shift all references by this base address, again
using the technique from Section 3.3.1.

In greater detail, de-duplication begins after Owl’s image
creator builds a binary representation of the Python library
code. GEM parses this binary representation into a graph,
using a base address of 0 since the runtime memory address
of the library has not yet been determined.

The packed objects that Owl’s image creator produces by
default cannot be de-duplicated, since they directly contain
their constituent objects. Therefore, the next step is to un-
pack these objects. GEM provides two levels of unpacking.
It can indiscriminately unpack all objects; however, while
the conversion to unpacked objects enables de-duplication,
it introduces an overhead by reinstating references. Thus,
GEM also provides a more sophisticated hybrid approach:
selectively unpacking only those objects for which the pro-
jected savings due to de-duplication exceed the projected
overhead due to reference reinstatement. Section 5.2 will
show that either level of unpacking, in conjunction with
de-duplication, yields significant savings, but the latter ap-
proach consistently surpasses the former.

After unpacking, GEM finds and consolidates duplicates,
using the compacting garbage collector to regain a contigu-
ous sequence of objects. Next, GEM determines the mod-
ule paths — the addresses of the code objects representing
the library modules. The graph is now in the correct struc-
ture, but its base address is still 0. Therefore, GEM stores the
graph and its module paths, to be adjusted once the C linker
has placed the image. It then passes unparsed versions of the
graph and its module paths back to the image creator.

For now, GEM is done, and normal compilation resumes.
The Owl toolchain auto-generates a C file containing the
unparsed library image and module paths and compiles this
file into the runtime system. At this point, the base runtime
address of the library has been assigned, so GEM can adjust
the intra-library references. It uses readelf to find this
base address, reloads the de-duplicated graph that was stored
previously, and shifts all references by an offset equal to the
base runtime address. It likewise increments each module
path by the base address. Finally, GEM unparses the library
and the module paths back into binary representations and
overwrites the ELF file with the adjusted versions.

4.3 Heterogeneous Compilation
Enabling a runtime system to fit within a broad spectrum of
microcontroller memory architectures eases the construction
of heterogeneous embedded systems. GEM uniquely sup-
ports customization of the runtime system to a particular
memory architecture by partitioning the Python library code
amongst SRAM and flash. The amount of SRAM and flash
available for these libraries can be specified at compile-time;
given these constraints, GEM will compile and partition the
runtime system, failing only if the capacity is too low.

4.3.1 Workflow
To increase the likelihood of meeting the given memory
constraints, heterogeneous compilation is bracketed by the
de-duplication procedure outlined in Section 4.2.1. Thus, its
complete compile-time workflow is as follows:

1. Build a graph of the library code in Owl’s default packed
format, using the parser from Section 3.2.

2. Unpack the library modules, as described in Sec-
tion 3.3.4.

3. Eliminate duplicates, as described in Section 3.3.3.

4. Partition the library code between SRAM and flash, using
the technique from Section 3.3.5.

5. Unparse both graphs using the unparser from Section 3.2.

6. Output the unparsed image to a C file, which will then be
compiled into the runtime system by the Owl toolchain.

7. Post-compilation, find the base runtime address of the
image and shift all references by this base address, using
the technique from Section 3.3.1.

In addition, the objects designated for SRAM are in-
stalled in the heap at runtime using a six-step process:

1. Boot the runtime system.

2. Dump the memory using the technique from Section 3.1.

3. Parse the memory into a graph, as in Section 3.2.

4. Splice the SRAM modules into the current memory graph
using the technique from Section 3.3.5.

5. Unparse the augmented graph, as in Section 3.2.

6. Memset the augmented graph using the technique from
Section 3.1.

As with de-duplication, GEM enters the compilation pro-
cess just after Owl’s image creator builds the binary repre-
sentation of the packed Python library code. GEM then per-
forms the same parsing, graph construction, unpacking, and
duplicate elimination as it did for de-duplication. However,
rather than compacting the objects into a single contiguous
chunk of memory, it partitions these objects into two com-
ponents, one for flash and one for SRAM.

For this use case, the partitioning algorithm must adhere
to three constraints. First, it must respect the upper bounds
on each memory region’s size specified at compile-time.
Second, since the SRAM modules will not be loaded until
the end of boot-time, it must ensure that all modules neces-
sary to boot the runtime system are relegated to flash. Third,
it must guarantee that nothing placed in flash references any-
thing placed in SRAM, since the runtime SRAM addresses
are not known prior to boot time. Some microcontrollers
cannot overwrite flash memory during execution, and it’s ex-
pensive for those that can; additionally, references from flash



into SRAM would become dangling references upon reboot,
potentially causing the runtime system to crash.

