
POPL: G: Reasoning about Incentive Compatibility

Suguman Bansal

Rice University

suguman@rice.edu

Abstract

We study equilibrium computation in regular repeated games, a
model of infinitely repeated, discounted, general-sum games where
agent strategies are given by a finite automaton. Our goal is to com-
pute, for subsequent querying and analysis, the set of all Nash equi-
libria in such a game. Our technical contribution is an algorithm
for computing all Nash equilibria in a regular repeated game. We
use our algorithm for automated analysis of properties such as in-
centive compatibility on complex multi-agent systems with reward
maximizing agents, such as the Bitcoin protocol.

1. Introduction

Games [26], defined as multi-agent systems with reward maximiz-
ing agents, find applications in modeling and understanding prop-
erties in a wide variety of fields, such as economics [11, 13, 20,
25, 32], social sciences [8, 21, 22], biology [4, 9, 18, 33], etc.
With the emergence of massive online protocols such as auctions,
adopted by cyber giants such as Google Auctions and eBay, games
have generated much interest for utilitarian research from within
the computer science community. Presence of bugs in these proto-
cols have tremendous impact on both, the protocol providers and
its large number of users. Hence, the analysis of properties on such
systems is crucial.

One concrete instance of the analysis of such protocols arises
in the context of the Bitcoin protocol. Bitcoins are one of the
most widely used on-line currency in today’s time. The protocol
by which Bitcoins are mined (minted) is called the Bitcoin pro-
tocol. Agents (miners) of the protocol receive rewards by mining
more bitcoins. Earlier it was believed that miners receive the most
reward when they mine following the honest policies of the proto-
col. Since the protocol rewarded miners proportional to the num-
ber of bitcoins they mined, it was considered to be a fair proto-
col. However, a surprising result by Eyal and Sirer disproved this
misconception[12]. They proved via rigorous manual analysis that
miners can receive greater rewards by following dishonest policies.
A game is said to be incentive compatible if it ensures that reward
maximizing agent will behave according to the honest policies of a
game. Hence, Eyal and Sirer proved that the Bitcoin protocol is not
incentive compatible.

Incentive compatibility is a desirable property in games, since it
ensures that all agents behave honestly in the game. However, erro-
neous system design is common. Therefore, analysis of properties
such as incentive compatibility is critical for good game design.
Unfortunately, as demonstrated in the Bitcoin protocol case, even
in today’s times most of this analysis is performed manually. One
cannot simply port results on verification of traditional systems in
the context of games since their verification differs due to the pres-
ence of reward maximizing agents. More specifically, unlike in tra-
ditional systems, not all behaviors in a game need to be analyzed.
In the analysis of games, one can safely ignore behaviors that do
not conform with the reward maximizing objectives of agents. Be-

haviors that conform with agent objectives are called the solution
concepts of the game.

Algorithmic analysis of solution concepts in games has been
widely studied in algorithmic game theory [24]. In this field, com-
plex games are studied as repeated games [1, 14, 17]. An important
solution concept is that of Nash equilibria [23]. Intuitively, Nash
equilibria is a state of a game in which no agent can increase its
reward by changing its own behavior only.

There is a wide literature on modeling repeated games as finite
state machines [19, 27, 28]. The problem of computing Nash equi-
libria in repeated games has received a lot of interest. The seminal
work by Abreu, Pearce, and Stacchetti [2], and its followups [10],
considered the problem of computing all or some equilibrium re-
wards rather than equilibria. The problem of efficiently computing
a single equilibrium strategy in infinite games has been studied be-
fore [3, 15, 16]. There are also a few approaches to computing rep-
resentations of approximations to the set of equilibria [5–7]. Except
for work on finding one equilibrium, most other approaches do not
guarantee crisp complexity bounds.

