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Abstract. Discounted-sum inclusion (DS-inclusion, in short) formalizes
the goal of comparing quantitative dimensions of systems such as cost,
resource consumption, and the like, when the mode of aggregation for the
quantitative dimension is discounted-sum aggregation. Discounted-sum
comparator automata, or DS-comparators in short, are Büchi automata
that read two infinite sequences of weights synchronously and relate their
discounted-sum. Recent empirical investigations have shown that while
DS-comparators enable competitive algorithms for DS-inclusion, they
still suffer from the scalability bottleneck of Büchi operations.

Motivated by the connections between discounted-sum and Büchi au-
tomata, this paper undertakes an investigation of language-theoretic
properties of DS-comparators in order to mitigate the challenges of Büchi
DS-comparators to achieve improved scalability of DS-inclusion. Our in-
vestigation uncovers that DS-comparators possess safety and co-safety
language-theoretic properties. As a result, they enable reductions based
on subset construction-based methods as opposed to higher complex-
ity Büchi complementation, yielding tighter worst-case complexity and
improved empirical scalability for DS-inclusion.

1 Introduction

The analysis of quantitative dimensions of computing systems such as cost, re-
source consumption, and distance metrics [6,10,28] has been studied thoroughly
to design efficient computing systems. Cost-aware program-synthesis [14,16] and
low-cost program-repair [25] have found compelling applications in robotics [24,29],
education [22], and the like. Quantitative verification facilitates efficient system
design by automatically determining if a system implementation is more effi-
cient than a specification model. Investigations in quantitative verification have
demonstrated their high computational complexity and practically intractable
[17,23]. This work addresses practical intractability of quantitative verification.

At the core of quantitative verification lies the problem of quantitative in-
clusion which formalizes the goal of determining which of two given systems
is more efficient [17,23,31]. In quantitative inclusion, quantitative systems are
abstracted as weighted automata [7,21,32]. A run in a weighted automaton is
associated with a sequence of weights. The quantitative dimension of these runs
is determined by the weight of runs, which is computed by taking an aggregate
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of the run’s weight sequence. Quantitative inclusion can be thought of as the
quantitative generalization of (qualitative) language inclusion.

A commonly appearing mode of aggregation is that of Discounted-sum (DS)
aggregation which captures the intuition that weights incurred in the near fu-
ture are more significant than those incurred later on [19]. The convergence of
DS aggregation for all bounded infinite weight-sequences makes it a preferred
mode of aggregation across domains: Reinforcement learning [37], planning un-
der uncertainty [34], and game-theory [33]. This work examines the problem of
Discounted-sum inclusion or DS-inclusion that is quantitative inclusion when
discounted sum is the mode of aggregation.

In theory, DS-inclusion is PSPACE-complete [12]. Recent algorithmic ap-
proaches have tapped into language-theoretic properties of discounted-sum ag-
gregate function [12,18] to design practical algorithms for DS-inclusion [11,12].
These algorithms use DS-comparator automata (DS-comparator, in short) as
their main technique, and are purely automata-theoretic. While these algorithms
outperform other existing approaches for DS-inclusion in runtime [15,17], even
these do not scale well on weighted-automata with more than few hundreds
of states [11]. This work contributes novel techniques and algorithms for DS-
inclusion to address the scalability challenge of DS-inclusion

An in-depth examination of the DS-comparator based algorithm exposes
their scalability bottleneck. DS-comparator is a Büchi automaton that relates
the discounted-sum aggregate of two (bounded) weight-sequences A and B by
determining the membership of the interleaved pair of sequences (A,B) in the
language of the comparator. As a result, DS-comparators reduce DS-inclusion to
language inclusion between (non-deterministic) Büchi automaton. In spite of the
fact that many techniques have been proposed to solve Büchi language inclusion
efficiently in practice [4,20], none of them can avoid at least an exponential blow-
up of 2O(n logn), for an n-sized input, caused by a direct or indirect involvement
of Büchi complementation [36,40].

This work meets the scalability challenge of DS-inclusion by delving deeper
into language-theoretic properties of discounted-sum aggregate functions [18] in
order to obtain algorithms for DS-inclusion that render both tighter theoretical
complexity and improved scalability. Specifically, we prove that DS-comparators
are expressed as safety automata or co-safety automata [26] (§ 3.1), and have
compact deterministic constructions (§ 3.2). Safety and co-safety automata have
the property that their complementation is performed by simpler and lower
2O(n)-complexity subset-construction methods [27]. As a result, they facilitate
a procedure for DS-inclusion that uses subset-construction based intermediate
steps instead of Büchi complementation, yielding an improvement in theoretical
complexity from 2O(n·logn) to 2O(n). Our subset-construction based procedure
has yet another advantage over Büchi complementation as they support efficient
on-the-fly implementations, yielding practical scalability as well (§ 4).

An empirical evaluation of our prototype tool QuIPFly for the proposed pro-
cedure against the prior DS-comparator algorithm and other existing approaches
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for DS-inclusion shows that QuIPFly outperforms them by orders of magnitude
both in runtime and the number of benchmarks solved (§ 4).

2 Preliminaries and related work

A weight-sequence, finite or infinite, is bounded if the absolute value of all of its
elements are bounded by a fixed number.