GEM currently uses a greedy algorithm to satisfy these
constraints, which the evaluation in Section 5.3 proves effec-
tive. This algorithm begins by placing only those objects that
are required to boot the runtime system in flash, and assum-
ing that all other objects are in SRAM. To satisfy the third
constraint, the algorithm promotes objects to flash on the
granularity of components, where each candidate component
consists of a given object plus all other objects still in SRAM
that are reachable from that object. It greedily chooses the
largest component in SRAM that will fit in flash without ex-
ceeding capacity, terminating when even the smallest com-
ponent left in SRAM is larger than the remaining capacity.
If the size of the remaining SRAM component exceeds the
specified bounds, the algorithm reports failure; otherwise,
GEM proceeds with compilation.

After executing this algorithm GEM builds and compacts
two new graphs, one for each memory region, and assigns
a temporary base address to each. GEM then stores both
graphs and their module paths for later reference adjust-
ment and resumes the normal compilation process. As in de-
duplication, it adjusts references to objects in flash once the
runtime address of the flash library has been established.

Finally, the SRAM modules must be allocated on the
heap. The runtime system is first booted into a special
SRAM installation mode which imports only the modules
needed to perform dump and memset. The mode minimizes
the set of modules that are required to be placed in flash at
compile-time, widening the range of flash sizes that GEM
can accommodate. The memory space is then dumped and
parsed into a graph format, using the techniques from Sec-
tions 3.1 and 3.2, and the SRAM graph built during compile-
time is spliced in. During this splicing process, GEM keeps
track of the addresses assigned to any top-level modules.
Last, GEM unparses and memsets the graph, overwriting the
current heap and augmenting the module paths with the ad-
dresses of the SRAM modules.

4.4 Transparent Migration
Transparent migration, which preserves the runtime state, is
valuable in many scenarios. For instance, if a device fails,
migrating a pre-crash checkpoint to another device prevents
complete loss of work. Likewise, a system with substantial
startup delays may benefit from migration of a pre-booted
image [28]. While many existing systems support transpar-
ent migration, the value of GEM’s approach lies in the ease
with which it harnesses graph transformations — in partic-
ular, its novel splicing technique — to enable migration be-
tween devices with disparate hardware and software.

4.4.1 Workflow
In theory, a program running upon a runtime system can be
migrated by transplanting the heap. However, as described
in Section 3.1, the base address of the heap is not guaranteed

to be identical across all instances of the runtime system.
Further, the contents of flash may not be the same at the
source and destination, which is problematic as objects on
the heap may reference flash. GEM’s memset command
automatically corrects for these differences by adjusting all
intra-heap references and allocating all missing flash objects
in SRAM — since, as mentioned in Section 4.3.1, many
microcontrollers do not support mutating flash at runtime.

Because memset automatically addresses these chal-
lenges, GEM’s migration process is quite simple:

1. Dump the source memory, as described in Section 3.1.

2. Parse the memory into a graph, as in Section 3.2.

3. Optionally perform any desired transformations such as
de-duplication or free list compaction.

4. Save the snapshot of the transformed graph.

5. Memset the snapshot onto the destination using the tech-
nique from Section 3.1.

In the prototype implementation, the dump and memset

are initiated by the user, though they could be automated. To
allow the user to initiate a dump or memset, GEM includes
two mechanisms by which the user can pause the program
and access the interactive prompt. First, if the programmer
knows the point in the program at which he or she wishes to
migrate in advance, he or she can insert a call to a built-in
function which pauses execution.

However, the programmer may not always anticipate
wishing to migrate. Thus, GEM extends Owl’s interpreter
to support pausing at any time by pressing a button on the
microcontroller. Once the program is paused, the user can
access the interactive prompt to perform migration. While
manual activation serves as an effective proof-of-concept,
the same pause/resume logic could be combined with Owl’s
message-passing capabilities to enable remote triggering.

