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Abstract. The notion of comparison between system runs is funda-
mental in formal verification. This concept is implicitly present in the
verification of qualitative systems, and is more pronounced in the veri-
fication of quantitative systems. In this work, we identify a novel mode
of comparison in quantitative systems: the online comparison of the ag-
gregate values of two sequences of quantitative weights. This notion is
embodied by comparator automata (comparators, in short), a new class
of automata that read two infinite sequences of weights synchronously
and relate their aggregate values.
We show that comparators that are finite-state and accept by the Büchi
condition lead to generic algorithms for a number of well-studied prob-
lems, including the quantitative inclusion and winning strategies in quan-
titative graph games with incomplete information, as well as related
non-decision problems, such as obtaining a finite representation of all
counterexamples in the quantitative inclusion problem.
We study comparators for two aggregate functions: discounted-sum and
limit-average. We prove that the discounted-sum comparator is ω-regular
for all integral discount factors. Not every aggregate function, however,
has an ω-regular comparator. Specifically, we show that the language
of sequence-pairs for which limit-average aggregates exist is neither ω-
regular nor ω-context-free. Given this result, we introduce the notion of
prefix-average as a relaxation of limit-average aggregation, and show that
it admits ω-context-free comparators.

1 Introduction

Many classic questions in formal methods can be seen as involving comparisons
between different system runs or inputs. Consider the problem of verifying if a
system S satisfies a linear-time temporal property P . Traditionally, this problem
is phrased language-theoretically: S and P are interpreted as sets of (infinite)
words, and S is determined to satisfy P if S ⊆ P . The problem, however, can
also be framed in terms of a comparison between words in S and P . Suppose
a word w is assigned a weight of 1 if it belongs to the language of the system
or property, and 0 otherwise. Then determining if S ⊆ P amounts to checking
whether the weight of every word in S is less than or equal to its weight in P [5].

The need for such a formulation is clearer in quantitative systems, in which
every run of a word is associated with a sequence of (rational-valued) weights.
The weight of a run is given by aggregate function f : Qω → R, which returns the



real-valued aggregate value of the run’s weight sequence. The weight of a word
is given by the supremum or infimum of the weight of all its runs. Common
examples of aggregate functions include discounted-sum and limit-average.

In a well-studied class of problems involving quantitative systems, the objec-
tive is to check if the aggregate value of words of a system exceed a constant
threshold value [14,15,16]. This is a natural generalization of emptiness prob-
lems in qualitative systems. Known solutions to the problem involve arithmetic
reasoning via linear programming and graph algorithms such as negative-weight
cycle detection, computation of maximum weight of cycles etc [4,18].

A more general notion of comparison relates aggregate values of two weight
sequences. Such a notion arises in the quantitative inclusion problem for weighted
automata [1], where the goal is to determine whether the weight of words in one
weighted automaton is less than that in another. Here it is necessary to compare
the aggregate value along runs between the two automata. Approaches based
on arithmetic reasoning do not, however, generalize to solving such problems.
In fact, the known solution to discounted-sum inclusion with integer discount-
factor combines linear programming with a specialized subset-construction-based
determinization step, rendering an EXPTIME algorithm [4,6]. Yet, this approach
does not match the PSPACE lower bound for discounted-sum inclusion.

In this paper, we present an automata-theoretic formulation of this form of
comparison between weighted sequences. Specifically, we introduce comparator
automata (comparators, in short), a class of automata that read pairs of infinite
weight sequences synchronously, and compare their aggregate values in an online
manner. While comparisons between weight sequences happen implicitly in prior
approaches to quantitative systems, comparator automata make these compar-
isons explicit. We show that this has many benefits, including generic algorithms
for a large class of quantitative reasoning problems, as well as a direct solution
to the problem of discounted-sum inclusion that also closes its complexity gap.

A comparator for aggregate function f is an automaton that accepts a pair
(A,B) of sequences of bounded rational numbers iff f(A) R f(B), where R is an
inequality relation (>, <, ≥, ≤) or the equality relation. A comparator could be
finite-state or (pushdown) infinite-state. This paper studies such comparators.

A comparator is ω-regular if it is finite-state and accepts by the Büchi con-
dition. We show that ω-regular comparators lead to generic algorithms for a
number of well-studied problems including the quantitative inclusion problem,
and in showing existence of winning strategies in incomplete-information quan-
titative games. Our algorithm yields PSPACE-completeness of quantitative in-
clusion when the ω-regular comparator is provided. The same algorithm extends
to obtaining finite-state representations of counterexample words in inclusion.

Next, we show that the discounted-sum aggregation function admits an ω-
regular comparator when the discount-factor d > 1 is an integer. Using proper-
ties of ω-regular comparators, we conclude that the discounted-sum inclusion is
PSPACE-complete, hence resolving the complexity gap. Furthermore, we prove
that the discounted-sum comparator for 1 < d < 2 cannot be ω-regular. We
suspect this result extends to non-integer discount-factors as well.
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Finally, we investigate the limit-average comparator. Since limit-average is
only defined for sequences in which the average of prefixes converge, limit-average
comparison is not well-defined. We show that even a Büchi pushdown automaton
cannot separate sequences for which limit-average exists from those for which
it does not. Hence, we introduce the novel notion of prefix-average comparison
as a relaxation of limit-average comparison. We show that the prefix-average
comparator admits a comparator that is ω-context-free, i.e., given by a Büchi
pushdown automaton, and we discuss the utility of this characterization.

This paper is organized as follows: Preliminaries are given in § 2. Comparator
automata is formally defined in § 3. Generic algorithms for ω-regular comparators
are discussed in § 3.1-3.2. The construction and properties of discounted-sum
comparator, and limit-average and prefix-average comparator are given in § 4,
and § 5, respectively. We conclude with future directions in § 6.

Related work The notion of comparison has been widely studied in quanti-
tative settings. Here we mention only a few of them. Such aggregate-function
based notions appear in weighted automata [1,17], quantitative games including
mean-payoff and energy games [16], discounted-payoff games [3,4], in systems
regulating cost, memory consumption, power consumption, verification of quan-
titative temporal properties [14,15], and others. Common solution approaches
include graph algorithms such as weight of cycles or presence of cycle [18], linear-
programming-based approaches, fixed-point-based approaches [8], and the like.
The choice of approach for a problem typically depends on the underlying ag-
gregate function. In contrast, in this work we present an automata-theoretic
approach that unifies solution approaches to problems on different aggregate
functions. We identify a class of aggregate functions, ones that have an ω-regular
comparator, and present generic algorithms for some of these problems.

While work on finite-representations of counterexamples and witnesses in the
qualitative setting is known [5], we are not aware of such work in the quanti-
tative verification domain. This work can be interpreted as automata-theoretic
arithmetic, which has been explored in regular real analysis [12].

2 Preliminaries

Definition 1 (Büchi automata [21]). A (finite-state) Büchi automaton is a
tuple A = (S , Σ, δ, Init ,F), where S is a finite set of states, Σ is a finite input
alphabet, δ ⊆ (S ×Σ×S ) is the transition relation, Init ⊆ S is the set of initial
states, and F ⊆ S is the set of accepting states.

A Büchi automaton is deterministic if for all states s and inputs a, |{s′|(s, a, s′) ∈
δ for some s′}| ≤ 1 and |Init | = 1. Otherwise, it is nondeterministic. For a word
w = w0w1 · · · ∈ Σω, a run ρ of w is a sequence of states s0s1 . . . s.t. s0 ∈ Init ,
and τi = (si, wi, si+1) ∈ δ for all i. Let inf (ρ) denote the set of states that occur
infinitely often in run ρ. A run ρ is an accepting run if inf (ρ) ∩ F 6= ∅. A word
w is an accepting word if it has an accepting run. Büchi automata are known
to be closed under set-theoretic union, intersection, and complementation [21].
Languages accepted by these automata are called ω-regular languages.
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Definition 2 (Weighted ω-automaton [10,20]). A weighted ω-automaton
over infinite words is a tuple A = (M, γ), where M = (S , Σ, δ, Init ,S ) is a
Büchi automaton, and γ : δ → Q is a weight function.

Words and runs in weighted ω-automata are defined as they are in Büchi au-
tomata. Note that all states are accepting states in this definition. The weight
sequence of run ρ = s0s1 . . . of word w = w0w1 . . . is given by wtρ = n0n1n2 . . .
where ni = γ(si, wi, si+1) for all i. The weight of a run ρ is given by f(wtρ),
where f : Qω → R is an aggregate function. We use f(ρ) to denote f(wtρ).

Here the weight of a word w ∈ Σω in weighted ω-automata is defined as
wtA(w) = sup{f(ρ)|ρ is a run of w in A}. It can also be defined as the infimum
of the weight of all its runs. By convention, if word w /∈ A, wtA(w) = 0 [10].

Definition 3 (Quantitative inclusion). Given two weighted ω-automata P
and Q with aggregate function f , the quantitative-inclusion problem, denoted by
P ⊆f Q, asks whether for all words w ∈ Σω, wtP (w) ≤ wtQ(w).

Quantitative inclusion is PSPACE-complete for limsup and liminf [10], and unde-
cidable for limit-average [16]. For discounted-sum with integer discount-factor it
is in EXPTIME [6,10], and decidability is unknown for rational discount-factors

Definition 4 (Incomplete-information quantitative games). An incomplete-
information quantitative game is a tuple G = (S, sI ,O , Σ, δ, γ, f), where S, O,
Σ are sets of states, observations, and actions, respectively, sI ∈ S is the initial
state, δ ⊆ S × Σ × S is the transition relation, γ : S → N × N is the weight
function, and f : Nω → R is the aggregate function.