Büchi automaton: A Büchi automaton is a tuple A = (S , Σ, δ, sI , F), where
S is a finite set of states, Σ is a finite input alphabet, δ ⊆ (S × Σ × S ) is the
transition relation, state sI ∈ S is the initial state, and F ⊆ S is the set of
accepting states [39] . A Büchi automaton is deterministic if for all states s and
inputs a, |{s′|(s, a, s′) ∈ δ for some s′}| ≤ 1. Otherwise, it is nondeterministic.
A Büchi automaton is complete if for all states s and inputs a, |{s′|(s, a, s′) ∈
δ for some s′}| ≥ 1. For a word w = w0w1 · · · ∈ Σω, a run ρ of w is a sequence of
states s0s1 . . . s.t. s0 = sI , and τi = (si, wi, si+1) ∈ δ for all i. Let inf (ρ) denote
the set of states that occur infinitely often in run ρ. A run ρ is an accepting run
if inf (ρ) ∩ F 6= ∅. A word w is an accepting word if it has an accepting run.
The language of Büchi automaton A, denoted by L(A) is the set of all words
accepted by A. By abuse of notation, we write w ∈ A and ρ ∈ A if w and ρ are
an accepting word and an accepting run of A. Büchi automata are closed under
set-theoretic union, intersection, and complementation [39].

Safety and co-safety properties: Let L ⊆ Σω be a language over alphabet Σ.
A finite word w ∈ Σ∗ is a bad prefix for L if for all infinite words y ∈ Σω,
x · y /∈ L. A language L is a safety language if every word w /∈ L has a bad
prefix for L. A language L is a co-safety language if its complement language
is a safety language [5]. When a safety or co-safety language is an ω-regular
language, the Büchi automaton representing it is called a safety or co-safety
automaton, respectively [26]. Wlog, safety and co-safety automaton contain a
sink state from which every outgoing transitions loops back to the sink state
and there is a transition on every alphabet symbol. All states except the sink
state are accepting in a safety automaton, while only the sink state is accepting
in a co-safety automaton. Unlike Büchi complementation, complementation of
safety and co-safety automaton is conducted by simpler subset construction with
a lower 2O(n) blow-up. The complementation of safety automaton is a co-safety
automaton, and vice-versa. Safety automata are closed under intersection, and
co-safety automata are closed under union.

Comparator automaton: For a finite-set of integers Σ, an aggregate function
f : Zω → R, and equality or inequality relation R ∈ {<,>,≤,≥,=, 6=}, the
comparison language for f with relation R is a language of infinite words over the
alphabet Σ ×Σ that accepts a pair (A,B) iff f(A) R f(B) holds. A comparator
automaton (comparator, in short) for aggregate function f and relation R is an
automaton that accepts the comparison language for f with R [12]. A comparator
is said to be regular if its automaton is a Büchi automaton.
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Weighted automaton: A weighted automaton over infinite words is a tuple A =
(M, γ, f), where M = (S , Σ, δ, sI ,S ) is a complete Büchi automaton with all
states as accepting, γ : δ → N is a weight function, and f : Nω → R is the
aggregate function [17,31]. Words and runs in weighted automata are defined as in
Büchi automata. The weight-sequence of run ρ = s0s1 . . . of word w = w0w1 . . .
is given by wtρ = n0n1n2 . . . where ni = γ(si, wi, si+1) for all i. The weight of a
run ρ, denoted by f(ρ), is given by f(wtρ). Here the weight of a word w ∈ Σω

in weighted automata is defined as wtA(w) = sup{f(ρ)|ρ is a run of w in A}.

Quantitative inclusion: Let P and Q be weighted automata with the same ag-
gregate function. The strict quantitative inclusion problem, denoted by P ⊂ Q,
asks whether for all words w ∈ Σω, wtP (w) < wtQ(w). The non-strict quantita-
tive inclusion problem, denoted by P ⊆ Q, asks whether for all words w ∈ Σω,
wtP (w) ≤ wtQ(w). Comparison language or comparator of a quantitative inclu-
sion problem refer to the comparison language or comparator of the associated
aggregate function.

Discounted-sum inclusion: Let A = A0, A1, . . . be a weight sequence, d > 1 be a
rational number. The discounted-sum (DS in short) of A with integer discount-
factor d > 1 is DS (A, d) = Σ∞i=0

Ai

di . DS-comparison language and DS-comparator
with discount-factor d > 1 are the comparison language and comparator ob-
tained for the discounted-sum aggregate function with discount-factor d > 1,
respectively. Strict or non-strict discounted-sum inclusion is strict or non-strict
quantitative inclusion with the discounted-sum aggregate function, respectively.
For brevity, we abbreviate discounted-sum inclusion to DS-inclusion.

Related work The decidability of DS-inclusion is an open problem when the
discount-factor d > 1 is arbitrary. Recent work has established that DS-inclusion
is PSPACE-complete when the discount-factor is an integer [12]. This work in-
vestigates algorithmic approaches to DS-inclusion with integer discount-factors.

Two contrasting solution approaches have been identified for DS-inclusion.
The first approach is hybrid [17]. It separates out the language-theoretic as-
pects of weighted-automata from the numerical aspects, and solves each sepa-
rately [15,17]. More specifically, the hybrid approach solves the language-theoretic
aspects by DS-determinization [15] and the numerical aspect is performed by lin-
ear programming [8,9] sequentially. To the best of our knowledge, this procedure
cannot be performed in parallel. As a result, this approach must always incur
the exponential cost of DS-determinization.

The second approach is purely-automata theoretic [12]. This approach uses
regular DS-comparator to reduce DS-inclusion to language inclusion between
non-deterministic Büchi automata [12,11]. While the purely automata-theoretic
approach scales better than the hybrid approach in runtime [11], its scalability
suffers from fundamental algorithmic limitations of Büchi language inclusion.
A key ingredient of Büchi language-inclusion is Büchi complementation [36].
Büchi complementation is 2O(n logn) in the worst-case, and is practically in-
tractable [40]. These limitations also feature in the theoretical complexity and
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practical performance of DS-inclusion. The complexity of DS-inclusion between
weighted automata P and Q with regular DS-comparator C for integer discount-
factor d > 1 is |P | · 2O(|P ||Q||C|·log(|P ||Q||C|)).