5. Evaluation
Each of the use cases from Section 4 was evaluated on
a series of benchmarks, where each benchmark is a snap-
shot of a specific workload running on a specific platform,
named in the form <platform> <workload>. GEM was
evaluated on three platforms: a Stellaris LM3S9B92 micro-
controller (“Stellaris”), an STM32F4-Discovery microcon-
troller (“STM32”), and a desktop machine (“Desktop”). The
LM3S9B92 has 96 KB of SRAM and 256 KB of flash; the
F4-Discovery board has 192 KB of SRAM and 1 MB of
flash. The workloads include two that are not application-
specific — compile time (“compile”) and boot time (“boot”)
— as well as an application that uses an accelerometer and
TFT display to present an artificial horizon display (“ahd”).

5.1 Memory Visualization
GEM’s memory visualizer has exposed multiple opportu-
nities to improve the system design of Owl. For instance,



Table 1. Duplicate Objects in Unpacked Library Code
All Objects Intra-Module Duplicates Inter-Module Duplicates All Duplicates

Type Count Total Size (B) Count Total Size (B) Count Total Size (B) Count Total Size (B)
None 132 528 108 432 23 92 131 524
Integer 111 888 17 136 27 216 44 352
Float 5 40 1 8 0 0 1 8
String 1418 23156 711 11212 213 2776 924 13988
Tuple 604 11340 284 2708 58 692 342 3400
Bytecode 111 7876 37 852 11 244 48 1096
Code Object 148 5920 0 0 0 0 0 0
Native Object 121 968 0 0 0 0 0 0
Total 2687 51568 1158 15348 332 4020 1490 19368

Table 2. Size of Python Libraries (KB)

Platform Unpacked Packed
Unpacked,

De-duplicated
Hybrid

Desktop 50.4 41.1 31.5 31.3
Stellaris 86.4 71.4 62.7 60.3
STM32 97.1 80.9 70.3 68.9

GEM’s memory visualizer inspired new memory formats for
storing the Python library code in flash. Originally, Owl used
the same unpacked, duplicated object format as CPython.
However, using GEM to analyze the contents of flash re-
vealed considerable wasted space. Therefore, two new li-
brary formats were proposed: the packed format described
in Section 2, and the de-duplicated format from Section 4.2.

A comparison of the original and packed formats, which
will be presented in Section 5.2, validates the intuition that
the references in the unpacked version consume an exor-
bitant amount of space. Yet, further analysis using GEM’s
memory visualizer exposed many duplicates within these
packed code objects, as shown in Table 1. GEM indicated
that the gains to be had by eliminating duplicates would
outweigh the losses associated with adding references. Both
proposed formats were incorporated into Owl, and the user
may now choose which format is used at compile-time.

5.2 De-duplication
Since de-duplication occurs at compile-time, it was evalu-
ated on the * compile benchmarks. For each benchmark, the
Python library code was stored in four formats: the unpacked
format output by the CPython compiler, the packed format
inspired by GEM’s visualizer, and two de-duplicated formats
which utilize the procedure described in Section 4.2, first
with naive unpacking and second with selective unpacking
based on a heuristic that approximates the potential savings.
Table 2 shows the space consumed by the library code in
each of these four formats.

The modules included in the Python library vary across
platforms. Many modules are platform-independent, such as
math, time, and types. The desktop platform is smallest,
as it consists solely of these platform-independent modules.

Stellaris and STM32 include additional platform-specific
modules to support hardware peripheral access.

Across all three platforms, GEM’s de-duplication con-
sistently saved memory. Compared to the unpacked for-
mat used by CPython, the savings amounted to 19.1 KB,
26.1 KB, and 28.6 KB for desktop, Stellaris, and STM32,
respectively; in each case this was a decrease of more than
29%. Table 1 breaks down the de-duplication performed by
GEM by type. Strings accounted for over 72% of the de-
duplication savings; the next largest sources of redundancies
were tuples and bytecodes. Note that significant duplication
occurs even amongst nested objects such as tuples.

Even as compared to the compact packed format, de-
duplication yielded savings of 9.8 KB, 11.1 KB, and
12.0 KB for the three platforms: improvements of 14.8–
23.8%. The percent improvement was greatest for the desk-
top version. However, Stellaris and STM32 yielded better
absolute decreases. This is due to the fact that the extra
platform-specific modules within Stellaris and STM32 pri-
marily contain constants such as register addresses, and thus
have an unusually small proportion of duplicate objects.

The presence of modules with a low proportion of du-
plicate objects motivated the creation of the hybrid format
described in Section 4.2. The difference in size between the
third and fourth formats in Table 2 indicates that GEM’s hy-
brid approach elected to leave some low-redundancy mod-
ules packed, as it found insufficient duplicates to offset the
overhead of unpacking. This selectivity proved profitable for
each platform, saving up to an additional 2.4 KB.

