
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Coordinator synthesis
Suguman Bansal
Rice University

suguman@rice.edu

Kedar S. Namjoshi
Nokia Bell Labs, Murray Hill

kedar.namjoshi@nokia-bell-labs.
com

Yaniv Sa’ar
Nokia Bell Labs, Kfar Saba
saar@nokia-bell-labs.com

Abstract
The design of a coordinator for multiple, independent, reac-
tive agents is a complex task. Coordination synthesis is the
automated construction of a coordinator from a specifica-
tion and behavioral description of the reactive agents. Prior
work on coordination synthesis make use of two critical
assumptions: (a). all reactive agents are synchronized, (b).
the coordinator has complete information about the reac-
tive agents. However, we argue that realistic multi-agent
scenarios violate both of these assumptions, rendering exist-
ing techniques unsuitable for coordination synthesis. To this
end, this work presents an algorithm for coordination syn-
thesis with both asynchrony and partial information. Our
synthesis procedure uses high-level languages for specifica-
tions and agents, namely we use linear temporal properties
for specifications and Communicating Sequential Processes
(CSPs) for the reactive agents.

Keywords Coordinator, Reactive systems, asynchronous,
partial information, synthesis, linear temporal logic

1 Introduction
Coordinated multi-agent systems are seeing increased adop-
tion to achieve complex tasks. These tasks may range from
maintaining ambient conditions in domestic-purpose smart
buildings, where readings from sensors should be linked to
heating and cooling devices, to industrial warehouses with
a group of package-carrying robots that coordinate to mini-
mize wasted effort. Typically in these settings, the individual
agents are reactive and a centralized coordinator interacts
with them in order to achieve the task. Since the onus of
achieving the task largely lies on the the centralized coordi-
nator, it is important to design a provably correct coordinator.
Coordination synthesis is the automated construction of

a coordinator from a specification of the desired behavior
of the fully coordinated system. Prior investigations have
developed algorithms and tools for the same. Most of these
make at least one of the following two critical assumptions:
(a). all reactive agents are synchronized with each other and
the coordinator, (b). the coordinator has complete knowl-
edge of the local states of all of the reactive agents at all
times [1, 13]. However, neither of these assumptions hold

SYNT 19, July 14, 2019, New York, NY, USA
2019.

in realistic scenarios. Modern software and hardware sys-
tems harness asynchronous interactions and partial infor-
mation to improve speed, responsiveness, and power con-
sumption: delay-insensitive circuits, networks of sensors,
multi-threaded programs and interacting web services are
some concrete instances. In fact, asynchrony and partial
information is the norm and not the exception. Hence, ex-
isting synthesis algorithms are unsuitable for coordination
synthesis. To this end, this work presents a synthesis algo-
rithm that constructs a coordinator that is correct under both
asynchrony and partial information.
To drive home how naturally asynchrony and partial in-

formation appear in coordinated multi-agent systems, con-
sider the following scenario. An industrial warehouse may
consist of multiple independent, reactive robots each per-
forming the task assigned to it such as surveillance, package-
delivery, packaging and so on. These robots may interact
among themselves or with a centralized coordinator to en-
sure smooth functioning of the warehouse. While these in-
dependent robots may synchronize with each other or the
coordinator at some points (a package can be delivered only
after it has been packed), some robots may not synchronize
with others at all (surveillance robot does not synchronize
with the others at all) and operate at their own clock. This in-
troduces asynchrony among agents/coordinator in the ware-
house. Second, the agents could change their state through
private interactions that are not observed by a coordinator.
In this case, the coordinator can have partial information of
the local state of component robots only.
The seminal Pnueli-Rosner algorithm for asynchronous

LTL synthesis [16] and its follow-ups [11] handle asynchrony
as well. Here the coordinator interacts with its chaotic envi-
ronment by reading from and writing to interface variables.
This model was inspired by hardware, but it is at a too low
level and non-intuitive for describing the agents. To this
end, our algorithm works in a more natural setting where
agent behavior is modeled mathematically in the frame-
work of Communicating Sequential Processes (CSP) [10],
and specifications are described by Linear-time Temporal
Logic (LTL) [14] or Linear-time Temporal Logic interpreted
over finite traces (LTLf) [5]. Recent work on CSP-based syn-
thesis [4] handles partial information but not asynchrony,
and only the GR(1) fragment of LTL. The new algorithm
removes both restrictions. It crucially relies on simplifica-
tions developed recently in [2] for asynchronous synthesis in
the Pnueli-Rosner model, consequently solving coordination

1

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

SYNT 19, July 14, 2019, New York, NY, USA Suguman Bansal, Kedar S. Namjoshi, and Yaniv Sa’ar

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

synthesis by an efficient polynomial-time reduction to syn-
chronous synthesis from a new (regular) specification [16].