This work improves the worst-case complexity and practical performance of
the purely automata theoretic approach for DS-inclusion by a closer investiga-
tion of language-theoretic properties of DS-comparators. In particular, we iden-
tify that DS-comparator for integer discount-factor form a safety or co-safety
automata (depending on the relation R). We show that complementation advan-
tage of safety/co-safety automata not only improves the theoretical complexity
of DS-inclusion with integer discount-factor but also facilitate on-the-fly imple-
mentations that significantly improve practical performance.

3 DS-inclusion with integer discount-factor

This section covers the core technical contributions of this paper. We uncover
novel language-theoretic properties of DS-comparison languages and utilize them
to obtain tighter theoretical upper-bound for DS-inclusion with integer discount-
factor. Unless mentioned otherwise, the discount-factor is an integer.

In § 3.1 we prove that DS-comparison languages are either safety or co-safety
for all rational discount-factors. Since DS-comparison languages are ω-regular for
integer discount-factors [12], we obtain that DS-comparators for integer discount-
factors form safety or co-safety automata. Next, § 3.2 makes use of newly ob-
tained safety/co-safety properties of DS-comparator to present the first deter-
ministic constructions for DS-comparators. These deterministic construction are
compact in the sense that they match their non-deterministic counterparts in
number of states [11]. § 3.3 evaluates the complexity of quantitative inclusion
with regular safety/co-safety comparators, and observes that its complexity is
lower than the complexity for quantitative inclusion with regular comparators.
Finally, since DS-comparators are regular safety/co-safety, our analysis shows
that the complexity of DS-inclusion is improved as a consequence of the com-
plexity observed for quantitative-inclusion with regular safety/co-safety com-
parators.

We begin with formal definitions of safety/co-safety comparison languages
and safety/co-safety comparators:

Definition 1 (Safety and co-safety comparison languages). Let Σ be a
finite set of integers, f : Zω → R be an aggregate function, and R ∈ {≤, <
,≥, >,=, 6=} be a relation. A comparison language L over Σ × Σ for aggregate
function f and relation R is said to be a safety comparison language (or a co-
safety comparison language) if L is a safety language (or a co-safety language).

Definition 2 (Safety and co-safety comparators). Let Σ be a finite set
of integers, f : Zω → R be an aggregate function, and R ∈ {≤, <,≥, >,=, 6=}
be a relation. A comparator for aggregate function f and relation R is a safety
comparator (or co-safety comparator) is the comparison language for f and R
is a safety language (or co-safety language).
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A safety comparator is regular if its language is ω-regular (equivalently, if its
automaton is a safety automaton). Likewise, a co-safety comparator is regular if
its language is ω-regular (equivalently, automaton is a co-safety automaton).

By complementation duality of safety and co-safety languages, comparison
language for an aggregate function f for non-strict inequality ≤ is safety iff
the comparison language for f for strict inequality < is co-safety. Since safety
languages and safety automata are closed under intersection, safety comparison
languages and regular safety comparator for non-strict inequality renders the
same for equality. Similarly, since co-safety languages and co-safety automata
are closed under union, co-safety comparison languages and regular co-safety
comparators for non-strict inequality render the same for the inequality relation.
Therefore, it suffices to examine the comparison language for one relation only.

It is worth noting that for weight-sequences A and B and all relations R,
we have that DS (A, d) R DS (B, d) iff DS (A−B, d) R 0, where (A − B)i =
Ai − Bi for all i ≥ 0. Prior work [11] shows that we can define DS-comparison
language with upper bound µ, discount-factor d > 1, and relation R to accept
infinite and bounded weight-sequence C over {−µ, . . . , µ} iff DS (C, d) R 0 holds.
Similarly, DS-comparator with the same parameters µ, d > 1, accepts the DS-
comparison language with parameters µ, d and R. We adopt these definitions for
DS-comparison languages and DS-comparators

Throughout this section, the concatenation of finite sequence x with finite or
infinite sequence y is denoted by x · y in the following.

3.1 DS-comparison languages and their safety/co-safety properties

The central result of this section is that DS-comparison languages are safety
or co-safety languages for all (integer and non-integer) discount-factors (The-
orem 1). In particular, since DS-comparison languages are ω-regular for inte-
ger discount-factors [12], this implies that DS-comparators for integer discount-
factors form safety or co-safety automata (Corollary 1).

The argument for safety/co-safety of DS-comparison languages depends on
the property that the discounted-sum aggregate of all bounded weight-sequences
exists for all discount-factors d > 1 [35].

Theorem 1. Let µ > 1 be the upper bound. For rational discount-factor d > 1

1. DS-comparison languages are safety languages for relations R ∈ {≤,≥,=}
2. DS-comparison language are co-safety languages for relations R ∈ {<,>, 6=}.

Proof (Proof sketch). Due to duality of safety/co-safety languages, it suffices to
show that DS-comparison language with ≤ is a safety language.

Let DS-comparison language with upper bound µ, rational discount-factor
d > 1 and relation ≤ be denoted by Lµ,d≤ . Suppose that Lµ,d≤ is not a safety

language. Let W be a weight-sequence in the complement of Lµ,d≤ such that W
does not have a bad prefix. Then the following hold: (a). DS (W,d) > 0 (b).
For all i ≥ 0, the i-length prefix W [i] of W can be extended to an infinite and
bounded weight-sequence W [i] · Y i such that DS (W [i] · Y i, d) ≤ 0.
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Note that DS (W,d) = DS (W [i], d) + 1
di · DS (W [i . . . ], d) where W [i . . . ] =

WiWi+1 . . . and DS (W [i], d) is the discounted-sum of the finite sequence W [i]

i.e. DS (W [i], d) = Σj=i−1
j=0

W [j]
dj . Similarly, DS (W [i] · Y i, d) = DS (W [i], d) + 1

di ·
DS (Y i, d). The contribution of tail sequences W [i . . . ] and Y i to the discounted-
sum of W and W [i] · Y i, respectively, diminishes exponentially as the value of
i increases. In addition, since W and W [i] · Y i share a common i-length prefix
W [i], their discounted-sum values must converge to each other. The discounted
sum of W is fixed and greater than 0, due to convergence there must be a k ≥ 0
such that DS (W [k] · Y k, d) > 0. Contradiction to (b).