5.3 Heterogeneous Compilation
By default, the Owl toolchain places the Python library code
in a separate region of memory from the heap. On the mi-
crocontroller platforms, this region is flash; on the desktop
platform, it is a read-only region of RAM. For the purposes
of brevity, both types of read-only regions will be referred to
as “flash” in this section.

GEM enables custom code placement to accommodate
systems with varied memory shapes. Figure 5 presents ex-
amples of valid (flash, SRAM) divisions supported by GEM
for each platform. Note that flash has a lower bound of ap-



Table 3. Intra-Platform Migration, Sizes (KB)
Migration Size Before Size After % Change

Benchmark
Flash Cap

Before
Flash Cap

After
De-duplicated? SRAM Flash Total SRAM Flash Total Total

Stellaris ahd ∞ 80.0 No 34.2 109.4 143.7 64.1 80.0 144.1 0.3%
Stellaris ahd ∞ 80.0 Yes 34.2 109.4 143.7 61.2 80.0 141.2 -1.7%
Stellaris ahd 80.0 ∞ No 60.5 80.0 140.5 60.8 109.4 170.2 21.2%
Stellaris ahd 80.0 ∞ Yes 60.5 80.0 140.5 30.7 109.4 140.1 -0.3%

Figure 5. Valid (Flash, SRAM) Configurations
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proximately 10 KB, as a small set of modules needed to boot
the virtual machine must reside in flash.

GEM’s heterogeneous compilation process de-duplicates
not only within flash, but across SRAM and flash. There-
fore, the total amount of space consumed by a given plat-
form’s library code is constant regardless of the flash/SRAM
breakdown; there is no net disadvantage to moving code to
SRAM. Further, collecting the data in Figure 5 revealed that
the greedy algorithm described in Section 4.3 successfully
partitions the objects without wasting memory. Out of 30
datapoints, flash was always filled to within 4 B of capacity,
and was filled exactly to capacity 83.3% of the time.

5.4 Transparent Migration
GEM facilitates migration across different memory archi-
tectures and across different platforms. Such heterogeneity
complicates migration; since the contents of flash may be
different at the source and destination, blindly migrating the
SRAM may result in missing or duplicated objects. As de-
scribed in Section 4.4, GEM handles missing objects by al-
locating these objects within the SRAM component of the
graph prior to overwriting the heap. Redundancies can in
turn be eliminated by de-duplicating just before memsetting.

Table 3 shows the results of migration across the same
platform (Stellaris), but between different memory architec-
tures. It presents the memory distribution of the artificial

horizon display application before and after migration be-
tween a system with sufficient space to fit all of the code
in flash memory (flash cap of ∞) and a system with only
80 KB of flash. Further, it shows the resultant memory lay-
out with and without de-duplication. Note that for these ex-
periments the library modules were previously de-duplicated
during compilation; all savings due to de-duplication during
migration result from consolidating runtime structures.

Even without de-duplication, migration from a system
with more flash to one with less introduced virtually no
overhead (0.3%). Objects in the source flash that were
absent from the destination flash were simply placed in
the destination SRAM; thus, while the memory breakdown
at the destination is different, the total consumption is
roughly the same. The negligible overhead comes from a
small amount of build-specific information. Performing de-
duplication during migration re-gained 2.9 KB, more than
compensating for this overhead.

In contrast, migration from a system with less flash to
one with more flash resulted in a 21.2% overhead without
de-duplication. This is because the complete contents of the
source heap were placed at the destination, with no regard
for the fact that much of what was relegated to SRAM on the
source already resided in flash at the destination. This was
easily solved with de-duplication, which eliminated the ex-
traneous modules as well as some redundant runtime struc-
tures, reclaiming over 30 KB for a net gain upon migration.

Migration of the artificial horizon display application be-
tween the Stellaris and STM32 platforms highlights GEM’s
cross-platform capabilities. Chosen for its realistic work-
load, this application requires hardware peripherals at the
source and destination. However, the peripherals at the
source and destination need not be identical, so long as they
are both compatible with the application. For these exper-
iments the same model of LCD display was used for both
Stellaris and STM32, but the Stellaris board was connected
to an external accelerometer whereas the STM32 board uti-
lized its on-board accelerometer. Table 4 presents the results
of this migration with and without de-duplication. With-
out de-duplication, migration added an overhead of approx-
imately 1–2%; however, de-duplication once again regained
all of the overhead and then some.