The transition relation δ is complete, i.e., for all states p and actions a, there
exists a state q s.t. (p, a, q) ∈ δ. A play ρ is a sequence s0a0s1a1 . . . , where
τi = (si, ai, si+1) ∈ δ. The observation of state s is denoted by O(s) ∈ O . The
observed play oρ of ρ is the sequence o0a0o1aa1 . . . , where oi = O(si). Player P0

has incomplete information about the game G; it only perceives the observation
play oρ. Player P1 receives full information and witnesses play ρ. Plays begin in
the initial state s0 = sI . For i ≥ 0, Player P0 selects action ai. Next, player P1

selects the state si+1, such that (si, ai, si+1) ∈ δ. The weight of state s is the pair
of payoffs γ(s) = (γ(s)0, γ(s)1). The weight sequence wti of player Pi along ρ is
given by γ(s0)iγ(s1)i . . . , and its payoff from ρ is given by f(wti) for aggregate
function f , denoted by f(ρi), for simplicity. A play on which a player receives a
greater payoff is said to be a winning play for the player. A strategy for player
P0 is given by a function α : O∗ → Σ since it only sees observations. Player
P0 follows strategy α if for all i, ai = α(o0 . . . oi). A strategy α is said to be a
winning strategy for player P0 if all plays following α are winning plays for P0.

Definition 5 (Büchi pushdown automata [13]). A Büchi pushdown au-
tomaton (Büchi PDA) is a tuple A = (S , Σ, Γ, δ, Init , Z0,F), where S, Σ, Γ ,
and F are finite sets of states, input alphabet, pushdown alphabet and accept-
ing states, respectively. δ ⊆ (S×Γ ×(Σ∪{ε})×S×Γ ) is the transition relation,
Init ⊆ S is a set of initial states, Z0 ∈ Γ is the start symbol.
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A run ρ on a word w = w0w1 · · · ∈ Σω of a Büchi PDA A is a sequence of
configurations (s0, γ0), (s1, γ1) . . . satisfying (1) s0 ∈ Init , γ0 = Z0, and (2)
(si, γi, wi, si+1, γi+1) ∈ δ for all i. Büchi PDA consists of a stack, elements of
which are the tokens Γ , and initial element Z0. Transitions push or pop token(s)
to/from the top of the stack. Let inf (ρ) be the set of states that occur infinitely
often in state sequence s0s1 . . . of run ρ. A run ρ is an accepting run in Büchi
PDA if inf (ρ)∩F 6= ∅. A word w is an accepting word if it has an accepting run.
Languages accepted by Büchi PDA are called ω-context-free languages (ω-CFL).

We introduce some notation. For an infinite sequence A = (a0, a1, . . . ), A[i]
denotes its i-th element. Abusing notation, we write w ∈ A and ρ ∈ A if w and
ρ are an accepting word and an accepting run of A respectively.

For missing proofs and constructions, refer to the supplementary material.

3 Comparator automata

Comparator automata (often abbreviated as comparators) are a class of automata
that can read pairs of weight sequences synchronously and establish an equality
or inequality relationship between these sequences. Formally, we define:

Definition 6 (Comparator automata). Let Σ be a finite set of rational num-
bers, and f : Qω → R denote an aggregate function. A comparator automaton
for aggregate function f is an automaton over the alphabet Σ × Σ that accepts
a pair (A,B) of (infinite) weight sequences iff f(A) R f(B), where R is an
inequality or the equality relation.

From now on, unless mentioned otherwise, we assume that all weight sequences
are bounded, natural number sequences. The boundedness assumption is justified
since the set of weights forming the alphabet of a comparator is bounded. For all
aggregate functions considered in this paper, the result of comparison of weight
sequences is preserved by a uniform linear transformation that converts rational-
valued weights into natural numbers; justifying the natural number assumption.

sstart fk sk

(∗, ∗)

(k,≤ k)

(k,≤ k)

(≤ k − 1,≤ k)

(≤ k − 1,≤ k)

(k,≤ k)

Fig. 1. State fk is an accepting state. Automaton Ak

accepts (A,B) iff LimSup(A) = k, LimSup(B) ≤ k. ∗
denotes {0, 1 . . . µ}, ≤ m denotes {0, 1 . . . ,m}

We explain comparators
through an example. The
limit supremum (limsup, in
short) of a bounded, inte-
ger sequence A, denoted by
LimSup(A), is the largest in-
teger that appears infinitely
often in A. The limsup com-
parator is a Büchi automa-
ton that accepts the pair (A,B) of sequences iff LimSup(A) ≥ LimSup(B).

The working of the limsup comparator is based on non-deterministically
guessing the limsup of sequences A and B, and then verifying that LimSup(A) ≥
LimSup(B). Büchi automaton Ak (Fig. 1) illustrates the basic building block of
the limsup comparator. Automaton Ak accepts pair (A,B) of number sequences
iff LimSup(A) = k, and LimSup(B) ≤ k, for integer k. To see why this is true, first
note that all incoming edges to accepting state fk occur on alphabet (k,≤ k)
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Init(q1) q2q3
a, 3

a, 2

a, 0

b, 1

a, 2

b, 0

Fig. 2. Weighted automaton P

Init(q1) q2q3

a, 1

a, 2

a, 0

a, 1

b, 2

a, 2

b, 0

Fig. 3. Weighted automaton Q

while all transitions between states fk and sk occur on alphabet (≤ k,≤ k),
where ≤ k denotes the set {0, 1, . . . k}. So, the integer k must appear infinitely
often in A and all elements occurring infinitely often in A and B are less than or
equal to k. Together these ensure that LimSup(A) = k, and LimSup(B) ≤ k. The
union of such automata Ak for k ∈ {0, 1, . . . µ} for upper bound µ, results in the
limsup comparator. The limit infimum (liminf, in short) of an integer sequence is
the smallest integer that appears infinitely often in it; its comparator is similar.

When the comparator for an aggregate function is a Büchi automaton, we
call it an ω-regular comparator. Likewise, when the comparator for an aggregate
function is a Büchi pushdown automaton, we call it an ω-context-free comparator.
As seen here, the limsup and liminf comparators are ω-regular. Later, we see that
discounted-sum comparator and prefix-average comparator are ω-regular and ω-
context-free respectively (§ 4 and § 5). We call an aggregate function ω-regular
when it has an ω-regular comparator for at least one inequality relation. Due to
closure properties of Büchi automata, comparators for all inequality and equality
relations of an ω-regular aggregate function are also ω-regular.

Motivating example Let weighted ω-automata P and Q be as illustrated in
Fig. 2-3. The word w = a(ab)ω has two runs ρP1 = q1(q2)ω, ρP2 = q1(q3)ω in

P , and four runs ρQ1 = q1(q2)ω, ρQ2 = q1(q3)ω, ρQ3 = q1q1(q2)ω ρQ4 = q1q1(q3)ω

in Q. Their weight-sequences are wtP1 = 3, (0, 1)ω, wtP2 = 2, (2, 0)ω in P , and

wtQ1 = (2, 1)ω, wtQ2 = (0, 2)ω, wtQ3 = 1, 2, (2, 1)ω, wtQ4 = 1, 0, (0, 2)ω in Q.
To determine if w has greater weight in P or in Q, compare aggregate value

of weight-sequences of runs in P and Q. Take the comparator for aggregate
function f that accepts a pair (A,B) of weight-sequence iff f(A) ≤ f(B). For

wtP (w) ≤ wtQ(w), for every run ρPi in P , there exists a run ρQj in Q s.t. (ρPi , ρ
Q
j )

is accepted by the comparator. This forms the basis for quantitative inclusion.

3.1 Quantitative inclusion

InclusionReg (Algorithm 1) is an algorithm for quantitative inclusion for ω-
regular aggregate functions. For weighted ω-automata P , Q, and ω-regular com-
parator Af , InclusionReg returns True iff P ⊆f Q. We assume P ⊆ Q (qualitative
inclusion) to avoid trivial corner cases.

Key ideas P ⊆f Q holds if for every run ρP in P on word w, there exists a
run ρQ in Q on the same word w such that f(ρP ) ≤ f(ρQ). We refer to such
runs of P by diminished run. Hence, P ⊆f Q iff all runs of P are diminished.

InclusionReg constructs Büchi automaton Dim that consists of exactly the
diminished runs of P . It returns True iff Dim contains all runs of P . To obtain
Dim, it constructs Büchi automaton DimProof that accepts word (ρP , ρQ) iff ρP
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Algorithm 1 InclusionReg(P,Q,Af ), Is P ⊆f Q?

1: Input: Weighted automata P , Q, and ω-regular comparator Af (Inequality ≤)
2: Output: True if P ⊆f Q, False otherwise
3: P̂ ← AugmentWtAndLabel(P )
4: Q̂← AugmentWtAndLabel(Q)
5: P̂ × Q̂← MakeProduct(P̂ , Q̂)
6: DimProof ← Intersect(P̂ × Q̂,A�)
7: Dim ← FirstProject(DimProof )
8: return P̂ ≡ Dim

and ρQ are runs of the same word in P and Q respectively, and f(ρP ) ≤ f(ρQ).
The ω-regular comparator for inequality ≤ for function f ensures f(ρP ) ≤ f(ρQ).
The projection of DimProof on runs of P results in Dim.

Algorithm details InclusionReg has three steps: (a). UniqueId (Lines 3-4):
Enables unique identification of runs in P and Q through labels. (b). Compare
(Lines 5-7): Compares weight of runs in P with weight of runs in Q, and con-
structs Dim. (c). DimEnsure (Line 8): Ensures if all runs of P are diminished.

1. UniqueId: AugmentWtAndLabel transforms weighted ω-automatonA into Büchi
automaton Â by converting transition τ = (s, a, t) with weight γ(τ) in A to
transition τ̂ = (s, (a, γ(τ), l), t) in Â, where l is a unique label assigned to
transition τ . The word ρ̂ = (a0, n0, l0)(a1, n1, l1) · · · ∈ Â iff run ρ ∈ A on
word a0a1 . . . with weight sequence n0n1 . . . . Labels ensure bijection between
runs in A and words in Â. Words of Â have a single run in Â.
Hence, transformation of weighted ω-automata P and Q to Büchi automata
P̂ and Q̂ enables disambiguation between runs of P and Q (Line 3-4).

2. Compare: The output of this step is the Büchi automaton Dim, that contains
the word ρ̂ ∈ P̂ iff ρ is a diminished run in P (Lines 5-7).
MakeProduct(P̂ , Q̂) constructs P̂ × Q̂ s.t. word (ρ̂P , ρ̂Q) ∈ P̂ × Q̂ iff ρP and
ρQ are runs of the same word in P and Q respectively (Line 5). Concretely,

for transition τ̂A = (sA, (a, nA, lA), tA) in automaton A, where A ∈ {P̂ , Q̂},
transition τ̂P × τ̂Q = ((sP , sQ), (a, nP , lP , nQ, lQ), (tP , tQ)) is in P̂ × Q̂.