Therefore, DS-comparison language with ≤ is a safety language. ut
Semantically this result implies that for a bounded-weight sequence C and ra-
tional discount-factor d > 1, if DS (C, d) > 0 then C must have a finite prefix
Cpre such that the discounted-sum of the finite prefix is so large that no infi-
nite extension by bounded weight-sequence Y can reduce the discounted-sum of
Cpre · Y with the same discount-factor d to zero or below.

Prior work shows that DS-comparison languages are expressed by Büchi au-
tomata iff the discount-factor is an integer [13]. Therefore:

Corollary 1. Let µ > 1 be the upper bound. For integer discount-factor d > 1

1. DS-comparators are regular safety for relations R ∈ {≤,≥,=}
2. DS-comparators are regular co-safety for relations R ∈ {<,>, 6=}.

Lastly, it is worth mentioning that for the same reason [13] DS-comparators for
non-integer rational discount-factors do not form safety or co-safety automata.

3.2 Deterministic DS-comparator for integer discount-factor

This section issues deterministic safety/co-safety constructions for DS-comparators
with integer discount-factors. This is different from prior works since they supply
non-deterministic Büchi constructions only [11,12]. An outcome of DS-comparators
being regular safety/co-safety (Corollary 1) is a proof that DS-comparators per-
mit deterministic Büchi constructions, since non-deterministic and deterministic
safety automata (and co-safety automata) have equal expressiveness [26]. There-
fore, one way to obtain deterministic Büchi construction for DS-comparators is to
determinize the non-deterministic constructions using standard procedures [26,36].
However, this will result in exponentially larger deterministic constructions. To
this end, this section offers direct deterministic safety/co-safety automata con-
structions for DS-comparator that not only avoid an exponential blow-up but
also match their non-deterministic counterparts in number of states (Theorem 3).

Key ideas Due to duality and closure properties of safety/co-safety automata, we
only present the construction of deterministic safety automata for DS-comparator
with upper bound µ, integer discount-factor d > 1 and relation ≤, denoted by
Aµ,d≤ . We proceed by obtaining a deterministic finite automaton, (DFA), de-

noted by bad(µ, d,≤), for the language of bad-prefixes of Aµ,d≤ (Theorem 2).
Trivial modifications to bad(µ, d,≤) will furnish the coveted deterministic safety

automata for Aµ,d≤ (Theorem 3).
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Construction We begin with some definitions. Let W be a finite weight-sequence.
By abuse of notation, the discounted-sum of finite-sequence W with discount-
factor d is defined as DS (W,d) = DS (W · 0ω, d). The recoverable-gap of a fi-
nite weight-sequences W with discount factor d, denoted gap(W,d), is its nor-
malized discounted-sum: If W = ε (the empty sequence), gap(ε, d) = 0, and
gap(W,d) = d|W |−1 ·DS (W,d) otherwise [15]. Observe that the recoverable-gap
has an inductive definition i.e. gap(ε, d) = 0, where ε is the empty weight-
sequence, and gap(W · v, d) = d · gap(W,d) + v, where v ∈ {−µ, . . . , µ}.

This observation influences a sketch for bad(µ, d,≤). Suppose all possible
values for recoverable-gap of weight sequences forms the set of states. Then, the
transition relation of the DFA can mimic the inductive definition of recoverable
gap i.e. there is a transition from state s to t on alphabet v ∈ {−µ, . . . , µ} iff
t = d · s + v, where s and v are recoverable-gap values of weight-sequences.
There is one caveat here: There are infinitely many possibilities for the values
of recoverable gap. We need to limit the recoverable gap values to finitely many
values of interest. The core aspect of this construction is to identify these values.

First, we obtain a lower bound on recoverable gap for bad-prefixes of Aµ,d≤ :

Lemma 1. Let µ and d > 1 be the bound and discount-factor, resp. Let T = µ
d−1

be the threshold value. Let W be a non-empty, bounded, finite weight-sequence.
Weight sequence W is a bad-prefix of Aµ,d≤ iff gap(W,d) > T.

Proof. Let a finite weight-sequenceW be a bad-prefix ofAµ,d≤ . Then, DS (W · Y , d) >
0 for all infinite and bounded weight-sequences Y . Since DS (W · Y , d) = DS (W,d)+

1
d|W |

· DS (Y, d), we get inf(DS (W,d) + 1
d|W |

· DS (Y, d)) > 0 =⇒ DS (W,d) +

+ 1
d|W |
· inf(DS (Y, d)) > 0 as W is a fixed sequence. Hence DS (W,d) + −T

d|W |−1 >
0 =⇒ gap(W,d)−T > 0. Conversely, for all infinite, bounded, weight-sequence
Y , DS (W · Y , d) · d|W |−1 = gap(W,d) + 1

d · DS (Y, d). Since gap(W,d) > T ,
inf(DS (Y, d)) = −T · d, we get DS (W · Y , d) > 0. ut

Since all finite and bounded extensions of bad-prefixes are also bad-prefixes,
Lemma 1 implies that if the recoverable-gap of a finite sequence is strinctly
lower that threshold T, then recoverable gap of all of its extensions also exceed
T. Since recoverable gap exceeding threshold T is the precise condition for bad-
prefixes, all states with recoverable gap exceeding T can be merged into a single
state. Note, this state forms an accepting sink in bad(µ, d,≤).