For our purpose of analysis in repeated games, we are interested
in the problem of computing all Nash equilibria in a game. In this
paper, we combine ideas from Game theory, and tools and tech-
niques developed in Programming languages and Formal methods
to realize this goal. First, we define a finite state machine based
framework to model repeated games. We call our framework regu-
lar repeated games. Next, we develop an algorithm ComputeNash
to compute and enumerate all Nash equilibria in a regular repeated
game. Unlike previous approaches, our algorithm has a crisp com-
plexity bound, and can determine all Nash equilibria in a regular
repeated game. Lastly, as a proof of concept, we perform case stud-
ies on the Bitcoin protocol and repeated auctions, and corroborate
previously known results on them via analysis by ComputeNash.
The merit in our approach over earlier approaches for the analysis
of games is that our analysis approach is automated, hence quicker
and not prone to errors. For the Bitcoin protocol case, we first ar-
gue that the Bitcoin protocol can be viewed as a repeated game, and
hence we can apply ComputeNash for its analysis.

This paper is organized as follows. Section 2 provides the nec-
essary preliminary background from game theory and program-
ming languages. Section 3 introduces and defines regular repeated
games as a model for repeated games. Section 4 glosses over the
description of ComputeNash. Lastly, Section 5 demonstrates how
ComputeNash can be used for automatic analysis of incentive
compatibly in the Bitcoin protocol and repeated auctions.

2. Preliminaries

2.1 Repeated Games

Repeated games [17] are a model for multi-agent systems in which
agents interact with each other infinitely often. In each round of
interaction, each agent picks an action. These actions are picked
synchronously by all agents i.e. in each round of interaction, agents

1 2016/5/9

are not aware of what actions other agents will take in that round.
However, agents become aware of actions taken by other agents in
all previous rounds. Agents receive a payoff (or reward) based on
the actions taken by each agent in an interaction. The payoff of an
agent from a repeated game is computed by aggregating the rewards
received by the agent in each round using the discounted sum. The
discounted sum of a sequence of payoff A = {a0, a1, a2 . . . }
with discount factor d > 1, denoted by DS(A,d), is given by

Σ∞
i=0ai/d

i.
Each agent in a repeated games has its own strategies. Intu-

itively, a strategy can be thought of as a guideline for the agent on
how to pick an action in a round based on actions taken by all agents
in previous rounds. For example, in an auction one strategy for an
agent is to bid truthfully, and another strategy is to never bid truth-
fully. All agents pick their strategy for the entire game only once in
the beginning. Agents pick their strategies synchronously. Strategy

profile, denoted by M, is a k-tuple of strategies (M1, . . . ,Mk)
where Mi is the strategy of the i-th agent.

Various solution concepts have been defined as a means to char-
acterize which strategy an agent should pick in order to receive
greater rewards from a game. This is important, since we assume
that agents in multi-agent systems are reward-maximizing by na-
ture. Two such solution concepts are: Nash equilibria and best re-
sponse strategy.

Before defining these concepts, we introduce some necessary

notation. For each agent Pi and its strategy M
′

, we define a strat-

egy profile M[i := M
′

] obtained by starting with M, and then

switching the strategy of agent Pi to M
′

. Precisely, M[i := M
′

]

is defined as the tuple (M1, . . . ,Mi−1,M
′

,Mi+1, . . . ,Mk).
M[i = ∅] denotes the k − 1 tuple obtained by removing the strat-
egy for i-th agent.

A tuple of strategies M is said to be in Nash equilibrium if
no agent receives a greater payoff by unilaterally changing its
strategy. More concretely, no agent Pi receives a greater payoff

in M[i = Mi
∗] as compared to that in M where Mi

∗ is another
strategy of Pi.

A strategy Mi is said to be a best response strategy for agent

Pi to M[i = ∅] if for all other strategies Mi
∗ of Pi, , Pi does

not receive greater payoff on M[i = Mi
∗] as opposed to that on

M[i = Mi].

2.2 Büchi automata

A Büchi automaton [31] , denoted by A, is a tuple (S ,Σ, δ, Init ,F)
where S is a finite set of states, Init ⊆ S is a non-empty set of
initial states, Σ is a finite alphabet, δ ⊆ S ×Σ×S is the transition
relation, and F ⊆ S is a non-empty set of accepting states.