Intersect intersects the weight components of P̂ × Q̂ with comparator Af
(Line 6). The resulting automaton DimProof accepts word (ρ̂P , ρ̂Q) iff f(ρP ) ≤
f(ρQ), and ρP and ρQ are runs on the same word in P and Q respectively.

The projection of DimProof on the words of P̂ returns Dim which contains
the word ρ̂P iff ρP is a diminished run in P (Line 7).

3. DimEnsure: P ⊆f Q iff P̂ ≡ Dim (qualitative equivalence) since P̂ consists
of all runs of P and Dim consists of all diminished runs of P (Line 8).

Lemma 1. Given weighted ω-automata P and Q with an ω-regular aggregate
function f . InclusionReg(P,Q,Af ) returns True iff P ⊆f Q.

Further, InclusionReg is adapted for quantitative strict-inclusion P ⊂f Q i.e. for
all words w, wtP (w) < wtQ(w) by taking the ω-regular comparator Af that
accepts (A,B) iff f(A) < f(B). Similarly for quantitative equivalence P ≡f Q.
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Complexity analysis All operations in InclusionReg until Line 7 are polytime
operations in the size of weighted ω-automata P , Q and comparator Af . Hence,
Dim is polynomial in size of P , Q and Af . Line 8 solves a PSPACE-complete
problem. Therefore, the quantitative inclusion for ω-regular aggregate function
f is in PSPACE in size of the inputs P , Q, and Af .

The PSPACE-hardness of the quantitative inclusion is established via reduc-
tion from the qualitative inclusion problem, which is PSPACE-complete. The
formal reduction is as follows: Let P and Q be Büchi automata (with all states
as accepting states). Reduce P , Q to weighted automata P , Q by assigning a
weight of 1 to each transition. Since all runs in P , Q have the same weight se-
quence, weight of all words in P and Q is the same for any function f . It is easy
to see P ⊆ Q (qualitative inclusion) iff P ⊆f Q (quantitative inclusion).

Theorem 1. Let P and Q be weighted ω-automata and Af be an ω-regular
comparator. The complexity of the quantitative inclusion problem, quantitative
strict-inclusion problem, and quantitative equivalence problem for ω-regular ag-
gregate function f is PSPACE-complete.

Theorem 1 extends to weighted ω-automata when weight of words is the infimum
of weight of runs. The key idea for P ⊆f Q here is to ensure that for every run
ρQ in Q there exists a run on the same word in ρP in P s.t. f(ρP ) ≤ f(ρQ).

Representation of counterexamples When P *f Q, there exists word(s)
w ∈ Σ∗ s.t wtP (w) > wtQ(w). Such a word w is said to be a counterexample
word. Previously, finite-state representations of counterexamples have been use-
ful in verification and synthesis in qualitative systems [5], and could be useful in
quantitative settings as well. However, we are not aware of procedures for such
representations in the quantitative settings. Here we show that a trivial extension
of InclusionReg yields Büchi automata-representations for all counterexamples of
the quantitative inclusion problem for ω-regular functions.

For word w to be a counterexample, it must contain a run in P that is not
diminished. Clearly, all non-diminished runs of P are members of P̂ \Dim. The
counterexamples words can be obtained from P̂ \Dim by modifying its alphabet
to the alphabet of P by dropping transition weights and their unique labels.

Theorem 2. All counterexamples of the quantitative inclusion problem for an
ω-regular aggregate function can be expressed by a Büchi automaton.

3.2 Incomplete-information quantitative games

Given an incomplete-information quantitative game G = (S, sI ,O , Σ, δ, γ, f),
our objective is to determine if player P0 has a winning strategy α : O∗ →
Σ for ω-regular aggregate function f . We assume we are given the ω-regular
comparator Af for function f . Note that a function A∗ → B can be treated like
a B-labeled A-tree, and vice-versa. Hence, we proceed by finding a Σ-labeled
O-tree – the winning strategy tree. Every branch of a winning strategy-tree is an
observed play oρ of G for which every actual play ρ is a winning play for P0.
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We first consider all game trees of G by interpreting G as a tree-automaton
over Σ-labeled S-trees. Nodes n ∈ S∗ of the game-tree correspond to states
in S and labeled by actions in Σ taken by player P0. Thus, the root node ε
corresponds to sI , and a node si0 , . . . , sik corresponds to the state sik reached
via sI , si0 , . . . , sik−1

. Consider now a node x corresponding to state s and labeled
by an action σ. Then x has children xs1, . . . xsn, for every si ∈ S. If si ∈ δ(s, σ),
then we call xsi a valid child, otherwise we call it an invalid child. Branches
that contain invalid children correspond to invalid plays.

A game-tree τ is a winning tree for player P0 if every branch of τ is either a
winning play for P0 or an invalid play of G. One can check, using an automata,
if a play is invalid by the presence of invalid children. Furthermore, the winning
condition for P0 can be expressed by the ω-regular comparator Af that accepts
(A,B) iff f(A) > f(B). To use the comparator Af , it is determinized to parity
automaton Df . Thus, a product of game G with Df is a deterministic parity
tree-automaton accepting precisely winning-trees for player P0.

Winning trees for player P0 are Σ-labeled S-trees. We need to convert them
to Σ-labeled O-trees. Recall that every state has a unique observation. We can
simulate these Σ-labeled S-trees on strategy trees using the technique of thinning
states S to observations O [19]. The resulting alternating parity tree automaton
M will accept a Σ-labeled O-tree τo iff for all actual game-tree τ of τo, τ is a
winning-tree for P0 with respect to the strategy τo. The problem of existence of
winning-strategy for P0 is then reduced to non-emptiness checking of M.

Theorem 3. Given an incomplete-information quantitative game G and ω-regular
comparator Af for the aggregate function f , the complexity of determining whether
P0 has a winning strategy is exponential in |G| · |Df |, where |Df | = |Af |O(|Af |).

Since,Df is the deterministic parity automaton equivalent toAf , |Df | = |Af |O(|Af |).
The thinning operation is linear in size of |G×Df |, therefore |M| = |G|·|Df |. Non-
emptiness checking of alternating parity tree automata is exponential. Therefore,
our procedure is doubly exponential in size of the comparator and exponential
in size of the game. The question of tighter bounds is open.

4 Discounted-sum comparator

The discounted-sum of an infinite sequenceA with discount-factor d > 1, denoted
by DS (A, d), is defined as Σ∞i=0A[i]/di. The discounted-sum comparator (DS-
comparator, in short) for discount-factor d, denoted by A�DS(d)

, accepts a pair
(A,B) of weight sequences iff DS (A, d) < DS (B, d). We investigate properties
of the DS-comparator, and show that the DS-comparator is ω-regular for all
integral discount-factors d, and cannot be ω-regular when 1 < d < 2.

Theorem 4. DS-comparator for rational discount-factor 1<d<2 is not ω-regular.

For discounted-sum automaton A with discount factor d, the cut-point language
of A w.r.t. r ∈ R is defined as L≥r = {w ∈ L(A)|DS(w, d) ≥ r}. It is known that
the cut-point language L≥1 with discount-factor 1 < d < 2 is not ω-regular [9].
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One can show that if DS-comparator for discount-factor 1 < d < 2 were ω-
regular, then cut-point language L≥1 is also ω-regular; thus proving Theorem 4.

We provide the construction of DS-comparator with integer discount-factor.

Key ideas The core intuition is that sequences bounded by µ can be converted
to their value in base d via a finite-state transducer. Lexicographic comparison
of the resulting sequences renders the desired result. Conversion of sequences
to base d requires a certain amount of book-keeping by the transducer. Here we
describe a direct method for book-keeping and lexicographic comparison.

For natural-number sequence A and integer discount-factor d > 1, DS (A, d)

can be interpreted as a value in base d i.e. DS (A, d) = A[0] + A[1]
d + A[2]

d2 +
· · · = (A[0].A[1]A[2] . . . )d [12]. Unlike comparison of numbers in base d, the
lexicographically larger sequence may not be larger in value. This occurs because
(i) The elements of weight sequences may be larger in value than base d, and
(ii) Every value has multiple infinite-sequence representations.

To overcome these challenges, we resort to arithmetic techniques in base
d. Note that DS (B, d) > DS (A, d) iff there exists a sequence C such that
DS (B, d) = DS (A, d) + DS (C, d), and DS (C, d) > 0. Therefore, to compare
the discounted-sum of A and B, we obtain a sequence C. Arithmetic in base d
also results in sequence X of carry elements. Then, we see:

Lemma 2. Let A,B,C,X be number sequences, d > 1 be a positive integer such
that following equations holds true:

1. When i = 0, A[0] + C[0] +X[0] = B[0]
2. When i ≥ 1, A[i] + C[i] +X[i] = B[i] + d ·X[i− 1]

Then DS (B, d) = DS (A, d) + DS (C, d).

Hence, to determine DS (B, d)−DS (A, d), systematically guess sequences C and
X using the equations, element-by-element beginning with the 0-th index and
moving rightwards. There are two crucial observations here: (i) Computation of
i-th element of C and X only depends on i-th and (i− 1)-th elements of A and
B. Therefore guessing C[i] and X[i] requires finite memory only. (ii) C refers
to a representation of value DS (B, d)−DS (A, d) in base d, and X is the carry-
sequence. Hence if A and B are bounded-integer sequences, not only are X and
C bounded sequences, they can be constructed from a fixed finite set of integers:

Lemma 3. Let d > 1 be an integer discount-factor. Let A and B be nonnegative
integer sequences bounded by µ s.t. DS (A, d) < DS (B, d). Let C and X be as
constructed in Lemma 2. There exists at least one pair of integer-sequences C
and X that satisfy the following two equations

1. For all i ≥ 0, 0 ≤ C[i] ≤ µ · d
d−1 . and

2. For all i ≥ 0, 0 ≤ |X[i]| ≤ 1 + µ
d−1

In Büchi automaton A�DS(d)
(i) states are represented by (x, c) where x and c

range over all possible elements of X and C, which are finite, (ii) a special start
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state s, (iii) transitions from the start state (s, (a, b), (x, c)) satisfy a+ c+ x = b
to replicate Equation 1 (Lemma 2) at the 0-th index, (iv) all other transitions
((x1, c1), (a, b), (x2, c2)) satisfy a + c2 + x2 = b + d · x1 to replicate Equation 2
(Lemma 2) at indexes i > 0, and (v) all (x, c) states are accepting. Lemma 2
ensures that A�DS(d)

accepts (A,B) iff DS (B, d) = DS (A, d) + DS (C, d).