Next, we attempt to merge very low recoverable gap value into a single state.
For this purpose, we define very-good prefixes for Aµ,d≤ : A finite and bounded

weight-sequence W is a very good prefix for language of Aµ,d≤ if for all infinite,
bounded extensions of W by Y , DS (W · Y , d) ≤ 0. A proof similar to Lemma 1

proves an upper bound for the recoverable gap of very-good prefixes of Aµ,d≤ :

Lemma 2. Let µ and d > 1 be the bound and discount-factor, resp. Let T = µ
d−1

be the threshold value. Let W be a non-empty, bounded, finite weight-sequence.
Weight-sequence W is a very-good prefix of Aµ,d≤ iff gap(W,d) ≤ −T.

Clearly, finite extensions of very-good prefixes are also very-good prefixes. Fur-
ther, bad(µ, d,≤) must not accept very-good prefixes. Thus, by reasoning as
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earlier we get that all recoverable gap values that are less than or equal to −T
can be merged into one non-accepting sink state in bad(µ, d,≤).

Finally, for an integer discount-factor the recoverable gap is an integer. Let
bxc denote the floor of x ∈ R e.g. b2.3c = 2, b−2c = −2, b−2.3c = −3. Then,

Corollary 2. Let µ be the bound and d > 1 an integer discount-factor. Let
T = µ

d−1 be the threshold. Let W be a non-empty, bounded, finite weight-sequence.

– W is a bad prefix of Aµ,d≤ iff gap(W,d) > bTc
– W is a very-good prefix of Aµ,d≤ iff gap(W,d) ≤ b−Tc

So, the recoverable gap value is either one of {b−Tc + 1, . . . , bTc}, or less than
or equal to b−Tc, or greater than bTc. This curbs the state-space to O(µ)-many
values of interest, as T = µ

d−1 <
µ·d
d−1 and 1 < d

d−1 ≤ 2. Lastly, since gap(ε, d) = 0,
state 0 must be the initial state.

Construction of bad(µ, d,≤) Let µ be the upper bound, and d > 1 be the integer
discount-factor. Let T = µ

d−1 be the threshold value. The finite-state automata
bad(µ, d,≤) = (S, sI , Σ, δ,F) is defined as follows:

– States S = {b−Tc+ 1, . . . , bTc} ∪ {bad, veryGood}
– Initial state sI = 0, Accepting states F = {bad}
– Alphabet Σ = {−µ,−µ+ 1, . . . , µ− 1, µ}
– Transition function δ ⊆ S ×Σ → S where (s, a, t) ∈ δ then:

1. If s ∈ {bad, veryGood}, then t = s for all a ∈ Σ
2. If s ∈ {b−Tc+ 1, . . . , bTc}, and a ∈ Σ

(a) If b−Tc < d · s+ a ≤ bTc, then t = d · s+ a
(b) If d · s+ a > bTc, then t = bad
(c) If d · s+ a ≤ b−Tc, then t = veryGood

Theorem 2. Let µ be the upper bound, d > 1 be the integer discount-factor.
bad(µ, d,≤) accepts finite, bounded, weight-sequence iff it is a bad-prefix of Aµ,d≤ .

Proof (Proof sketch). First note that the transition relation is deterministic and
complete. Therefore, every word has a unique run in bad(µ, d,≤). Let last be
the last state in the run of finite, bounded, weight-sequence W in the DFA. Use
induction on the length of W to prove the following:

– last ∈ {b−Tc+ 1, . . . , bTc} iff gap(W,d) = last
– last = bad iff gap(W,d) > bTc
– last = veryGood iff gap(W,d) ≤ b−Tc

Therefore, a finite, bounded weight-sequence is accepted iff its recoverable gap
is greater than bTc. In other words, iff it is a bad-prefix of Aµ,d≤ . ut

Aµ,d≤ is obtained from bad(µ, d,≤) by applying co-Büchi acceptance condition.

Theorem 3. Let µ be the upper bound, and d > 1 be the integer discount-factor.
DS-comparator for all inequalities and equality are either deterministic safety or
deterministic co-safety automata with O(µ) states.

As a matter of fact, the most compact non-deterministic DS-comparator con-
structions with parameters µ, d and R also contain O(µ) states [11].
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3.3 Quantitative inclusion with safety/co-safety comparators

This section investigates quantitative language inclusion with regular safety/co-
safety comparators. Unlike quantitative inclusion with regular comparators, quan-
titative inclusion with regular safety/co-safety comparators is able to circumvent
Büchi complementation with intermediate subset-construction steps. As a re-
sult, complexity of quantitative inclusion with regular safety/co-safety compara-
tor is lower than the same with regular comparators [12] (Theorem 4). Finally,
since DS-comparators are regular safety/co-safety comparators, the algorithm for
quantitative inclusion with regular safety/co-safety comparators applies to DS-
inclusion yielding a lower complexity algorithm for DS-inclusion (Corollary 5).

Key Ideas A run of word w in a weighted-automaton is maximal if its weight
is the supremum weight of all runs of w in the weighted-automaton. A run ρP
of w in P is a counterexample for P ⊆ Q (or P ⊂ Q) iff there exists a maximal
run supQ of w in Q such that wt(ρP ) > wt(supQ) (or wt(ρP ) ≥ wt(supQ)).
Consequently, P ⊆ Q (or P ⊂ Q) iff there are no counterexample runs in P .
Therefore, the roadmap to solve quantitative inclusion for regular safety/co-
safety comparators is as follows:

1. Use regular safety/co-safety comparators to construct the maximal automa-
ton of Q i.e. an automaton that accepts all maximal runs of Q (Corollary 3).

2. Use the regular safety/co-safety comparator and the maximal automaton to
construct a counterexample automaton that accepts all counterexample runs
of the inclusion problem P ⊆ Q (or P ⊂ Q) (Lemma 5).