An automaton is called deterministic if for all states s, and all
symbols a ∈ Σ, |{s′|(s, a, s′) ∈ δ}| ≤ 1. Otherwise, it is called
non-deterministic.

Let Σω be the set of infinite words over Σ (similar notation is
used for other alphabets). For w = w0w1 · · · ∈ Σω , a run ρ of
w in A is a sequence of transitions τ0τ1 . . . such that there is a
sequence of states sρ = s0s1 . . . satisfying: (1) s0 = Init , and
(2) τi = (si, wi, si+1) for all i. Note, each sequence in a Büchi
automaton is infinite.

Let inf (ρ) be the set of states that occur infinitely often in sρ.
We say w has an accepting run in A if there exists a run ρ of w
such that inf (ρ) ∩ F 6= ∅. The automaton A accepts a word w if
w has an accepting run in A.

Büchi automata are also known to be closed under set-theoretic
union, intersection, and complementation over Σω . Languages ac-
cepted by these automata are called ω-regular languages.

3. Regular repeated games (RRG)

We define Regular repeated games as a formal model for repeated
games. Regular repeated games builds on top of the well estab-
lished Rubinstein’s model for repeated games [27].

Formally, a regular repeated game G is given by a set of k
agents, where the i-th agent Pi consists of a finite set Action(i)
of actions, and a finite set Strategy(i) of strategies. A strategy M
for Pi is Büchi automaton with weights. Figure 1 shows a strat-
egy for the agent Pi. Each transition of the automaton represents
one round of the repeated game. Transitions occur over the alpha-
bet of (a, (a)−i) where a ∈ Action(i) is the action of the agent
Pi, and (a)−i ∈

∏

j 6=i
Action(j) is the environment action. Agent

Pi receives a reward along each transition. In Figure 1, transition

q0
(C,D),0
−−−−→ q1 denotes that when the agent acts C, and the environ-

ment acts D, then the agent receives a reward of 0.
Intuitively, accepting runs of a strategy M offer an agent-level

view of executions of the game. Specifically, consider a transition
(q, (a)−i, ai, p, q

′) that appears at the j-th position of an accepting
run of M. This means that there is a possible execution of the
game in which: (i) the i-th agent is at state q immediately before
the j-th round of the game; (ii) in this round, the i-th agent and
its environment synchronously perform the actions ai and (a)−i,
respectively; (iii) the concurrent action leads agent Pi to transition
to state q′ at the end of this round, and receive payoff p.

Strategy profiles Now we define the semantics of interactions
between agents P1, . . . ,Pk that constitute a game G.

A strategy profile M of G is a tuple of strategies (M1, . . . ,Mk),
where Mi ∈ Strategy (i) for each Pi. Intuitively, M captures a

scenario in which Pi follows the strategy Mi. Strategies of agents

Mi synchronize on their actions, and the environment’s actions
to form the automaton corresponding to the strategy profile. In
other words, the strategy profile is the synchronized product of its
component strategies.

We illustrate the construction of a strategy profile from its com-
ponent strategies in Figures 2, 3, 4. Figure 2 and Figure 3 depict
two strategies, M1 and M2 respectively, for agents in a 2-agent
game. Figure 4 illustrates the strategy profile (M1,M2). Transi-

tion t1
(D,C),(4,0)
−−−−−−−→ t2 is present in the strategy profile since transi-

tions q
(D,C),4
−−−−−→ q and s1

(C,D),0
−−−−→ s2 are present in strategies M1

and M2 respectively.

Transition t1
(D,C),(4,0)
−−−−−−−→ t2 denotes that when agents P1 and

P2 take actions D and C, the receive a payoff of 4, and 0 respec-
tively. Suppose ρ : τ0τ1τ2 . . . denotes an accepting sequence of
transitions (or a run) in the profile s.t. the payoffs received by agent

Pi are given by P : pi0p
i
1p

i
2 . . . , then the payoff of Pi from the

game, Pi(ρ) = DS(P, d) = Σ∞
j=0p

i
j/d

j .