However, A�DS(d)
is yet to guarantee DS (C, d) > 0. For this, we include non-

accepting states (x,⊥), where x ranges over all possible (finite) elements of X.
Transitions into and out of states (x,⊥) satisfy Equation 1 or 2 (depending on
whether transition is from start state s) where ⊥ is treated as c = 0. Transition
from (x,⊥)-states to (x, c)-states occurs only if c > 0. Hence, any valid execution
of (A,B) will be an accepting run only if the execution witnesses a non-zero value
of c. Since C is a non-negative sequence, this ensures DS (C, d) > 0.

Construction Let µC = µ· dd−1 and µX = 1+ µ
d−1 .A�DS(d)

= (S , Σ, δd, Init ,F)

– S = Init ∪ F ∪ S⊥ where
Init = {s}, F = {(x, c)||x| ≤ µX , 0 ≤ c ≤ µC}, and
S⊥ = {(x,⊥)||x| ≤ µX} where ⊥ is a special character, and c ∈ N, x ∈ Z.

– Σ = {(a, b) : 0 ≤ a, b ≤ µ} where a and b are integers.

– δd ⊂ S ×Σ × S is defined as follows:

1. Transitions from start state s:

i (s, (a, b), (x, c)) for all (x, c) ∈ F s.t. a+ x+ c = b and c 6= 0
ii (s, (a, b), (x,⊥)) for all (x,⊥) ∈ S⊥ s.t. a+ x = b

2. Transitions within S⊥: ((x,⊥), (a, b), (x′,⊥)) for all (x,⊥), (x′,⊥) ∈ S⊥,
if a+ x′ = b+ d · x

3. Transitions within F : ((x, c), (a, b), (x′, c′)) for all (x, c), (x′, c′) ∈ F
where c′ < d, if a+ x′ + c′ = b+ d · x

4. Transition between S⊥ and F : ((x,⊥), (a, b), (x′, c′)) for all (x,⊥) ∈ S⊥,
(x′, c′) ∈ F where 0 < c′ < d, if a+ x′ + c′ = b+ d · x

Theorem 5. The DS-comparator with maximum bound µ, is ω-regular for in-

teger discount-factors d > 1. Size of the discounted-sum comparator is O(µ
2

d ).

DS-comparator with non-strict inequality ≤ and equality = follow similarly.
Consequently, properties of ω-regular comparators hold for DS-comparator with
integer discount-factor. Specifically, DS-inclusion is PSPACE-complete in size of
the input weighted automata and DS-comparator. Since, size of DS-comparator
is polynomial w.r.t. to upper bound µ (in unary), DS-inclusion is PSPACE in size
of input weighted automata and µ. Not only does this bound improve upon the
previously known upper bound of EXPTIME but it also closes the gap between
upper and lower bounds for DS-inclusion.

Corollary 1. Given weighted automata P and Q, maximum weight on their
transitions µ in unary form and integer discount-factor d > 1, the DS-inclusion,
DS-strict-inclusion, and DS-equivalence problems are PSPACE-complete.
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As mentioned earlier, the known upper bound for discounted-sum inclusion with
integer discount-factor is exponential [6,10]. This bound is based on an expo-
nential determinization construction (subset construction) combined with arith-
metical reasoning. We observe that the determinization construction can be per-
formed on-the-fly in PSPACE. To perform, however, the arithmetical reasoning
on-the-fly in PSPACE would require essentially using the same bit-level ((x, c)-
state) techniques that we have used to construct DS-comparator automata.

5 Limit-average comparator

The limit-average of an infinite sequence M is the point of convergence of the
average of prefixes of M . Let Sum(M [0, n − 1]) denote the sum of the n-length
prefix of sequence M . The limit-average infimum, denoted by LimInfAvg(M), is
defined as lim infn→∞

1
n ·Sum(M [0, n−1]). Similarly, the limit-average supremum,

denoted by LimSupAvg(M), is defined as lim supn→∞
1
n · Sum(M [0, n− 1]). The

limit-average of sequence M , denoted by LimAvg(M), is defined only if the limit-
average infimum and limit-average supremum coincide, and then LimAvg(M) =
LimInfAvg(M) (= LimSupAvg(M)). Note that while limit-average infimum and
supremum exist for all bounded sequences, the limit-average may not.

In existing work, limit-average is defined as the limit-average infimum (or
limit-average supremum) to ensure that limit-average exists for all sequences [7,10,11,22].
While this definition is justified in context of the application, it may lead to a
misleading comparison in some cases. For example, consider sequence A s.t.
LimSupAvg(A) = 2 and LimInfAvg(A) = 0, and sequence B s.t. LimAvg(B) = 1.
Clearly, limit-average ofA does not exist. Suppose, LimAvg(A) = LimInfAvg(A) =
0, then LimAvg(A) < LimAvg(B), deluding that average of prefixes of A are al-
ways less than those of B in the limit. This is untrue since LimSupAvg(A) = 2.

Such inaccuracies in limit-average comparison may occur when the limit-
average of at least one sequence does not exist. However, it is not easy to distin-
guish sequences for which limit-average exists from those for which it doesn’t.

We define prefix-average comparison as a relaxation of limit-average compar-
ison. Prefix-average comparison coincides with limit-average comparison when
limit-average exists for both sequences. Otherwise, it determines whether even-
tually the average of prefixes of one sequence are greater than those of the other.
This comparison does not require the limit-average to exist to return intuitive
results. Further, we show that the prefix-average comparator is ω-context-free.

5.1 Limit-average language and comparison

Let Σ = {0, 1, . . . , µ} be a finite alphabet with µ > 0. The limit-average language
LLA contains the sequence (word) A ∈ Σω iff its limit-average exists. Suppose
LLA were ω-regular, then LLA =

⋃n
i=0 Ui · V ωi , where Ui, Vi ⊆ Σ∗ are regular

languages over finite words. The limit-average of sequences is determined by its
behavior in the limit, so limit-average of sequences in V ωi exists. Additionally,
the average of all (finite) words in Vi must be the same. If this were not the
case, then two words in Vi with unequal averages l1 and l2, can generate a word
w ∈ V ωi s.t the average of its prefixes oscillates between l1 and l2. This cannot
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occur, since limit-average of w exists. Let the average of sequences in Vi be ai,
then limit-average of sequences in V ωi and Ui ·V ωi is also ai. This is contradictory
since there are sequences with limit-average different from the ai (see appendix).
Similarly, since every ω-CFL is represented by

⋃n
i=1 Ui ·V ωi for CFLs Ui, Vi over

finite words [13], a similar argument proves that LLA is not ω-context-free.
Quantifiers ∃∞i and ∃f i denote the existence of infinitely many and only

finitely many indices i, respectively.

Theorem 6. LLA is neither an ω-regular nor an ω-context-free language.

In the next section, we will define prefix-average comparison as a relaxation
of limit-average comparison. To show how prefix-average comparison relates to
limit-average comparison, we will require the following two lemmas:

Lemma 4. Let A and B be sequences s.t. their limit average exists. If ∃∞i,Sum(A[0, i−
1]) ≥ Sum(B[0, i− 1]) then LimAvg(A) ≥ LimAvg(B).

Lemma 5. Let A, B be sequences s.t their limit-average exists. If LimAvg(A) >
LimAvg(B) then ∃f i,Sum(B[0, i− 1]) ≥ Sum(A[0, i− 1]) and ∃∞i,Sum(A[0, i−
1]) > Sum(B[0, i− 1]).

5.2 Prefix-average comparison and comparator

The previous section relates limit-average comparison with the sums of equal
length prefixes of the sequences (Lemma 4-5). The comparison criteria is based
on the number of times sum of prefix of one sequence is greater than the
other, which does not rely on the existence of limit-average. Unfortunately,
this criteria cannot be used for limit-average comparison since it is incomplete
(Lemma 5). Specifically, for sequences A and B with equal limit-average it is pos-
sible that ∃∞i,Sum(A[0, n− 1]) > Sum(B[0, n− 1]) and ∃∞i,Sum(B[0, n− 1]) >
Sum(A[0, n−1]). Instead, we use this criteria to define prefix-average comparison.
In this section, we define prefix-average comparison and explain how it relaxes
limit-average comparison. Lastly, we construct the prefix-average comparator,
and prove that it is not ω-regular but is ω-context-free.

Definition 7 (Prefix-average comparison). Let A and B be number se-
quences. We say PrefixAvg(A) ≥ PrefixAvg(B) if ∃f i,Sum(B[0, i−1]) ≥ Sum(A[0, i−
1]) and ∃∞i,Sum(A[0, i− 1]) > Sum(B[0, i− 1]).

Intuitively, prefix-average comparison states that PrefixAvg(A) ≥ PrefixAvg(B) if
eventually the sum of prefixes of A are always greater than those of B. We use ≥
since the average of prefixes may be equal when the difference between the sum
is small. It coincides with limit-average comparison when the limit-average exists
for both sequences. Definition7 and Lemma 4-5 relate limit-average comparison
and prefix-average comparison:

Corollary 2. When limit-average of A and B exists, then

– PrefixAvg(A) ≥ PrefixAvg(B) =⇒ LimAvg(A) ≥ LimAvg(B).
– LimAvg(A) > LimAvg(B) =⇒ PrefixAvg(A) ≥ PrefixAvg(B).
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Therefore, limit-average comparison and prefix-average comparison return the
same result on sequences for which limit-average exists. In addition, prefix-
average returns intuitive results when even when limit-average may not exist.
For example, suppose limit-average of A and B do not exist, but LimInfAvg(A) >
LimSupAvg(B), then PrefixAvg(A) ≥ PrefixAvg(B). Therefore, prefix-average
comparison relaxes limit-average comparison.