2 Illustrative Example
Smart buildings have multiple mutually-interacting devices
that are coordinated to maintain optimal conditions in the
building, such as temperature, humidity, lighting, and so on.
Consider, as a simple illustrative example, a smart thermostat
that interacts with a room-temperature sensor (sensor, in
short), a heater, and an air-conditioner to maintain a com-
fortable room temperature. The temperature is affected by
the mode (switch-on or switch-off) of the heater and air-
conditioner, and by external physical factors such as weather
fluctuations, which are unpredictable and cannot be con-
trolled. These external factors introduce asynchrony and
partial information in the model, and prevent the smart ther-
mostat from assessing the room temperature correctly from
the modes of the devices alone. As a result, the smart thermo-
stat must communicate with the sensor to check the room
temperature, and respond accordingly.

CSP processesmodeling the sensor, heater and air-conditioner
are given in Figures 1-3. The states of the sensor denote its in-
ternal state, while states of the heater and air-conditioner de-
note their mode. The dashed-transitions in the sensor model
the fluctuations in room temperature caused by changing ex-
ternal physical conditions and are private to the environment.
The actions HeatIsOn and AcIsOn are private interactions
between the sensor and the heater or air-conditioner, which
model the effect that those devices have on the sensor read-
ing. Finally, the sensor communicates the current room tem-
perature to the smart thermostat through actions TooCold,
JustRight, TooWarm, and the heater and air-conditioner in-
teract with the smart thermostat through the Switch actions.
The specification is modeled as Infinitely Often (JustRight),
as the uncontrollable external temperature fluctuations make
it impossible to claim that the sensor reading is always Jus-
tRight. This is easily expressible in LTL.

3 Coordination synthesis
The technical contributions of this work are two-fold.

1. We formulate the problem of coordination synthesis in
presence of both asynchrony and partial information
(§ 3.1). Our problem formulation uses CSPs to model
reactive agents, as opposed to primitive models based
on reading and writing to shared interface variables.

2. We reduce coordination synthesis to synchronous syn-
thesis of a new regular specification. This reduction is
efficient as as the new specification is linear in size of
the environment and automata representing φS and
φL . Therefore, it is able to leverage advances in syn-
chronous synthesis to develop efficient tools for coor-
dination synthesis.

For sake of brevity, we present the highlights of our con-
tributions only.

3.1 Problem formulation
Reactive agent model
We use Communicating Sequential Processes (CSP) [10] to
represent the reactive agents. A CSP process, or process (in
short) is defined by a tuple P = (S, ι, Σ, Γ,δ), where S is a
finite set of states, ι ∈ S is a special start state, Σ are the
publicly visible events of the process, and Γ are the privately
visible events of the process. The sets Σ and Γ are disjoint.
The transition relation δ : S × (Σ ∪ Γ) → 2S maps each state
and event to a set of successor states. A transition from state
s on event a to state t exists if t ∈ δ (s,a).

Let P and Q be CSP processes. Let X be a subset of their
common public events, i.e.,X ⊆ (ΣP ∩ ΣQ). The composition
of P and Q relative to X , denoted P ∥X Q , is a CSP process,
with state set is SP × SQ , initial state (ιP , ιQ), public events
(ΣP ∪ ΣQ) \X , private events (ΓP ∪ ΓQ ∪ X), and a transition
relation defined by the following rules.

• (Pairwise Synchronization) For an event a in X , there
is a transition from (s, t) to (s ′, t ′) on a if (s,a, s ′) is a
transition in P and (t ,a, t ′) a transition in Q .

• (Internal) For an event b in ΓP or in ΣP \X (i.e., private,
or unsynchronized public event), there is a transition
from (s, t) to (s ′, t) on b if there is a transition (s,b, s ′)
in P . A similar rule applies to such events in Q .

The definition forces P and Q to synchronize on events in
X ; for other events, the processes may act independently.

Temporal Specifications
A CSP process can have computations of two types: those
that are finite, ending in dead-end states; and those that are
infinite. A correctness specification should accommodate
both types. Hence, we define a correctness specification, φ,
over an action alphabet, Σ, as a pair (φS ,φL), where φS and
φL is a set of finite and infinite sequences over Σ and are
represented in in LTLf [5] and LTL [14], respectively.

Problem formulation
The synthesis problem is defined as follows, new terms in
this definition are motivated and defined below.

Definition 3.1 (Coordination Synthesis). Given an environ-
ment process E = (S, ι, Σ, Γ,δ) and a specification φ over
actions in (Σ ∪ Γ), construct a processM with public event
set Σ such that all of the maximal finite computations of
E ∥Σ M satisfy φS and all of its infinite fair computations sat-
isfy φL . The instance (E,φ) is realizable if there is a process
M such that E ∥Σ M has these properties.

The problem definition uses only one environment process
E because we assume it represents the synchronization of
all reactive agents. A processM is non-blocking for process

2

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Short Title SYNT 19, July 14, 2019, New York, NY, USA

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

JRstartDC DW CDWU

JustRightTooCold

HeatIsOn

TooWarm

AcIsOn

JustRightJustRight

Figure 1. Room temp. sensor (JR: Just Right, DW: Detected Warm, DC: Detected Cold, WU: Warming Up, CD: Cooling Down)

OFFstart ON
SwitchHeatOn

HeatIsOn
SwitchHeatOff

Figure 2. Heater

OFFstart ON
SwitchAcOn

AcIsOn
SwitchAcOff

Figure 3. Air conditioner

E if all maximal computations of E ∥ M are infinite. If φS is
the empty set, any solutionM must be non-blocking.

