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Abstract
This paper introduces Chanakya, an attempt to use tools and tech-
niques from formal methods to automatically design and analyze
game-theoretic models of strategic multiagent interactions. Here,
we discuss two problems of automatic characterization of a game
under a given notion of rationality. First, we show how tools from
automata theory can be used to completely characterize the set of
Nash equilibria of infinitely repeated games. Second, we show how
to use the theory of vector addition systems in the characterization
of evolutionary stability of evolutionary games.

1. Introduction
Strategic reasoning is the science of deciding how to behave in an
interactive environment. Often times, and rightly so, decisions are
guided by selfish motives, and pertain to rational behavior. Ratio-
nal behavior has various forms. In widely used internet systems
such as eBay or Google Adwords, auctioneers bid, and the one
with the highest bid wins. In this example rational behavior cor-
responds to winning at the least possible bid. Next, consider a mar-
ket in which different firms produce the same product. Each firm
needs to determine a price for their product. In this case, mutually
agreeing upon the same price is considered rational, as this leads to
co-existence and market stability. Each of these notions of rational
behavior comes with natural computational questions. For example,
we may want to algorithmically analyze a system of selfish agents
to understand the nature of their interactions, or to design a protocol
of interaction between the agents that guarantees some high-level
properties in spite of selfish behavior. Hence, strategic reasoning is
a very rich and active field of research that brings social science,
mathematics, and computer science under the same hood.

The mathematical study of strategic reasoning is called Game
Theory [5] . The central question in Game Theory is to characterize
rational behavior in various kinds of games. Complete character-
ization enables better understanding of the outcome(s) of a game
with selfish agents. Hence, such characterization is of interest and
importance to game theorists. Characterization of games involves
rigorous mathematical analysis. Unfortunately, in the present day,
this analysis is done manually. Hence, it is error-prone, and time
consuming. In addition, manual rigorous analysis of complicated
games in virtually intractable.

Formal methods and programming languages can be of im-
mense service here. Games can be treated as quantitative abstrac-
tions of systems of selfish agents where the essence of agents’ mo-
tivations is captured through quantitative utility values. We can em-
ulate rigorous mathematical analysis on these program abstractions
using techniques from formal methods. This way, we can automate
their mathematical analysis. Furthermore, the program abstractions
of games can be enriched depending on what level of abstraction
is appropriate. Together using formal methods and programming
languages, one could formally define various notions of rationality,
and design algorithms for their computation.

Cooperate (C) Defect (D)
Cooperate (C) (2,2) (0,3)

Defect (D) (3,0) (1,1)

Table 1: Prisoner’s Dilemma: Utility Matrix

It will also be interesting to see the extent to which mathemati-
cal analysis can be automated. More complex mathematical analy-
sis will enable our games to become more complex. Hence, it will
improve our understanding on the complexity of games for which
decidable results can be obtained.

By naming this project Chanakya [4], we are paying our respect
to one of the greatest economists, strategists, philosophers, and
teachers of all times, Chanakya (350 BC - 275 BC).

The rest of the paper is structured in the following way. We dis-
cuss the problem of characterization of games under two notions of
rationality, Nash equilibra (Section 2.1), and evolutionary stability
(Section 2.2).

2. Some interesting problems
This section provides a brief discussion on some concrete direc-
tions that we have been pursuing. First, we discuss computation of
all Nash equilibria in Infinite Repeated Games. Second, we discuss
the study of evolutionary stability in Evolutionary Games.

2.1 All Nash Equilibria in Infinite Repeated Games
Infinite repeated games [3] are used to model real life interactions
such as market dynamics, online auction protocols etc.

In our recent work, we model infinite repeated games as
weighted regular games. A weighted regular game represents an
n-agent game. Syntactically, a weighted regular game is a büchi
automaton, in which transitions occur over the alphabet of n-tuples,
called the action profile. Each transition is labeled by at least one
n-tuple, called the weight tuple.

The i-th element of each action profile denotes the action the
i-th agent takes. Similarly, the i-th element of a weight tuple is
a numerical value that denotes utility attained by the i-th agent.
Multiple weight tuples on a transition denote the possibility of
multiple utilities over a single transition.

Each accepting word in this automaton denotes a play of the
game. Every play is an n-tuple, in which the i-th element denotes
the strategy of the i-th agent. Since plays are tuples of n strategies,
they are also called strategy profiles.

We demonstrate our model through the Iterated Prisoner’s
Dilemma (IPD), a game obtained by infinite repetition of the clas-
sic Prisoner’s Dilemma game. Recall that Prisoner’s Dilemma is a
one-shot interaction between two agents who can either cooperate
(action C) or defect (action D). Utility of this game are shown in
Table 1. In the infinitely repeated version, each player can play fol-
lowing a policy. Here we describe the version of the game where
agents play under a policy called Tit-for-Tat-with-forgiveness.
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Figure 1: Agent 2 plays with Tit-for-Tat-with-forgiveness. (Start
state is marked with an arrow →. Final states are double-circled).