3.1 Solution concepts in regular repeated games

In this section, we define the solution concepts of Nash equilibria
and best response strategy for repeated regular games.

Definition 1. A strategy profile M is a Nash equilibrium if for

each agent Pi, for each strategy Mi
∗ ∈ Strategy(i), there exists

a run ρ ∈ M such that for all other runs ρ′ ∈ M[i := Mi
∗],

Pi(ρ) ≥ Pi(ρ′).

A run ρ ∈ M is a non-Nash run if there exists another strategy

profile M
′

s.t. the strategy profiles differ in strategy of exactly

one agent, say Pi, and there exists a run ρ′ ∈ M
′
, s.t. Pi(ρ) <

Pi(ρ′). A run is a Nash run otherwise. A strategy profile M∗ that

demonstrates that profile M is not in Nash equilibria is called a

witness of M.

2 2016/5/9

q0start

q1

q2

(C,C), 2

(C,D), 0

(C,D), 0

(C,C), 2

(C,D), 0

(D,D), 1
(D,C), 4

Figure 1: Strategy in a 2-agent RRG

qstart

(D, D), 1

(D, C), 4

Figure 2: Strategy

M1

s1start s2

(C,C), 2

(C,D), 0

(D,D), 1

(D,C), 4

Figure 3: Strategy M2

t1start t2
(D,C), (4, 0)

(D,D), (1, 1)

Figure 4: Strategy profile (M1,M2)

Definition 2. A strategy Mi
∗ is said to be a best response to the

environment action w.r.t. Pi, M[i = ∅], if for all other strategies

Mi ∈ Strategy(i), there exists a run ρ ∈ M[i = Mi
∗] s.t. for all

runs ρ′ ∈ M[i = Mi], Pi(ρ) ≥ Pi(ρ′).

We make the following interesting observation between Nash
equilibria and the best response strategy in an RRG.

Lemma 1. Let G be a 2-agent game. Suppose P2 receives a

constant payoff in each strategy. Then, (M1,M2) is in Nash

equilibria in G iff M1 is a best response to the environment w.r.t
P1.

3.2 Size of regular repeated games

Definition 1 and Definition 2 are both defined for/on strategy pro-
files. Therefore, in all analysis that follows, we consider strategy
profiles, not strategies, to be the fundamental unit for analysis.
Hence we denote the size of a game w.r.t. the number and size of
strategy profiles in the game.

Let SP denote the set of all strategy profiles in a given game
G. We define |G| = ΣS∈SP |S|, where strategy profiles are rep-
resented in their automaton form. We observe that the size of a
strategy profile is proportional to the product of the size of each
component strategy. Let Si ∈ Strategy(i) denote the largest strat-
egy for Pi. Then the size of each strategy profile S, |S|, is given

by Ø(Πk
i=1|Si|). Also the number of strategy profiles in game |G|

is given by Ø(Πk
i=1|Strategy (i)|) . Together this implies |G| =

ΣS∈SP |S| =⇒ |G| = Ø(Πk
i=1|Strategy (i)|) ·Ø(Πk

i=1|Si|).

4. Methodology

We design a provably correct algorithm ComputeNash to compute
and enumerate all the Nash equilibria in a given regular repeated
games. The input regular repeated games is represented by the set
of strategies for each agent in the game.

ComputeNash executes by determining the existence of a wit-
ness for each strategy profile. The algorithm deems a profile to be
in Nash equilibria if it fails to find a witness for it, else the profile
is not in Nash equilibria.

The crux of ComputeNash lies in the procedure that checks
if a profile W is a witness of another profile P . In this step
ComputeNash is required to compare the payoff (computed as
the discounted sum) of agents along the infinite executions in W
and P . To this end, we construct a comparator automaton. The
comparator automaton accepts a pair of bounded rational number
sequences (A,B) iff DS(A, d) < DS(B,d) when d > 1. This
construction uses insights from arithmetic over numbers in base d,
and the fact that discounted sum of bounded sequences is bounded.