The rest of this section describes prefix-average comparator A�PA(·) , an au-
tomaton that accepts the pair (A,B) of sequences iff PrefixAvg(A) ≥ PrefixAvg(B).

Lemma 6. (Pumping Lemma for ω-regular language [2]) Let L be an ω-
regular language. There exists p ∈ N such that, for each w = u1w1u2w2 · · · ∈ L
such that |wi| ≥ p for all i, there are sequences of finite words (xi)i∈N, (yi)i∈N,
(zi)i∈N s.t., for all i, wi = xiyizi, |xiyi| ≤ p and |yi| > 0 and for every sequence
of pumping factors (ji)i∈N ∈ N, the pumped word u1x1y

j1
1 z1u2x2y

j2
2 z2 · · · ∈ L.

Theorem 7. The prefix-average comparator is not ω-regular.

Proof (Proof Sketch). We use Lemma 6 to prove that A�PA(·) is not ω-regular.

SupposeA�PA(·) were ω-regular. For p > 0 ∈ N, let w = (A,B) = ((0, 1)p(1, 0)2p)ω.
The segment (0, 1)∗ can be pumped s.t the resulting word is no longer in L�PA(·) .

Concretely, A = (0p12p)ω, B = (1p02p)ω, LimAvg(A) = 2
3 , LimAvg(B) = 1

3 .
So, w = (A,B) ∈ A�PA(·) . Select as factor wi (from Lemma 6) the sequence

(0, 1)p. Pump each yi enough times so that the resulting word is ŵ = (Â, B̂) =
((0, 1)mi(1, 0)2p)ω where mi > 4p. It is easy to show that ŵ = (Â, B̂) /∈ L�PA(·) .

We discuss key ideas and sketch the construction of the prefix average compara-
tor. The term prefix-sum difference at i indicates Sum(A[0, i−1])−Sum(B[0, i−
1]), i.e. the difference between sum of i-length prefix of A and B.

Key ideas For sequences A and B to satisfy PrefixAvg(A) ≥ PrefixAvg(B),
∃f i,Sum(B[0, i−1]) ≥ Sum(A[0, i−1]) and ∃∞i,Sum(A[0, i−1]) > Sum(B[0, i−
1]). This occurs iff there exists an index N s.t. for all indices i > N , Sum(A[0, i−
1]) − Sum(B[0, i − 1]) > 0. While reading a word, the prefix-sum difference is
maintained by states and the stack of ω-PDA: states maintain whether it is
negative or positive, while number of tokens in the stack equals its absolute
value. The automaton non-deterministically guesses the aforementioned indexN ,
beyond which the automaton ensure that prefix-sum difference remains positive.

Construction sketch The push-down comparator A�PA(·) consists of three
states: (i) State sP and (ii) State sN that indicate that the prefix-sum difference
is greater than zero and or not respectively, (iii) accepting state sF . An execution
of (A,B) begins in state sN with an empty stack. On reading letter (a, b), the
stack pops or pushes |(a − b)| tokens from the stack depending on the current
state of the execution. From state sP , the stack pushes tokens if (a − b) > 0,
and pops otherwise. The opposite occurs in state sN . State transition between
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sN and sP occurs only if the stack action is to pop but the stack consists of
k < |a − b| tokens. In this case, stack is emptied, state transition is performed
and |a − b| − k tokens are pushed into the stack. For an execution of (A,B) to
be an accepting run, the automaton non-deterministically transitions into state
sF . State sF acts similar to state sP except that execution is terminated if there
aren’t enough tokens to pop out of the stack. A�PA(·) accepts by accepting state.

To see why the construction is correct, it is sufficient to prove that at each in-
dex i, the number of tokens in the stack is equal to |Sum(A[0, i−1])−Sum(B[0, i−
1])|. Furthermore, in state sN , Sum(A[0, i − 1]) − Sum(B[0, i − 1]) ≤ 0, and in
state sP and sF , Sum(A[0, i − 1]) − Sum(B[0, i − 1]) > 0. Next, the index at
which the automaton transitions to the accepting state sF coincides with index
N . The execution is accepted if it has an infinite execution in state sF , which
allows transitions only if Sum(A[0, i− 1])− Sum(B[0, i− 1]) > 0.

Theorem 8. The prefix-average comparator is an ω-CFL.

While ω-CFL can be easily expressed, they do not possess closure properties,
and problems on ω-CFL are easily undecidable. Hence, the application of ω-
context-free comparator will require further investigation.

6 Conclusion

In this paper, we identified a novel mode for comparison in quantitative systems:
the online comparison of aggregate values of sequences of quantitative weights.
This notion is embodied by comparators automata that read two infinite se-
quences of weights synchronously and relate their aggregate values. We showed
that ω-regular comparators not only yield generic algorithms for problems in-
cluding quantitative inclusion and winning strategies in incomplete-information
quantitative games, they also result in algorithmic advances. We show that
the discounted-sum inclusion problem is PSAPCE-complete for integer discount-
factor, hence closing a complexity gap. We also studied the discounted-sum and
prefix-average comparator, which are ω-regular and ω-context-free, respectively.

We believe comparators, especially ω-regular comparators, can be of signif-
icant utility in verification and synthesis of quantitative systems, as demon-
strated by the existence of finite-representation of counterexamples of the quan-
titative inclusion problem. Another potential application is computing equilibria
in quantitative games. Applications of the prefix-average comparator, in general
ω-context-free comparators, is open to further investigation. Another direction
to pursue is to study aggregate functions in more detail, and develop a clearer
understanding of when aggregate functions are ω-regular.
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A Limit supremum comparator

Lemma 1. Let A and B be non-negative integer sequences bounded by µ.
Büchi automaton Ak (Fig. 1) accepts (A,B) iff LimSup(A) = k, and LimSup(A) ≥

LimSup(B).

Proof. For any integer sequence A, the limsup refers to the maximum integer
that occurs infinitely often in A. Hence if LimSup(A) = k, then integers greater
than k can occur only a finite number of times in A. Let lA denote the index of
the last occurrence of any integer greater than k in A.

Following the above argument, for integer sequencesA andB, when LimSup(A) =
k, and LimSup(A) ≥ LimSup(B), beyond index l = max (lA, lB), integers greater
than k will not occur. Büchi automaton Ak (Fig. 1) non-deterministically de-
termines l. On reading the l-th element of input word (A,B), the run of (A,B)
exits the start state s and shifts to accepting state fk. Note that all runs be-
ginning at state fk occur on alphabet (a, b) where a, b ≤ k. Therefore, (A,B)
can continue its infinite run even after transitioning to fk. To ensure that this
is an accepting run, the run must visit accepting state fk infinitely often. But
this must be the case, since k occurs infinitely often in A, and all transitions on
(k, b), for all b ≤ k, transition into state fk. Hence, for all integer sequences A,B
bounded by µ, if LimSup(A) = k, and LimSup(A) ≥ LimSup(B), the automaton
accepts (A,B).

On the other hand, if a run of (A,B) is accepted by the automaton, then the
run must have visited state fk infinitely often. Since all incoming transitions to
state fk occur on the alphabet (k, b) for some integer b, k must occur infinitely
often in A. Furthermore, if a run visits state fk once, it only visits state fk and sk
thereon. All transitions from these states occur on alphabet (a, b) where a, b ≤ k.
Therefore, all infinitely occurring digits in A and B must be less than or equal
to k. With these two observations, we infer that if (A,B) has an accepting run,
then LimSup(A) = k, and LimSup(A) ≥ LimSup(B).

A.1 Construction of limsup comparator

Suppose all sequences are natural number sequences, bounded by µ. The limsup
comparator is the Büchi automaton A�LS = (S , Σ, δ, Init ,F) where

– S = {s} ∪ {s0, s1 . . . , sµ} ∪ {f0, f1 . . . , fµ}
– Σ = {(a, b) : 0 ≤ a, b ≤ µ} where a and b are integers.
– δ ⊆ S ×Σ × S is defined as follows:

1. Transitions from start state s: (s, (a, b), p) for all (a, b) ∈ Σ, and for all
p ∈ {s} ∪ {f0, f1, . . . , fµ}.

2. Transitions between fk and sk for each k:
i (fk, α, fk) for α ∈ {k} × {0, 1, . . . k}.

ii (fk, α, sk) for α ∈ {0, 1, . . . k − 1} × {0, 1, . . . k}.
iii (sk, α, sk) for α ∈ {0, 1, . . . k − 1} × {0, 1, . . . k}.
iv (sk, α, fk) for α ∈ {k} × {0, 1, . . . k}.

– Init = {s}
– F = {f0, f1 . . . , fµ}
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B Quantitative Inclusion for ω-regular aggregate functions

In this section, we prove that InclusionReg(P,Q,Af ) (Algorithm 1 ) returns True
iff P ⊆f Q.

Lemma 2. Büchi automaton Dim consists of all diminished runs of weighted
automata P .

In other words, if ρ is a diminished run in P on word w0w1 . . . with weight
sequence n0n1 . . . , then ρ̂ = (w0, n0, l0)(w1, n1, l1) . . . is a word in Dim where
l0l1 . . . is a unique identifier for the run in P .

Proof. Let Af be the comparator for ω-regular aggregate function f s.t. Af
accepts (A,B) iff f(A) ≤ f(B).

A run ρ over word w with weight sequence wt in P (or Q) is represented by
the unique word ρ̂ = (w,wt, l) in P̂ (or Q̂) where l is the unique label sequence
associated with each run in P (or Q). Since every label on each transition is
separate, P̂ and Q̂ are deterministic automata. Now, P̂ × Q̂ is constructed by
ensuring that two transitions are combined in the product only if their alphabet
is the same. Therefore if (ρ̂, σ̂) ∈ P̂ × Q̂, then ρ ∈ P , σ ∈ Q and word on ρ
and σ in P and Q respectively is the same. Next, P̂ × Q̂ is intersected over the
weight sequences with Af . Since Af accepts (A,B) iff f(A) ≤ f(B), (ρ̂, σ̂) ∈
P̂ ×Q̂∩∗Af iff weight sequence of ρ and σ, wtρ and wtσ respectively, are related
as f(wtρ) ≤ f(wtσ). Therefore runs ρ in P and σ in Q are runs on the same
word s.t. aggregate weight in P is less than or equal to that of σ in Q. Therefore
Dim constitutes of these ρ̂.