Table 4. Inter-Platform Migration, Sizes (KB)
Migration Size Before Size After % Change

Benchmark→ Platform De-duplicated? SRAM Flash Total SRAM Flash Total Total
Stellaris ahd→ STM32 No 34.4 128.2 162.5 37.2 128.5 165.7 2.0%
Stellaris ahd→ STM32 Yes 34.4 128.2 162.5 33.0 128.5 161.5 -0.6%
STM32 ahd→ Stellaris No 34.3 128.5 162.8 37.4 128.2 165.5 1.7%
STM32 ahd→ Stellaris Yes 34.3 128.5 162.8 33.2 128.2 161.4 -0.8%

6. Related Work
Considerable past work has used memory graphs for pro-
gram visualization [8, 16, 26, 30, 32, 43]. However, GEM’s
visualizer diverges from past work by catering to a different
domain and audience.

First, existing tools were designed to profile applications
running on systems with extensive resources. Such applica-
tions may have over a million live objects on the heap [10].
Thus, many existing tools abstract away details to make the
graph manageable. Some do not include nodes for primi-
tive types [8, 26]; others collapse individual objects of the
same type into a single node [32]. In contrast, GEM tar-
gets resource-constrained embedded systems, which have
far fewer live objects. With a minimum object size of 12 B,
Owl’s default 80 KB heap fits only a few thousand objects.
This makes it tractable for GEM to provide a finer level of
detail by including a node for each object on the heap. Yet,
GEM still provides aggregated views of compound objects.

Second, the primary audience of existing tools is the ap-
plication developer. While GEM also benefits the applica-
tion developer, it primarily targets the system developer.
Many design choices made by existing tools are not opti-
mal for GEM’s target audience. For instance, one tool con-
structs a graph using logging data that is unavailable at boot-
time [30]. This is suitable for application profiling, but in-
sufficient for system profiling, as it excludes objects created
during start-up that persist unmodified. Another extracts the
heap by querying GDB from the roots, thereby excluding
garbage and unused code [43]. GEM includes both, as they
highlight opportunities for system-level improvements.

Those tools that do capture a full snapshot of the heap per-
form the aforementioned abstractions. Sacrificing detail for
simplicity is a reasonable choice when presenting a million-
object heap to a programmer who has no interest in system-
level details. However, this conceals information that, when
displayed by GEM, inspired improvements such as the de-
duplicated code object format. Further, since the program-
mer has no control over the layout of the code, existing tools
uniformly focus on the runtime data and only snapshot the
heap [8, 16, 26, 30, 32, 43]. GEM captures a snapshot of
both the data on the heap and the code in flash.

Additionally, GEM provides a mechanism by which the
user can obtain a snapshot at any point in execution, with-
out advance warning. Several existing tools provide simi-
lar flexibility, but at the cost of slowing execution by con-

tinuously logging [16, 30], or excluding unreachable ob-
jects [43]. Other tools sacrifice flexibility to avoid such pit-
falls, and instead either automatically select points to snap-
shot based on memory utilization [26], or require that the ap-
plication developer specify where to snapshot in advance [8].

Though GEM’s memory visualizer differs significantly
from prior visualization tools, the primary novelty of GEM
lies in its use of memory graphs to not only inspect memory
but transform it. GEM uniquely structures memory muta-
tions as graph transformation passes, and uses these trans-
formation to impact system memory. While GEM’s versa-
tile framework for applying these transformations is unique,
several individual transformation passes leverage past work.

In particular, GEM’s techniques for compaction and ref-
erence shifting based on an address mapping closely resem-
ble mark-compact garbage collection, which slides in-use
objects towards one end of the heap by maintaining a “break
table” which it uses to update references [11, 14, 27, 37].
Likewise, GEM’s reference shifting based on an offset builds
on existing techniques for portable migration. One such
technique first converts all references to offsets relative to
the beginning of the checkpoint, and then converts them
back to absolute addresses once the checkpoint has been mi-
grated [31]. GEM achieves the same result without this inter-
mediate step, shifting references by the difference between
the base addresses of the source and target heaps.