3. Solve quantitative inclusion for safety/co-safety comparator by checking for
emptiness of the counterexample (Theorem 4).
Finally, since DS-comparators are regular safety/co-safety automaton (Corol-
lary 1), apply Theorem 4 to obtain an algorithm for DS-inclusion that uses
regular safety/co-safety comparators (Corollary 5).

Let W be a weighted automaton. Then the annotated automaton of W , denoted
by Ŵ , is the Büchi automaton obtained by transforming transition s

a−→ t with

weight v in W to transition s
a,v−−→ t in Ŵ . Observe that Ŵ is a safety automaton

since all its states are accepting. A run on word w with weight sequence wt in
W corresponds to an annotated word (w,wt) in Ŵ , and vice-versa.

Maximal automaton This section covers the construction of the maximal
automaton from a weighted automaton. Let W and Ŵ be a weighted automaton
and its annotated automaton, respectively. We call an annotated word (w,wt1)
in Ŵ maximal if for all other words of the form (w,wt2) in Ŵ , wt(wt1) ≥
wt(wt2). Clearly, (w,wt1) is a maximal word in Ŵ iff word w has a run with
weight sequence wt1 in W that is maximal. We define maximal automaton of
weighted automaton W , denoted Maximal(W ), to be the automaton that accepts
all maximal words of its annotated automata Ŵ .

We show that when the comparator is regular safety/co-safety, the construc-
tion of the maximal automata incurs a 2O(n) blow-up. This section exposes the
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construction for maximal automaton when comparator for non-strict inequality
is regular safety. The other case when the comparator for strict inequality is
regular co-safety has been deferred to the appendix.

Lemma 3. Let W be a weighted automaton with regular safety comparator for
non-strict inequality. Then the language of Maximal(W ) is a safety language.

Proof (Proof sketch). An annotated word (w,wt1) is not maximal in Ŵ for one
of the following two reasons: Either (w,wt1) is not a word in Ŵ , or there exists
another word (w,wt2) in Ŵ s.t. wt(wt1) < wt(wt2) (equivalently (wt1, wt2) is
not in the comparator non-strict inequality). Both Ŵ and comparator for non-
strict inequality are safety languages, so the language of maximal words must
also be a safety language. ut

We now proceed to construct the safety automata for Maximal(W )

Intuition The intuition behind the construction of maximal automaton follows
directly from the definition of maximal words. Let Ŵ be the annotated au-
tomaton for weighted automaton W . Let Σ̂ denote the alphabet of Ŵ . Then an
annotated word (w,wt1) ∈ Σ̂ω is a word in Maximal(W ) if (a) (w,wt1) ∈ Ŵ ,
and (b) For all words (w,wt2) ∈ Ŵ , wt(wt1) ≥ wt(wt2).

The challenge here is to construct an automaton for condition (b). Intuitively,
this automaton simulates the following action: As the automaton reads word
(w,wt1), it must spawn all words of the form (w,wt2) in Ŵ , while also ensuring
that wt(wt1) ≥ wt(wt2) holds for every word (w,wt2) in Ŵ . Since Ŵ is a safety
automaton, for a word (w,wt1) ∈ Σ̂ω, all words of the form (w,wt2) ∈ Ŵ can be
traced by subset-construction. Similarly since the comparator C for non-strict
inequality (≥) is a safety automaton, all words of the form (wt1, wt2) ∈ C can be
traced by subset-construction as well. The construction needs to carefully align
the word (w,wt1) with the all possible (w,wt2) ∈ Ŵ and (wt1, wt2) ∈ C.

Construction of Maximal(W ) Let W be a weighted automaton, with annotated
automaton Ŵ and C denote its regular safety comparator for non-strict inequal-
ity. Let SW denote the set of states of W (and Ŵ ) and SC denote the set of
states of C. We define Maximal(W ) = (S, sI , Σ̂, δ,F) as follows:

– Set of states S consists of tuples of the form (s,X), where s ∈ SW , and
X = {(t, c)|t ∈ SW , c ∈ SC}

– Σ̂ is the alphabet of Ŵ
– Initial state sI = (sw, {(sw, sc)}), where sw and sc are initial states in Ŵ

and C, respectively.
– Let states (s,X), (s,X ′) ∈ S such that X = {(t1, c1), . . . , (tn, cn)} and X ′ =

{(t′1, c′1), . . . , (t′m, c
′
m)} . Then (s,X)

(a,v)−−−→ (s′, X ′) ∈ δ iff

1. s
(a,v)−−−→ s′ is a transition in Ŵ , and

2. (t′j , c
′
j) ∈ X ′ if there exists (ti, ci) ∈ X, and a weight v′ such that ti

a,v′−−→

t′j and ci
v,v′−−→ c′j are transitions in Ŵ and C, respectively.
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– (s, {(t1, c1), . . . , (tn, cn)}) ∈ F iff s and all ti are accepting in Ŵ , and all ci
is accepting in C.

Lemma 4. Let W be a weighted automaton with regular safety comparator C
for non-strict inequality. Then the size of Maximal(W ) is |W | · 2O(|W |·|C|).

Proof (Proof sketch). A state (s, {(t1, c1), . . . , (tn, cn)}) is non-accepting in the
automata if one of s,ti or cj is non-accepting in underlying automata Ŵ and

the comparator. Since Ŵ and the comparator automata are safety, all outgoing
transitions from a non-accepting state go to non-accepting state in the underly-
ing automata. Therefore, all outgoing transitions from a non-accepting state in
Maximal(W ) go to non-accepting state in Maximal(W ). Therefore, Maximal(W )
is a safety automaton. To see correctness of the transition relation, one must
prove that transitions of type (1.) satisfy condition (a), while transitions of type
(2.) satisfy condition (b). Maximal(W ) forms the conjunction of (a) and (b),
hence accepts the language of maximal words of W .