Therefore Dim consists of ρ̂ only if ρ is a diminished run in P .
Every step of the algorithm has a two-way implication, hence t is also true

that every diminished run of P is present in Dim.

Lemma 3. Given weighted automata P and Q with an ω-regular aggregate func-
tion.

InclusionReg(P,Q,Af ) (Algorithm 1 ) returns True iff P ⊆f Q.

Proof. P̂ consists of all runs of P . Dim consists of all diminished runs of P .
P ⊆f Q iff every run of P is a diminished run. Therefore the solution to the

quantitative inclusion problem is given by whether P̂ ≡ Dim, where ≡ denotes
qualitative equivalence.

B.1 Finite-state representation for Counterexample automata

Counterexample automata We refer to the counterexample automata by
NotDim here. The key idea is to construct a Büchi automaton for (i) all runs of
weighted ω-automata P that are not diminished runs. (ii) words (qualitatively)
contained in P that are not (qualitatively) contained in Q. These ideas are
expanded below:

1. Recall from Algorithm 1, word ρ̂ is contained in Dim iff ρ is a diminished run
in weighted automaton P . From Büchi automaton P̂ and Dim we construct
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the immediate automaton I = P̂ \ Dim (qualitative setminus). Automaton
I contains ρ̂ iff ρ is not a diminished run in P .
Counterexamples are extracted from I by simply converting every transition
τ̂ = (s, (a,wt, l), t) in I to transition τ : (s, (a,wt), t) in NotDim.
It is easy to prove that Büchi automaton NotDim accepts (w,A) if it is a
counterexample of the quantitative inclusion problem P ⊆f Q where f is an
ω-regular aggregate function.

2. The other counterexamples are computed as P \Q (qualitative setminus).

Büchi automaton CounterExample = NotDim ∪ (P \Q) contains all counterex-
amples of quantitative inclusion for ω-regular aggregate function f .

C Discounted Sum Comparator

Theorem 1. There does not exist an ω-regular discounted-sum comparator for
non-integer discount-factor 1 < d < 2.

Proof. For discounted-sum automaton A with discount factor d, the cut-point
language of A with w.r.t. r ∈ R is defined as L≥r = {w ∈ L(A)|DS(w, d) ≥ r}.

It has been shown that for all deterministic discounted-sum automata with
discount factor 1 < d < 2, the cut-point language L≥1 cannot be ω-regular [9]. .

If suppose there exists an ω-regular comparator Ad for rational discount
factor 1 < d < 2, then the cut-point language L≥1 of deterministic disocunted-
sum automata A can be constructed by taking product of A× (1, 0, 0 . . . ), and
then intersection withAd. Since all actions are closed under ω-regular operations,
L≥1 can be represented with a Büchi automata.

This contradicts the result about ω-regularity of cut-point languages [9]. .

Theorem 2. Let d > 1 be a positive integer discount-factor, and µ ∈ Z+. There
exists a Büchi automaton A�DS(d)

such that (A,B) ∈ A�DS(d)
if and only if

DS (A, d) > DS (B, d) for all non-negative integer sequences A and B bounded
by µ.

We provide a construction for A�DS(d)
. We show that (A,B) is accepted by

A�DS(d)
if and only if DS (A, d) > DS (B, d).

Take µC = µ · d
d−1 and µX = 1 + µ

d−1 . A�DS(d)
= (S , Σ, δd, Init ,F) where

– S = {s} ∪ F ∪ S0 where F = {(x, c)||x| ≤ µX , 0 ≤ c ≤ µC}, and S0 =
{(x,⊥)||x| ≤ µX} where x and c integers.

– Σ = {(a, b) : 0 ≤ a, b ≤ µ} where a and b are integers.
– δd is defined as follows:

1. Transitions from start state s

(a) s
(a,b)−−−→ x for all (x,⊥) ∈ S0 s.t. b+ x = a

(b) s
(a,b)−−−→ (x, c) for all (x, c) ∈ F s.t. b+ x+ c = a and c 6= 0.

2. Transitions within S0: (x,⊥)
(a,b)−−−→ (x′,⊥) for all (x′,⊥) ∈ S0, if b+x′ =

a+ d · x
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3. Transitions within F : (x, c)
(a,b)−−−→ (x′, c′) for all (x′, c′) ∈ F where c′ < d,

if b+ x′ + c′ = a+ d · x
4. Transition between S0 and F : (x,⊥)

(a,b)−−−→ (x′, c′) for all (x′, c′) ∈ F
where 0 < c′ < d, if b+ x′ + c′ = a+ d · x

– Init = {s}
– F = F .

C.1 (A,B) has accepting run =⇒ DS (A, d) > DS (B, d)

Lemma 4. Let A,B,C,X be the number sequences, d => 1 be a positive integer
such that following invariant holds true:

1. When i = 0, A[0] = B[0] +X[0] + C[0]
2. When i ≥ 1, A[i] + d ·X[i− 1] = B[i] +X[i] + C[i].

Then DS (A, d) = DS (B, d) + DS (C, d).

Proof. DS (B, d)+DS (C, d) = Σ∞i=0B[i] 1
di +Σ∞i=0C[i] 1

di = Σ∞i=0(B[i]+C[i]) 1
di =

(A[0]−X[0]) +Σ∞i=1(A[i] +d ·X[i−1]−X[i]) 1
di = (A[0]−X[0]) +Σ∞i=1(A[i] +d ·

X[i−1]−X[i]) 1
di = Σ∞i=0A[i]· 1di−Σ

∞
i=0X[i]+Σ∞i=0X[i] = Σ∞i=0A[i]· 1di = DS (A, d)

Lemma 5. For every infinite run of (A,B) in A�DS(d)
, we can construct se-

quence C, s.t sequences DS (A, d) = DS (B, d) + DS (C, d).

Proof. Define functions XVal and CVal : S 7→ Z where S is the set of all states
in A�DS(d)

as follows:

CVal(state) =


0 if state = s ∈ Init

c if state = (x, c) ∈ F
0 if state = (x,⊥) ∈ S0

XVal(state) =


0 if state = s ∈ Init

x if state = (x, c) ∈ F
x if state = (x,⊥) ∈ S0

Consider an infinite run of word (A,B) in A�DS(d)
. Let {statei}i be the se-

quence of states visited by this run. Construct sequences C and X s.t. C[i] =
CVal(statei+1) and X[i] = XVal(statei+1).

When i = 0, then either X[0] and C[0] derive their values from either (x, c) ∈
F , or from (x,⊥) ∈ S0. We consider the cases separately below:

1. From (x, c) ∈ F : In this case, the 0-th transition is s
(a,b)−−−→ (x, c). From

construction, we know that b+x+c = a. Since, A[0] = a, B[0] = b, C[0] = c,
and X[0] = x, we have B[0] +X[0] + C[0] = A[0].

2. From (x,⊥) ∈ S0: In this case, the 0-th transition is s
(a,b)−−−→ (x,⊥). From

construction, we know that b + x = a. Since, A[0] = a, B[0] = b, C[0] = 0,
and X[0] = x, we have B[0] +X[0] + C[0] = A[0].
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Therefore, in either case, the first condition on Lemma 4 is satisfied.
For i ≥ 1, transitions are either within S0, or within F , or from S0 to F . We

will consider each of these cases separately:

1. Within S0: Transitions are of the form (x,⊥)
(a,b)−−−→ (x′,⊥) where b + x′ =

a + d · x. Suppose this is the i-th transition in a run (for i ≥ 1). In this
case, A[i] = a, B[i] = b, C[i] = CVal(x′) = 0, X[i] = XVal(x′) = x′, and
X[i− 1] = XVal(x) = x. So, A[i] + d ·X[i− 1] = B[i] +X[i] + C[i].

2. Within F : Transitions are of the form of (x, c)
(a,b)−−−→ (x′, c′). Suppose this

is the ith transition in a run (for i ≥ 1). From construction we know that
b + x′ + c′ = a + d · x. Here A[i] = a, B[i] = b, C[i] = c, X[i] = x, and
X[i− 1] = x′. Therefore, A[i] + d ·X[i− 1] = B[i] +X[i] + C[i].

3. From S0 to F : Transitions are of the form (x,⊥)
(a,b)−−−→ (x′, c′) s.t. b+x′+c′ =

a+d·x. Suppose this is the i-th transition, then A[i] = a, B[i] = b, X[i−1] =
x, X[i] = x′, C[i] = c′. Therefore, A[i] + d ·X[i− 1] = B[i] +X[i] + C[i].

In each of these cases, when i ≥ 1, the second condition in Lemma 4 is satisfied.
Together we see that, for any infinite run of (A,B), we can construct se-

quences C and X, s.t. using Lemma 4 we can prove that DS (A, d) = DS (B, d)+
DS (C, d).

Lemma 6. For every accepting run of (A,B) in A�DS(d)
, DS (C, d) > 0.

Proof. For a run to be accepting in A�DS(d)
, it must visit at least one state in F

infinitely often. Note that once a run visits a state in F , it only visits states in
F since there are no transitions out of F . Since there are finitely many F , the
sufficient condition for a state to be accepting is that a run must enter F . There

are two ways of entering F , either via s
(a,b)−−−→ (x, c) or via (x,⊥)

(a,b)−−−→ (x′, c′).
Suppose this is the i-th transition in the accepting run, then C[i] 6= 0. Also, we
know that for all j, C[j] ≥ 0. Hence, DS (C, d) ≥ C[i] > 0.

Corollary 1. For all accepting runs of (A,B) in A�DS(d)
, DS (A, d) > DS (B, d).

Proof. From Lemma 5, and Lemma 6, it is clear that for all accepting runs of
(A,B) in A�DS(d)

, DS (A, d) > DS (B, d).