Similarly, the three transformative use cases built upon
GEM adapt past work to the domain of embedded systems.
Operating systems and storage systems commonly employ
de-duplication at runtime [21, 24, 25, 35]. They eliminate
duplicates at either the file level or the block level, since
large-scale duplication results from storing multiple versions
of the same file. Programs exhibit different patterns of dupli-
cation from storage systems. Large blocks are not redundant;
duplication occurs at the granularity of individual objects.
Instead, GEM’s de-duplication is similar to runtime intern-
ing, which is supported by runtime systems such as the Ora-
cle JVM and CPython [3, 19, 23]. However, runtime intern-
ing misses opportunities to consolidate objects within the
code. GEM uniquely performs de-duplication at compile-
time, eliminating the longest-lasting redundancies.

Likewise, snapshots and migration are well-studied.
Within the domain of embedded systems, existing snap-
shot techniques were primarily designed for rollback and re-
covery, and feature design decisions which run contrary to
GEM’s dual goals of preserving memory and enabling mi-



gration. They either suffer from large memory overheads by
storing a complete copy of the memory space on the de-
vice [15], or achieve space efficiency by generating partial
snapshots [36, 41] which are insufficient for migration.

Alternative migration techniques have been developed
for mobile agents which operate only at the moment of
migration, as opposed to checkpointing continuously dur-
ing execution [17, 20, 34]. These techniques instrument the
source code, inflating code size. GEM’s migration requires
no changes to the application code, and only the addition of
a single bytecode to the runtime system. Additionally, these
techniques for mobile agents migrate one thread at a time,
whereas GEM migrates the entire runtime state, including
all threads and scheduling information.

Other work has similarly expanded the unit of migra-
tion, to an entire virtual machine [13, 40] or operating sys-
tem [18]. Further, shadow drivers have been used to trans-
parently migrate between platforms with equivalent, but
not identical, hardware devices [22]. However, the mid-
range microcontrollers which GEM targets lack sufficient
resources for this extra layer of abstraction. To enable mi-
gration between devices with different images in flash, GEM
instead performs a series of off-line transformations, requir-
ing no additional resources at runtime and capitalizing on
the ease of manipulating a graph representation.

The final use case presented in this paper, compilation for
heterogeneous memory architectures, accepts upper bounds
on SRAM and flash that can be allocated to the Python li-
brary code. Other compilers for embedded systems similarly
accept code-size parameters [29]. Rather than using this in-
formation to divide the code between different memory re-
gions, as GEM does, they instead carefully craft code that
will fit within a single memory space.

No other tool simultaneously supports all four use cases
of GEM. At best, efforts have been made to combine two:
prior work integrated de-duplication into migration to mini-
mize latency [12, 33, 42]. Designed to hasten migration, the
impact that these techniques have on memory is fundamen-
tally different from that of GEM. One requires round-trip
migration in order to see any space savings [42]; the others
de-duplicate during a single migration, but at a page granu-
larity rather than GEM’s object granularity [12, 33].

7. Conclusions
Memory analysis and optimization in embedded systems is
complicated by resource constraints and heterogeneity. By
imposing structure on memory, managed runtime systems
enable the development of tools to automate and simplify
these tasks. This paper has presented one such tool, GEM,
which leverages structured memory to refashion memory as
a graph, facilitating its transformation. Designed for gener-
ality and synergy, GEM’s flexible framework substantially
eases the burden of memory optimization by allowing the

same underlying graph transformation passes to be com-
bined to implement a multitude of capabilities.

Four such capabilities have been implemented and eval-
uated in this paper: visualization, de-duplication, heteroge-
neous compilation, and transparent migration. Though the
primary contribution of GEM is its versatile infrastructure
and novel low-level transformations, the sample use cases
built upon it exemplify the value that it brings to real chal-
lenges of managing embedded memory. GEM’s interactive
visualizer has facilitated the identification of system-level
inefficiencies; its de-duplication has reclaimed up to 24%
of the space consumed by the Python library code; its het-
erogeneous compilation has broadened the range of memory
architectures within which the virtual machine can fit; and its
transparent migration has enabled the migration of a running
program, even amidst hardware and software incongruities
between the source and destination.

GEM was implemented for an existing embedded run-
time system, Owl. However, the concept of modeling mem-
ory as a graph, as well as the transformations that memory
graphs facilitate, transcend any specific system. Thus, GEM
was designed to be portable. In particular, the parser and
unparser which translate between the system-specific object
model and GEM’s much more generic graph representation
are auto-generated. With only minor changes to the parser
generator, GEM could be ported to other managed runtime
systems with well-defined type systems and memory orga-
nization.
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