We demonstrate how ComputeNash determines if W is a wit-
ness of P on the simple case when both strategy profiles consist
of a single accepting run. Suppose profiles P and W are given as
in Figure 5 and Figure 6 respectively. First, we take the product

Âprod of P with W (See Figure 7). Suppose, the discount factor

d = 2. Let A≻DS(2)
denote the comparator automaton for d = 2.

We take the intersection of Âprod with A≻DS(2)
w.r.t. both agents.

This intersection is empty for P1 since for the reward of P1 on
P is greater than that on W , as shown by DS({4, 1, 1 . . . }, 2) >
DS({2, 2, . . . }, 2). But the reward of agent P2 is greater on W as

DS({0, 1, 1 . . . }, 2) < DS({2, 2, . . . }, 2). Therefore, Âprod ∩∗
2

A≻DS(2)
is non-empty (See Figure 8). This proves that the run in

profile P is a non-Nash run. Since there is a single run in P , this
also proves that profile W is a witness of P . Hence, P is not in
Nash equilibria.

In the case when profile P has multiple accepting runs, con-
cluding that P is not in Nash equilibria is not as straightforward.
To conclude that P is not in Nash equilibria, we have to ensure
that every accepting run in P is a non-Nash run. A combination of
automata-theoretic operations, involving taking the projection of

Âprod ∩∗
i A≻DS(d)

along the first component to construct Nash

(Figure 9), and then equating Nash with profile P , are employed
to ensure that P is not in Nash equilibria.

The worst case complexity of ComputeNash is polynomial in
the size of the game when the game is deterministic (corresponds
to the single accepting run strategy profiles), and exponential in the
size of the game otherwise. The exponential blow up occurs due
to one automata-theoretic equivalence step, which is known to be
exponential in the worst case. However, in practice our algorithm
works much faster, as we will demonstrate in Section 5.

We combine the algorithm for ComputeNash and the result of
Lemma 1 to design an algorithm for computing and enumerating
all best response strategies for an agent Pi. To compute the best
response strategies of an agent Pi, we assign zero payoff on all
transitions of all strategies of all agents except for agent Pi, and
then run ComputeNash over the modified game.

5. Results

To demonstrate the practical utility of ComputeNash for automat-
ically verifying incentive compatibility in systems such as auc-
tions and the Bitcoin protocol, we implemented a prototype of
ComputeNash in Python. We employed existing tools, GOAL [29]
and RABIT-Reduce [30], for operations over Büchi automata. Each
experiment was conducted on a single core of a 12 core 2.2GHz In-
tel Xeon processor with 64 GB RAM.

In the following, we discuss the model, and experimental results
for two case studies: Bitcoin protocol, and repeated auctions.

5.1 Bitcoin Protocol

Bitcoins are one of the most widely used on-line currency in to-
day’s time. The protocol by which Bitcoins are mined (minted) is
called the Bitcoin protocol. Agents (miners) of the protocol receive
rewards by mining more Bitcoins. Our first observation is that since
the Bitcoin protocol is a multi-agent system with reward maximiz-
ing agents, it is a repeated game. Given this insight, we first model
the Bitcoin protocol as a regular repeated game. Next, we perform

3 2016/5/9

t1start t2
â

b̂

Figure 5: Profile P

q1start

ĉ

Figure 6: Pro-
file W

t1start t2
(â, ĉ)

(b̂, ĉ)

Figure 7: Âprod = P ×W

t1start t2
(â, ĉ)

(b̂, ĉ)

Figure 8: Witness = Âprod ∩∗
2

A≻DS(2)

t1start t2
â

b̂

Figure 9: Nash

â = ((D,C), (4, 0)), b̂ = ((D,D), (1, 1)), ĉ = ((C,C), (2, 2))

automated analysis of the Bitcoin game via ComputeNash. We ob-
served that in one of the Nash equilibrium returned by the algo-
rithm, an agent adhered to dishonest policies in the protocol. This
proves that the Bitcoin protocol is not incentive compatible.