C.2 DS (A, d) > DS (B, d) =⇒ (A,B) has an accepting run

We want to show that for non-negative bounded sequences A, B s.t. DS (A, d) ≥
DS (B, d), there exists an infinite run of (A,B) in A�DS(d)

. For the rest of this

section, we will let A and B be bounded by µ. Let DS−(A,B, d, i) = Σi
j=0(A[j]−

B[j]) · 1
dj . Also, we let DS−(A,B, d, ·) = Σ∞j=0(A[j] − B[j]) · 1

dj = DS (A, d) −
DS (B, d). Define µC = µ · d

d−1 , µX = 1 + µ
d−1 .

We define the residual function Res : N ∪ {0} 7→ R as follows:

Res(i) =

{
DS−(A,B, d, ·)− bDS−(A,B, d, ·)c if i = 0

Res(i− 1)− bRes(i− 1) · dic · 1
di otherwise
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Accordingly, we define function C : N ∪ {0} 7→ Z as follows:

C(i) =

{
bDS−(A,B, d, ·)c if i = 0

bRes(i− 1) · dic otherwise

Intuitively, C(i) is computed by stripping off the value of the i-th digit in a
representation of DS−(A,B, d, ·) in base d. C(i) denotes the numerical value
of the i-th position of the difference between A and B. The residual function
denotes the numerical value of the difference remaining after assigning the value
of C(i) until that i.

We define, CSum(i) = Σi
j=0C(i) · 1

dj .

Lastly, we define X : N∪{0} 7→ R s.t X(i) = (DS−(A,B, d, i)−CSum(i)) ·di.

Lemma 7. For all i ≥ 0, Res(i) = DS−(A,B, d, ·)− CSum(i).

Proof. Proof by simple induction on the definitions of functions Res and C.

Lemma 8. When DS−(A,B, d, ·) ≥ 0, for all i ≥ 0, 0 ≤ Res(i) < 1
di .

Proof. Since, DS−(A,B, d, ·) ≥ 0, Res(0) = DS−(A,B, d, ·)−bDS−(A,B, d, ·)c ≥
0 and Res(0) = DS−(A,B, d, ·) − bDS−(A,B, d, ·)c < 1 . Specifically, 0 ≤
Res(0) < 1.

Suppose for all i ≤ k, 0 ≤ Res(i) < 1
di . We show this is true even for k + 1.

Since Res(k) ≥ 0, Res(k) · dk+1 ≥ 0. Let Res(k) · dk+1 = x + f , for integral
x ≥ 0, and fractional 0 ≤ f < 1. Then, from definition of Res, we get Res(k+1) =
x+f
dk+1 − x

dk+1 =⇒ Res(k + 1) < 1
dk+1 .

Also, Res(k + 1) ≥ 0 since a− bac/ ≥ 0 for all positive values of a.

Lemma 9. When DS−(A,B, d, ·) ≥ 0, for i = 0, 0 ≤ C(0) ≤ µC , and for i ≥ 1,
0 ≤ C(i) < d.

Proof. Since both A and B are non-negative bounded number sequences, max-
imum value of DS−(A,B, d, ·) is when A = {µ}i and B = {0}i. In this case
DS−(A,B, d, ·) = µC . Therefore, 0 ≤ C(0) ≤ µC .

From Lemma 8, we know that for all i, 0 ≤ Res(i) < 1
di . Alternately, when

i ≥ 1, 0 ≤ Res(i − 1) < 1
di−1 =⇒ 0 ≤ Res(i − 1) · di < 1

di−1 · di =⇒ 0 ≤
Res(i− 1) · di < d =⇒ 0 ≤ bRes(i− 1) · dic < d =⇒ 0 ≤ C(i) < d.

Corollary 2. When DS−(A,B, d, ·) ≥ 0, Range(C) is finite.

Proof. From definition of C, we know that C(0) takes integral values only. Fur-
ther, from Lemma 9, we know that C(0) is bounded. Hence, C(0) takes finitely
many values.

For i > 0, from definiton of C it is clear that C(i) is an integer. Lemma 9
shows that each C(i) is bounded by a fixed constant. Hence there are finitely
many values of C(i) for all other values of i.

Together, the above two show that Range(C) is finite.
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Lemma 10. When DS−(A,B, d, ·) ≥ 0, then for all i ≥ 0, |X(i)| ≤ µX .

Proof. From definition of X, we know that X(i) = (DS−(A,B, d, i)−CSum(i)) ·
di =⇒ X(i) · 1

di = DS−(A,B, d, i) − CSum(i). From Lemma 7 we get X(i) ·
1
di = DS−(A,B, d, i) − (DS−(A,B, d, ·) − Res(i)) =⇒ X(i) · 1

di = Res(i) −
(DS−(A,B, d, ·) − DS−(A,B, d, i)) =⇒ X(i) · 1

di = Res(i) − (Σ∞j=i+1(A[j] −
B[j])· 1dj ) =⇒ |X(i)· 1di | ≤ |Res(i)|+|(Σ∞j=i+1(A[j]−B[j])· 1dj )| =⇒ |X(i)· 1di | ≤
|Res(i)| + 1

di+1 · |(Σ∞j=0(A[j + i + 1] − B[j + i + 1]) · 1
dj )| =⇒ |X(i) · 1

di | ≤
|Res(i)|+ 1

di+1 ·|µC |. From Lemma 8, this implies |X(i)· 1di | ≤
1
di + 1

di+1 ·|µC | =⇒
|X(i)| ≤ 1 + 1

d · |µC | =⇒ |X(i)| ≤ 1 + µ
d−1 =⇒ |X(i)| ≤ µX

Corollary 3. When DS−(A,B, d, ·) ≥ 0, Range(X) is finite.

Proof. From expanding X(i), we see that each X(i) is an integer. Since X(i) is
bounded (see Lemma 10), this proves that Range(X) is finite.

We overload notation, and define number sequences C and X s.t. for all i ≥ 0,
C[i] = C(i) and X[i] = X(i).

Lemma 11. When DS−(A,B, d, ·) ≥ 0, then A, B, C and X satisfy the follow-
ing invariant

1. A[0] = B[0] + C[0] +X[0]
2. For i ≥ 1, A[i] + d ·X[i− 1] = B[i] + C[i] +X[i]

Proof. We prove this by induction on i using definition of function X.
When i = 0, then X[0] = X(0) = DS−(A,B, d, 0) − CSum(0) =⇒ X[0] =

A[0]−B[0]− C[0] =⇒ A[0] = B[0] + C[0] +X[0].
When i = 1, then X[1] = X(1) = (DS−(A,B, d, 1)−CSum(1)) · d = (A[0] +

A[1] · 1
d − (B[0] + B[1] · 1

d ) − (C[0] + C[1] · 1
d )) · d =⇒ X[1] = A[0] · d +

A[1] − (B[0] · d + B[1]) − (C[0] · d + C[1]). From the above we obtain X[1] =
d ·X[0] +A[1]−B[1]− C[1] =⇒ A[1] + d ·X[0] = B[1] + C[1] +X[1].

Suppose the invariant holds true for all i ≤ n, we show that it is true for
n+ 1. X[n+ 1] = (DS−(A,B, d, n+ 1)−CSum(n+ 1)) · dn+1 =⇒ X[n+ 1] =
(DS−(A,B, d, n) − CSum(n)) · dn+1 + (A[n + 1] − B[n + 1] − C[n + 1]) =⇒
X[n+ 1] = X[n] · d+A[n+ 1]−B[n+ 1]−C[n+ 1] =⇒ A[n+ 1] +X[n] · d =
B[n+ 1] + C[n+ 1] +X[n+ 1].

We construct state sequence S = {s}i as follows: Suppose j ≥ 0 is the first
instance where C[j] > 0

si =


s if i = 0

(X[i− 1],⊥) if 0 < i ≤ j
(X[i− 1], C[i− 1]) if i > j

Lemma 12. When DS−(A,B, d, ·) ≥ 0, then S is a valid run of (A,B) in
A�DS(d)

.
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Proof. This is straight forward from Lemma 11 and construction of A�DS(d)
.

Note that the construction makes use of finiteness of Range(C) (See Corollary 2)
and Range(X) (See Corollary 3)

Corollary 4. Let A and B be two non-zero bounded (by µ) integer sequences.
Suppose DS (A, d) > DS (B, d), then (A,B) has an accepting run in A�DS(d)

.

Proof. For the given sequences A and B, generate sequences C and X as defined
by functions C and X respectively. Then from Lemma 4 and Lemma 11, we know
that DS (C, d) > 0. Since 0 ≤ C[i], there exists at least on i where C[i] 6= 0. Let
j be the first such index. Then from S we see that the state run moves into
states in F in the j-th transition, and remains in F thereon. Therefore this run
an accepting run for (A,B) in A�DS(d)

.

Theorem 2. Let d be a positive integer, and µ ∈ Z+. There exists a Büchi au-
tomaton A�DS(d)

such that (A,B) ∈ A�DS(d)
if and only if DS (A, d) > DS (B, d)

for all non-negative integer sequences A and B bounded by µ.

Proof. Immediate from Corollary 1 and Corollary 4.

D Limit Average Comparator

Lemma 13. Let Σ = {0, 1 . . . µ}. Let L ∈ Σ∗ s.t. the limit-average of all words
in the language Lω exists. Then average of all words in L is the same.

Proof. Suppose it is possible that two finite words v1, v2 ∈ L have different
average. Let their length be l1 and l2 respectively with the average a1 and a2
respectively where a1 6= a2. We will show the presence of a word w ∈ Lω s.t. the
limit-average of w does not exist.

Let w1 = v1. Then Avg(w1) = a1. Next, let j2 be large enough to construct
w2 = wiv

j2
2 such that Avg(w2) ≈ a2. Next, let j3 be large enough to construct

w3 = w2v
j3
1 such that Avg(w3) ≈ a1. Continue constructing w4, w5 . . . in a

similar fashoin s.t. their average change between a2, a1 . . . respectively.
Let these w = wn as n → ∞. Then w ∈ Lω, and since the average of its

finite-length prefixes keeps changing between a1 and a2, limit-average of w does
not exist.