A similar construction proves that the maximal automata of weighted automata
W with regular safety comparator C for strict inequality contains |W |·2O(|W |·|C|)

states. In this case, however, the maximal automaton may not be a safety au-
tomaton. Therefore, Lemma 4 generalizes to:

Corollary 3. Let W be a weighted automaton with regular safety/co-safety com-
parator C. Then Maximal(W ) is a Büchi automaton of size |W | · 2O(|W |·|C|).

Counterexample automaton This section covers the construction of the
counterexample automaton. Given weighted-automata P and Q, an annotated
word (w,wtP ) in annotated automata P̂ is a counterexample word of P ⊆ Q
(or P ⊂ Q) if there exists (w,wtQ) in Maximal(Q) s.t. wt(wtP ) > wt(wtQ)
(or wt(wtP ) ≥ wt(wtQ)). Clearly, annotated word (w,wtP ) is a counterexample
word iff there exists a counterexample run of w with weight-sequence wtP in P .

For this section, we abbreviate strict and non-strict to strct and nstrct,
respectively. For inc ∈ {strct, nstrct}, the counterexample automaton for inc-
quantitative inclusion, denoted by Counterexample(inc), is the automaton that
contains all counterexample words of the problem instance. We construct the
counterexample automaton as follows:

Lemma 5. Let P , Q be weighted-automata with regular safety/co-safety com-
parators. For inc ∈ {strct, nstrct}, Counterexample(inc) is a Büchi automaton.

Proof. We construct Büchi automaton Counterexample(inc) for inc ∈ {strct, nstrct}
that contains the counterexample words of inc-quantitative inclusion. Since the
comparator are regular safety/co-safety, Maximal(Q) is a Büchi automaton (Corol-

lary 3). Construct the product P̂×Maximal(Q) such that transition (p1, q1)
a,v1,v2−−−−→

(p1, q2) is in the product iff p1
a,v1−−→ p1 and q1

a,v2−−→ q2 are transitions in P̂ and
Maximal(Q), respectively. A state (p, q) is accepting if both p and q are accepting



13

in P̂ and Maximal(Q). One can show that the product accepts (w,wtP , wtQ) iff

(w,wtP ) and (w,wtQ) are words in P̂ and Maximal(Q), respectively.

If inc = strct, intersect P̂ × Maximal(Q) with comparator for ≥. If inc =
nstrct, intersect P̂ ×Maximal(Q) with comparator for >. Since the comparator
is a safety or co-safety automaton, the intersection is taken without the cyclic

counter. Therefore, (s1, t1)
a,v1,v2−−−−→ (s2, t2) is a transition in the intersection iff

s1
a,v1,v2−−−−→ s2 and t1

v1,v2−−−→ t2 are transitions in the product and the appropriate
comparator, respectively. State (s, t) is accepting if both s and t are accepting.
The intersection will accept (w,wtP , wtQ) iff (w,wtP ) is a counterexample of
inc-quantitative inclusion. Counterexample(inc) is obtained by projecting out the

intersection as follows: Transition m
a,v1,v2−−−−→ n is transformed to m

a,v1−−→ n. ut

Quantitative inclusion and DS-inclusion In this section, we give the final
algorithm for quantitative inclusion with regular safety/co-safety comparators.
Since DS-comparators are regular safety/co-safety comparators, this gives us an
algorithm for DS-inclusion with improved complexity than previous results.

Theorem 4. Let P , Q be weighted-automata with regular safety/co-safety com-
parators. Let C≤ and C< be the comparators for ≤ and <, respectively. Then

– Strict quantitative inclusion P ⊂ Q is reduced to emptiness checking of a
Büchi automaton of size |P ||C≤||Q| · 2O(|Q|·|C<|).

– Non-strict quantitative inclusion P ⊆ Q is reduced to emptiness checking of
a Büchi automaton of size |P ||C<||Q| · 2O(|Q|·|C<|).

Proof. Strict and non-strict are abbreviated to strct and nstrct, respectively.
For inc ∈ {strct, nstrct}, inc-quantitative inclusion holds iff Counterexample(inc)
is empty. Size of Counterexample(inc) is the product of size of P , Maximal(Q)
(Corollary 3), and the appropriate comparator as described in Lemma 5. ut

In contrast, quantitative inclusion with regular comparators reduces to empti-
ness of a Büchi automaton with |P | · 2O(|P ||Q||C|·log(|P ||Q||C|)) states [12]. The
2O(n logn) blow-up is unavoidable due to Büchi complementation. Hence, quan-
titative inclusion with regular safety/co-safety has lower worst-case complexity.

Lastly, we use the results of developed in previous sections to solve DS-
inclusion. Since DS-comparators are regular safety/co-safety (Corollary 1), an
immediate consequence of Theorem 4 is an improvement in the worst-case com-
plexity of DS-inclusion in comparison to prior results with regular DS-comparators.
Furthermore, since the regular safety/co-safety DS-comparators are of the same
size for all inequalities (Theorem 3), we get:

Corollary 4. Let P , Q be weighted-automata, and C be a regular safety/co-
safety DS-comparator with integer discount-factor d > 1. Strict DS-inclusion
reduces to emptiness checking of a safety automaton of size |P ||C||Q|·2O(|Q|·|C|).

Proof (Proof sketch). When comparator for non-strict inequality is safety-automaton,
as it is for DS-comparator, the maximal automaton is a safety automaton (Lemma 3).
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Fig. 1: sP = sQ on x-axis, wt = 4, δ = 3, d = 3, P ⊂ Q

One can then show that the counterexample automata is also a safety automa-
ton.

A similar argument proves non-strict DS-inclusion reduces to emptiness of a
weak-Büchi automaton [27] of size |P ||C||Q| · 2O(|Q|·|C|) (see Appendix).