It is worth noting that the same result was earlier proved by
Eyal and Sirer [12]. However, unlike our approach, theirs was via
manual analysis of the system. This precisely exhibits the potential
of our approach. By careful modeling of such systems as regular
repeated games, one can perform foolproof automated analysis of
complex systems, and derive important results on them.

In the rest of this section, we describe our model of the Bit-
coin protocol. We compute the set of Nash equilibria on the Bit-
coin game using ComputeNash, which demonstrates that acting
dishonestly can favor miners.

Game Model We follow Eyal and Sirer’s model in that our model
for the Bitcoin protocol is a 3-agent repeated game between an
honest miner, a dishonest miner, and a scheduler. Unlike their
model, we model the scheduler as non-deterministic, while they
model it is probabilistic.

Both miners continuously mine at the tip of a linear chain of
blocks, which is represented by action s to denote search opera-
tion. The scheduler performs one of the three actions, n, o, or t
indicating whether none, P1 or P2 receives the block as reward.
Miners perform action r to release the information of receiving re-
ward from the scheduler. Miners do not expend their resources on
an already mined block. Therefore, following honest policies each
agent declares receiving a block by performing r immediately after
receiving it. However, if a miner adopts the dishonest policies, then
it will hoard the block h to waste resources of the other miner. We
limit the hoarding capacity of a dishonest miner to a single block.

In our model of the protocol, we assume that P1 is honest, while
P2 is dishonest. Then, actions of P1 and P2 are s, r and s, r, and
h respectively. Correspondingly, miners have two strategies, one in
which they act honestly, called Honest (Figure 10), and the other
in which they act dishonestly, called Dishonest (Figure 11).

Under the Honest strategy, both miners begin with searching for
a mine in state q1. State q1 denotes the state where neither agent has
received a mine. When the honest miner receives a mine, control
shifts to state q2 if the dishonest miner doesn’t hoard a block, and
to state q4 otherwise. Control shifts to state q3 when the dishonest
agent receives its first block. From this state, the dishonest agent
may choose to release the mine immediately or hoard it. Due to its
limited hoarding capacity, the dishonest agent, control shifts to state
q5 if it receives more blocks. At q5 the dishonest miner is forced to
release all but one block. If the honest miner receives a block while
the dishonest miner hoards one, control shifts to state q4. If both
miners release their mine at the same time, then the block is non-
deterministically rewarded to one miner by the scheduler.

Dishonest strategy for miners is illustrated in Figure 11.

Rewards The scheduler is a passive agent, and does not receive
any reward. A miner receives reward of 1 if it releases a block in

a state other than q4 and 2 for releasing a block from state q4. The
higher reward of 2 indicates the success of the dishonest miner in
wasting other miners resources – a tactic that a dishonest miner
would pursue. For all other actions, the reward is 0 for miners.
The dotted transition denote the non-deterministic reward when the
scheduler non-deterministically chooses between which agent to
reward.

Experiment and Result We assign Strategy(1) = {Honest},
and Strategy (2) = {Honest, Dishonest}. ComputeNash returned
{(Honest,Dishonest)} on the game. Since the miner plays dishon-
estly in the Nash equilibria, this game is not incentive compatible.
ComputeNash returned result in less than 30 sec on the game.

5.2 Repeated Auctions

An auction protocol is said to be incentive compatible if the best
response strategy of agents is to bid at their true valuation of the
item. In this section we employ the algorithm for computing best
response strategies in a game to determine whether an auction pro-
tocol is incentive compatible or not. We prove via automated analy-
sis that the repeated first-price auction is not incentive compatible,
while repeated second-price auction is incentive compatible. Our
results conform with previously known literature on these auctions.