The automaton for the game is shown in Fig 1. Under this
policy, the second agent P2 co-operates with the first agent P1 until
P1 defects (state q0). After P1 defects for the first time, P2 may
chose to defect immediately in the next round, or forgive and defect
only if P1 defects again. In the former case, the game shifts to state
q1, else to state q2.

We compute the utility of an agent along an accepting run by
computing the discounted sum of utilities attained by the agent
from transitions along that run. The discounted sum of sequence
A with discount factor d is given by DS(A, d) = Σ∞

i=0ai/d
i.

A Nash equilibrium of a game is a strategy profile such that if
any agent unilaterally changes its strategy, then it will receive lower
aggregate utility. Computation of a Nash equilibrium has been ex-
tensively studied in various kinds of games. Complete characteri-
zation under this notion of rationality involves computation of all
Nash equilibria in a game. To the best of our knowledge, the prob-
lem of computing all Nash equilibria in purely quantitative games
such as the ones described above has not been studied before. Note
that in a weighted regular game a play may have more that one ac-
cepting run, hence a play may have multiple possible utilities for
its agents. In this case, we define a strategy profile to be in Nash
equilibrium if it has at least one accepting run that is in Nash equi-
librium.

We are working on designing an algorithm that takes a weighted
regular game with rational rewards, and a discount factor d for d ∈
N as input. The output is a büchi automaton that accepts words only
if they are in Nash equilibria in the input game. What is interesting
in this algorithm is that at no point do we compute the utility of
any run in the game. Instead, we construct a comparator automaton
that accepts a pair of bounded rational number sequences (A,B) iff
DS(A, d) > DS(B, d) when d ∈ N. For the construction of this
automaton, we use insights gained from arithmetic over numbers
in base d, and the fact that for bounded number sequences, the
discounted sum will also be bounded.

Preliminary Results An early prototype of this algorithm has
shown promise. We have been able to re-discover known results in
classical repeated games such as IPD and Repeated Auctions. More
significantly, we have also been able to compute all Nash equilibria
in much more complex games. One example of a complex game
is that of a model of the Bitcoin Protocol. This result is extremely
encouraging as manual computation of all Nash equilibria in the
Bitcoin protocol is extremely tedious.

2.2 Parametric Games
Parametric games form a class of games which are parameterized
on the number of agents i.e. games that are defined over an arbitrary
number of agents. Evolutionary games [2] are examples of para-
metric games. In evolutionary games, agents do not explicitly make
decisions. We illustrate this point through an example. Consider an
initial population of small beetles and large beetles. Here each bee-
tle chooses to be small or large. However this is a genetic behavior,

hence beetles can not make this decision explicitly. In this popula-
tion, beetles interact with each other by competing over food. The
outcome of such a game measured after a period of time. It has been
noticed that over a period of time, the population of small beetles
gets wiped out, while the big beetles continue to thrive. In this case,
being large is said to be evolutionary stable.

Questions regarding characterization of evolutionary games per-
tain to evolutionary stable behaviors. One such example is, given
an initial configuration, what is the set of all possible outcomes? In
other words, which behaviors are evolutionary stable from a given
initial configuration. Next, one could ask if the outcome is depen-
dent on the initial configuration. In other words, does a behavior
exits that is evolutionary stable from every initial configuration. As
earlier, tools and techniques from formal methods can be employed
to answer these questions automatically.

However, we cannot model parametric games using weighted
regular games, as we will have to construct one weighted regular
game for every value of n. In addition, there is a marked differ-
ence between the notion of rationality in evolutionary games and
in repeated games. Evolutionary games begin at some initial con-
figuration of observable behaviors, such as small beetles and large
beetles. Over time these configurations change. Eventually, only
the evolutionary stable behaviors are observed, such as large beetle
size. The game-theoretic way of reasoning about which behaviors
in such scenarios, is by associating a quantitative measure of fitness
to each behavior in a configuration. Fitness changes with each in-
teraction. Behaviors with larger fitness value after a period of time,
are said to be evolutionary stable.

Currently we are working on defining a model for parametric
games that captures the notion of fitness. We propose the use of a
weighted version of Population Protocols [1]. A population proto-
col can be thought of as a vector addition system (or alternatively,
a Petri net) defined over non-negative integers with transitions be-
tween vectors. The sum of elements in any vector is preserved un-
der all transitions. This work is currently in its nascent stage.

Parametric games are not only restricted to evolutionary games.
We can also talk about a parameterized version of repeated games.
For example, is it true that for all values of n, in an n-agent auction,
auctioneers will bid truthfully?

3. Concluding Remarks
We conclude with reiterating that the marriage of Formal Methods
with Game Theory opens a plethora of new and interesting prob-
lems. These problems are of theoretical and practical interest. This
is a novel combination, and hence there are plenty opportunities
for making significant progress in the area. This project is still in
its infancy. It has the flexibility to grow in any direction. It will be
interesting to see how this shapes up in the future.
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