3.2 Methodology and results
This sections highlights our major results for coordination
synthesis. First of all, we establish decidability of coordina-
tion synthesis via an automata-theoretic reduction of coordi-
nation synthesis to synchronous synthesis of a new (regular)
specification (Theorem 3.2).

Theorem 3.2. Given environment process E and specification
φ = (φS ,φL). There exists a co-Büchi specification B such that

• Coordination synthesis with E and φ is realizable iff syn-
chronous synthesis with the specification B is realizable.

• Solution to synchronous synthesis with B induces a CSP
controller for the controller synthesis with E and φ.

• |B | = O(|E | · |AS | · |AL |) where Ai is the automata
corresponding to φi where i is either L or S .

We also present its complexity-theoretic analysis.

Theorem 3.3. Given environment process E and specification
φ = (φS ,φL). Coordination synthesis is 2EXPTIME-complete
in |φ |, and PSPACE-hard in |E |.

This is an encouraging theoretical result since even the
simple synchronous synthesis with temporal specification
is 2EXPTIME-complete in the specification. However, the
hardness in size of E could be a source of blowup in prac-
tice and a problem to be resolved in future work. Finally,
the addition of fairness constraints to the controller is an
important direction for future research.

4 Related work
Synthesis of synchronous reactive systems The synthe-
sis question for temporal properties originates from a ques-
tion posed by Church in the 1950s (see [19]). The problem
of synthesizing a synchronous reactive system from a linear
temporal specification was formulated and studied by Pnueli
and Rosner [15], and can be generalized to regular specifica-
tions. Much progress on the synchronous synthesis question

has lead to efficient techniques [9, 12, 18] and scalable tools,
e.g. [3, 6–8, 17]. The new specification constructed in Theo-
rem 3.2 is passed into one of these tools to solve coordination
synthesis.

Acknowledgements. Kedar Namjoshi and Suguman Bansal
were supported, in part, by NSF grant CCF-1563393.

References
[1] R. Alur, S. Moarref, and U. Topcu. 2016. Compositional synthesis of

reactive controllers for multi-agent systems. In Proc. of CAV. 251–269.
[2] S. Bansal, K. S. Namjoshi, and Y. Saar. 2018. Synthesis of Asynchronous

Reactive Programs from Temporal Specifications. In Proc. of CAV.
[3] A. Bohy, V. Bruyère, E. Filiot, N. Jin, and J. F. Raskin. 2012. Acacia+, a

Tool for LTL Synthesis.. In Proc. of CAV.
[4] D. Ciolek, V. A. Braberman, N. D’Ippolito, N. Piterman, and S. Uchi-

tel. 2017. Interaction Models and Automated Control under Partial
Observable Environments. IEEE Trans. Software Eng. 43, 1 (2017).

[5] G. De Giacomo and M. Y. Vardi. 2013. Linear temporal logic and linear
dynamic logic on finite traces. In Proc. of AAAI.

[6] R. Ehlers. 2010. Symbolic Bounded Synthesis.. In Proc. of CAV.
[7] R. Ehlers. 2011. Unbeast: Symbolic bounded synthesis. In Proc. of

TACAS.
[8] P. Faymonville, B. Finkbeiner, and L. Tentrup. 2017. BoSy: An Experi-

mentation Framework for Bounded Synthesis. In Proc. of CAV.
[9] E Filiot, N Jin, and J. F. Raskin. [n. d.]. Compositional Algorithms for

LTL Synthesis. In Proc. of ATVA.
[10] C. A. R. Hoare. 1978. Communicating Sequential Processes. Commun.

ACM 21, 8 (1978).
[11] U. Klein, N. Piterman, and A. Pnueli. 2012. Effective synthesis of

asynchronous systems from GR (1) specifications. In VMCAI.
[12] O. Kupferman and M. Y. Vardi. 2005. Safraless decision procedures. In

Proc. of FOCS.
[13] S. Moarref and H. Kress-Gazit. 2018. Reactive Synthesis for Robotic

Swarms. Formal Modeling and Analysis of Timed Systems, 71–87.
[14] A. Pnueli. 1977. The temporal logic of programs. In Proc. of FOCS.
[15] A. Pnueli and R. Rosner. 1989. On the synthesis of a reactive module.

In POPL.
[16] A. Pnueli and R. Rosner. 1989. On the synthesis of an asynchronous

reactive module. In Proc. of ICALP (1989).
[17] A. Pnueli, Y. Saar, and L. D. Zuck. 2010. JTLV: A Framework for

Developing Verification Algorithms. In Proc. of CAV.
[18] S. Schewe and B. Finkbeiner. 2007. Bounded synthesis. (2007).
[19] W. Thomas. 2009. Facets of Synthesis: Revisiting Church’s Problem.

In Proc. of FOSSACS.

3

	Abstract
	1 Introduction
	2 Illustrative Example
	3 Coordination synthesis
	3.1 Problem formulation
	3.2 Methodology and results

	4 Related work
	References