This contradicts the premise that the limit-average of all words in Lω exists.
Therefore, our assumption that words v1 and v2 can have different average has
been contradicted.

Lemma 14. Let Σ = {0, 1, . . . µ}. Let L ⊆ Σ∗ s.t. the average of all words in
Σ is the same, say a.

Let w ∈ Lω s.t. limit-average of w exists. Then LimAvg(w) = a

Proof. Let w = w1w2w3 . . . . There exists infinitely many prefixes of w, prefix
w[i] = w1w2 . . . wi s.t. Avg(w[i]) = a.

Since we are given that the limit-average of w exists, it must be equal to a.
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Lemma 15. Let Σ = {0, 1 . . . , µ}. Let LLA ⊆ Σω.
LLA is not an ω-regular language.

Proof. Let us assume that the language LLA is ω-regular. Then there exists a
finite number n s.t. LLA =

⋃n
i=0 Ui · V ωi , where Ui and Vi ∈ Σ∗ are regular

languages over finite words.
For all i ∈ {0, 1, . . . n}, the limit-average of any word in Ui · V ωi is given by

the suffix of the word in V ωi . Since Ui · V ωi ⊆ LLA, limit-average exists for all
words in Ui · V ωi . Therefore, limit-average of all words in V ωi must exist. From
Lemma 13, we conclude that the average of all word in Vi must be the same.
Furthermore, from Lemma 14, we know that the limit-average of all words in
V ωi must be the same, say LimAvg(w) = ai for all w ∈ V ωi .

Then the limit-average of all words in LLA is one of a0, a1 . . . an. Let a = p
q

s.t p < q, snd a 6= ai for i ∈ {0, 1, . . . , µ}. Consider the word w = (1p0q−p)ω.
It is easy to see the LimAvg(w) = a. However, this word is not present in LLA
since the limit-average of all words in LLA is equal to a0 or a1 . . . or an.

Therefore, our assumption that LLA is an ω-regular language has been con-
tradicted.

Lemma 16. Let Σ = {0, 1 . . . , µ}. Let LLA ⊆ Σω.
LLA is not an ω-context-free language.

Proof. Every ω-context-free language can be written in the form of
⋃n
i=0 Ui ·V ωi

where Ui and Vi are context-free languages over finite words.
The rest of this proof is similar to that of Lemma 15.

Lemma 17. Let A, B be sequences s.t their limit average exists.
If LimAvg(A) > LimAvg(B) then ∃f i,Sum(B[0, i− 1]) ≥ Sum(A[0, i− 1]) and

∃∞i,Sum(A[0, i− 1]) > Sum(B[0, i− 1])

Proof. Let the limit average of sequence A, B be a, b respectively. Since the limit
average of A and B exists, for every ε > 0, there exists Nε s.t. for all n > Nε ,
|Avg(A[0, n− 1])− a| < ε and |Avg(B[0, n− 1])− b| < ε.

Let a− b = k > 0.
Take ε = k

4 . Then for all n > N k
4
, since |Avg(A[0, n−1])−a| < ε, |Avg(B[0, n−

1])− b| < ε and that a− b = k > 0, Avg(A[0, n− 1])−Avg(B[0, n− 1]) > k
2 =⇒

Sum(A[0,n−1])
n − Sum(B[0,n−1])

n > k
2 =⇒ Sum(A[0, n− 1])− Sum(B[0, n− 1]) > 0.

Specifically, ∃∞i,Sum(A[0, i − 1]) > Sum(B[0, i − 1]). Furthermore, since
there is no index greater than N k

4
where Sum(A[0, n − 1]) ≤ Sum(B[0, n − 1]),

∃f i,Sum(B[0, i− 1]) ≥ Sum(A[0, i− 1]).

Lemma 18. Let A and B be sequences s.t. their limit average exists. If ∃∞i,Sum(A[0, i−
1]) > Sum(B[0, i−1]) (or ∃∞i,Sum(A[0, i−1] ≥ Sum(B[0, i−1]))) then LimAvg(A) ≥
LimAvg(B) .

Proof. Let the limit-average of sequence A, B be La, Lb respectively. Since, the
limit average of both A and B exists, for every ε > 0, there exists Nε s.t. for all
n > Nε , |Avg(A[1, n])− La| < ε and |Avg(B[1, n])− Lb| < ε.
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Suppose it were possible that LimAvg(A) < LimAvg(B). Suppose Lb − La =
k > 0. Let ε = k

4 . By arguing as in Lemma 17, it must be the case that for all
n > N k

4
, Sum(B[1, n])− Sum(A[1, n]) > 0. But this is not possible, since we are

given that ∃∞i,Sum(A[0, i − 1]) > Sum(B[0, i − 1]) (or ∃∞i,Sum(A[0, i − 1] ≥
Sum(B[0, i− 1]))). Hence LimAvg(A) ≥ LimAvg(B).

Lemma 19. For sequences A and B, if LimSupAvg(A) > LimSupAvg(B) >
LimInfAvg(B) > LimInfAvg(A) then A and B exhibit oscillatory behavior.

Proof. Let LimInfAvg(A), LimSupAvg(A), LimInfAvg(B), and LimSupAvg(B) be
denoted by ai, as, bi, and bs respectively.

For all ε > 0 there exists an Nε s.t. |Sum(A[1,Nε])
Nε

− as| < ε, and Sum(B[1,Nε])
Nε

<

bs+ε. Let as−bs = ks > 0. Take ε = ks
2 . Then Sum(A[1, Nks ]) > Sum(B[1, Nks ]) >

0. Arguing similarly for LimInfAvg(A) and LimInfAvg(B), there exists Nki where
Sum(B[1, Nki ]) > Sum(A[1, Nki ]) > 0.

Let N = max{Nks , Nki}. Note that A[N . . . ] and B[N . . . ] have the same
values for limit average infimum and limit average supremum. Repeated the ear-
lier process to detect appropriate Nks and Nki as before, and truncate A[N . . . ]
and B[N, . . . ] further.

This way one can obtain infinitely many indexes where Sum(A[1, i]) > Sum(B[1, i]) >
0 and infinitely many indexes where Sum(B[1, i]) > Sum(A[1, i]) > 0.

Hence, we have proven that A and B exhibit oscillatory behavior.

E Prefix Average Comparison

Lemma 20. For sequences A and B, if LimInfAvg(A) > LimSupAvg(B) then
PrefixAvg(A) ≥ PrefixAvg(B).

Proof (Proof Sketch). Let LimInfAvg(A) and LimSupAvg(B) be a and b respec-

tively. For all ε > 0 there exists an Nε s.t for all n > Nε,
Sum(A[1,n])

n > a − ε,
and Sum(B[1,n])

n < b+ ε. Let a− b = k > 0. Take ε = k
4 . Replicate the argument

from Lemma 17 to show that there can exist only finitely many indexes i where
Sum(B[0, i− 1]) ≥ Sum(A[0, i− 1]). Similarly, show there exists infinitely many
prefixes where Sum(A[0, i− 1]) > Sum(B[0, i− 1])

F Prefix Average Comparator

Construction We provide a sketch of the construction of the Büchi push-down
autoamaton A�PA(·) , and then prove that it corresponds to the prefix average
comparator.

Let µ be the bound on sequences. Then Σ = {0, 1, . . . , n} is the alphabet of
sequences. Let A�PA(·) = (S , Σ ×Σ,Γ, δ, s0, Z0) where:

– S = {sN , sP , sF } is the set of states of the automaton.
– Σ ×Σ is the alphabet of the language.
– Γ = {Z0, α} is the push down alphabet.
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– s0 = sN is the start state of the push down automata.
– Z0 is the start symbol of the stack.
– sF is the accepting state of the automaton. Automaton A�LA(·) accepts

words by final state.
– Here we give a sketch of the behavior of the transition function δ.

• When A�LA(·) is in configuration (sP , τ) for τ ∈ Γ , push a number of
α-s into the stack.
Next, pop b number of α-s. If after popping k α-s where k < b, the
PDA’s configuration becomes (sP , Z0), then first move to state (sN , Z0)
and then resume with pushing b− k α-s into the stack.

• When A�LA(·) is in configuration (sN , τ) for τ ∈ Γ , push b number of
α-s into the stack
Next, pop a number of α-s. If after popping k α-s where k < a, the
PDA’s configuration becomes (sN , Z0), then first move to state (sP , Z0)
and then resume with pushing a− k α-s into the stack.

• When A�LA(·) is in configuration (sP , τ) for τ 6= Z0, first move to con-
figuration (sF , τ) and then push a number of α-s and pop b number of
α-s. Note that there are no provisions for popping α if the stack hits Z0

along this transition.
• When A�LA(·) is in configuration (sF , τ) for τ 6= Z0, push a α-s then

pop b α-s.
Note that there are no provisions for popping α if the stack hits Z0 along
this transition.

Lemma 21. Push down automaton A�PA(·) accepts a pair of sequences (A,B)
iff PrefixAvg(A) ≥ PrefixAvg(B).

Proof (Proof sketch). To prove this statement, it is sufficient to demonstrate
that A�LA(·) accepts a pair of sequences (A,B) iff there are only finitely many
indexes where Sum(B[1, i]) > Sum(A[1, i]). On A�LA(·) this corresponds to the
condition that there being only finitely many times when the PDA is in state
N during the run of (A,B). This is ensured by the push down automaton since
the word can be accepted only in state F and there is no outgoing edge from
F . Therefore, every word that is accepted by A�LA(·) satisfies the condition

∃f i,Sum(B[0, i− 1]) ≥ Sum(A[0, i− 1]).
Conversely, for every word (A,B) that satisfies ∃f i,Sum(B[0, i−1]) ≥ Sum(A[0, i−

1]) there is a point, call it index k, such that for all indexesm > k, Sum(B[1,m]) �
Sum(A[1,m]). If a run of (A,B) switches to F at this m, then it will be accepted
by the push down automaton. Since A�LA(·) allows for non-deterministic move
to (F, τ) from (P, τ), the run of (A,B) will always be able to move to F after
index m. Hence, every (A,B) satisfying ∃f i, Sum(B[0, i− 1]) ≥ Sum(A[0, i− 1])
will be accepted by A�LA(·) .
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