Corollary 5 ([DS-inclusion with safety/co-safety comparator). Let P , Q be
weighted-automata, and C be a regular (co)-safety DS-comparator with integer
discount-factor d > 1.The complexity of DS-inclusion is |P ||C||Q| · 2O(|Q|·|C|).

4 Implementation and Experimental evaluation

The goal of the empirical analysis is to examine performance of DS-inclusion
with integer discount-factor with safety/co-safety comparators against existing
tools to investigate the practical merit of our algorithm. We compare against (a)
Regular-comparator based tool QuIP, and (b) DS-determinization and linear-
programming tool DetLP.

QuIP is written in C++, and invokes state-of-the-art Büchi language inclusion-
solver RABIT [2]. We enable the -fast flag in RABIT, and tune its Java-threads
with Xss, Xms, Xmx set to 1GB, 1GB and 8GB, respectively. DetLP is also writ-
ten in C++, and uses linear programming solver GLPSOL provided by GLPK
(GNU Linear Prog. Kit) [1]. We compare these tools along two axes: runtime
and number of benchmarks solved.

Implementation details The algorithm for strict-DS-inclusion with integer
discount factor d > 1 proposed in Corollary 4 and non-strict DS-inclusion checks
for emptiness of the counterexample automata. A naive algorithm will construct
the counterexample automata fully, and then check if they are empty by ensuring
the absence of an accepting lasso.

We implement a more efficient algorithm. In our implementation, we make
use of the fact that the constructions for DS-inclusion use subset-construction
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Fig. 2: sP = sQ = 75, wt = 4, δ = 3, d = 3, P ⊂ Q

intermediate steps. This facilitates an on-the-fly procedure since successor states
of state in the counterexample automata can be determined directly from input
weighted automata and the comparator automata. The algorithm terminates as
soon as an accepting lasso is detected. When an accepting lasso is absent, the
algorithm traverses all states and edges of the counterexample automata.

We implement the optimized on-the-fly algorithm in a prototype QuIPFly.
QuIPFly is written in Python 2.7.12. QuIPFly employs basic implementation-level
optimizations to avoid excessive re-computation.

Design and setup for experiments Due to lack of standardized benchmarks
for weighted automata, we follow a standard approach to performance evaluation
of automata-theoretic tools [3,30,38] by experimenting with randomly generated
benchmarks, using random benchmark generation procedure described in [11].

The parameters for each experiment are number of states sP and sQ of
weighted automata, transition density δ, maximum weight wt, integer discount-
factor d, and inc ∈ {strct, nstrct}. In each experiment, weighted automata P and
Q are randomly generated, and runtime of inc-DS-inclusion for all three tools is
reported with a timeout of 900sec. We run the experiment for each parameter
tuple 50 times. All experiments are run on a single node of a high-performance
cluster consisting of two quad-core Intel-Xeon processor running at 2.83GHz,
with 8GB of memory per node. We experiment with sP = sQ ranging from 0-
1500 in increments of 25, δ ∈ {3, 3.5, 4}, d = 3, and wt ∈ {d1 + 1, d3− 1, d4− 1}.

Observations and Inferences 1 For clarity of exposition, we present the ob-
servations for only one parameter-tuple. Trends and observations for other pa-
rameters were similar.

QuIPFly outperforms QuIP by at least an order of magnitude in runtime. Fig 1
plots the median runtime of all 50 experiments for the given parameter-values

1 Figures are best viewed online and in color
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for QuIP and QuIPFly. More importantly, QuIPFly solves all of our benchmarks
within a fraction of the timeout, whereas QuIP struggled to solve at least 50%
of the benchmarks with larger inputs (beyond sP = sQ = 1000). Primary cause
of failure is memory overflow inside RABIT. We conclude that regular safety/co-
safety comparators outperform their regular counterpart, giving credit to the
simpler subset-constructions vs. Büchi complementation.

QuIPFly outperforms DetLP comprehensively in runtime and in number of bench-
marks solved. We were unable to plot DetLP in Fig 1 since it solved fewer than
50% benchmarks even with small input instances. Fig 2 compares the runtime
of both tools on the same set of 50 benchmarks for a representative parameter-
tuple on which all 50 benchmarks were solved. The plot shows that QuIPFly
beats DetLP by 2-4 orders of magnitude on all benchmarks.

Overall verdict Overall, QuIPFly outperforms QuIP and DetLP by a significant
margin along both axes, runtime and number of benchmarks solved. This analysis
gives unanimous evidence in favor of our safety/co-safety approach to solving
DS-inclusion.

5 Concluding Remarks

The goal of this paper was to build scalable algorithms for DS-inclusion. To this
end, this paper furthers the understanding of language-theoretic properties of
discounted-sum aggregate function by demonstrating that DS-comparison lan-
guages form safety and co-safety languages, and utilizes these properties to ob-
tain a decision procedure for DS-inclusion that offers both tighter theoretical
complexity and improved scalability. All in all, the key insights of this work are:

1. Pure automata-theoretic techniques of DS-comparator are better for DS-
inclusion;

2. In-depth language-theoretic analysis improve both theoretical complexity
and practical scalability of DS-inclusion;

3. DS-comparators are compact deterministic safety or co-safety automata.

To the best of our knowledge, this is the first work that applies language-theoretic
properties such as safety/co-safety in the context of quantitative reasoning.

More broadly, this paper demonstrates that the close integration of language-
theoretic and quantitative properties can render novel algorithms for quantita-
tive reasoning that can benefit from advances in qualitative reasoning.
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inclusion testing. In Proc. of CAV, pages 132–147. Springer, 2010.

4. P. A. Abdulla, Y.-F. Chen, L. Clemente, L. Hoĺık, C.-D. Hong, R. Mayr, and
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