We model an auction as a 2-agent game. Our objective is to
determine the best response strategies for the first bidder. We il-
lustrate strategies of the bidders in Figure 12. In All(v1, v2), P1

bids at all values between 0 and v1. In Always(v1, v2), P1 bids
at v1 only. MostlyDishonest(v1, v2) and MostlyHonest(v1, v2)
denote strategies in which P1 may not always bid at v1. In
MostlyDishonest(v1, v2), Pi bids at values lesser than v1 infinitely
often. In MostlyHonest(v1, v2), Pi bids at v1 infinitely often. In
all of these strategies P2 can bid at all values ranging from 0
to v2. We define Strategy(1) = { All(v1, v2), All(v1 − 1, v2),
Always(v1, v2), MostlyDishonest(v1, v2), MostlyHonest(v1, v2)
}, and Strategy(2) = {All(v2, v1)}. Both our auction experiments
completed in ∼ 3 muns

Repeated first-price auctions The auction rule for P1, when P1

and P2 bid at u1 and u2 respectively, is given as follows:

FirstPriceAuction(u1, u2) =











1 if u1 > u2

0 if u1 < u2

0 or 1 if u1 == u2

The best response strategies for P1 turned out to be All(v1, v2),
All(v1 − 1, v2), Always(v1, v2), MostlyDishonest(v1, v2), and
MostlyHonest(v1, v2).All(v1−1, v2) and MostlyDishonest(v1, v2)
as best response strategies indicate that P1 receives highest reward
even when she always bids at values lower than her true valuation.
This proves that the first-price auction is not incentive compatible.

4 2016/5/9

q1start

q2

q3

q4

q5

(s, s,n)
(s
, s,

o)

(s, s, t)

(r, s,o)

(r, s,n)

(r,
s,
t)

(s, r,n)

(s,h, 0)/ (s, r, t)

(s
,h
, o
)

(s,h, t)

(s
,r
,o

)

(r, r,n)

(r,h,n)

(r
, r
, t
)(r

,h
, t
)

(r, r, o)

(r,h,o)

(s,h,n)

(s, r, t)

(s,
h
,
o
)

Figure 10: Honest strategy in Bitcoin protocol. Payoffs ex-
plained in text.

q1start

q2

q3

q4

q5

(s, s,n)

(s
, s
,o
)

(s, s, t)

(s, s, t)

(s, r, o)

(s, r,n)

(s,
r,
t)

(h, s,n)

(h
, s
,o
)

(h, s, t)

(r, r,n)

(r, r,o)

(r
, r
, t
)

(r, r, t)

(r, s,n)

(r, s, t)

(r,
s,
o
)

Figure 11: Dishonest strategy in Bitcoin protocol. Payoffs explained
in text.

q0start

(∗, *)

All(v1, v2)

q0start

(v1, *)

Always(v1, v2)

q0start q1start

(∗ − 1, *)

(∗ − 1, *)

(v1, *)

(v1, *)

MostlyHonest(v1, v2)

q0start q1start

(∗ − 1, *)

(∗ − 1, *)

(v1, *)

(v1, *)

MostlyDishonest(v1, v2)

Figure 12: Auction Strategies for P1 in 2-agent auction. True valuation of P1 = v1, True valuation of P2 = v2. Gradient: ∗ : {0, 1 . . . v1},
∗ − 1 : {0, 1 . . . v1 − 1}, * : {0, 1 . . . v2}. For payoff, see the corresponding auction rule.

Repeated second-price auctions The auction rule for P1, when
P1 and P2 bid at u1 and u2 respectively, is given as follows:

VickeryAuction(u1, u2) =

{

u1 − u2 if u1 ≥ u2

0 otherwise

The best response strategies for P1 turned out to be Always(v1, v2),
and All(v1, v2). Therefore, P1 does not receive high reward by
always bidding at lower than v1. This proves that repeated second-
price auctions are incentive compatible.

6. Conclusion

In this paper, we introduced a new framework for repeated games,
regular repeated games. We discussed algorithms with crisp com-
plexity to compute all Nash equilibria and best response strate-
gies for games in this framework. We utilized these algorithms to
perform automated analysis of incentive compatibility on complex
multi-agent systems with reward maximizing agents.

Acknowledgements

I would like to acknowledge Swarat Chaudhuri and Kuldeep S.
Meel, my collaborators on this work.

References

[1] Dilip Abreu. On the theory of infinitely repeated games with discount-
ing. Econometrica, pages 383–396, 1988.

[2] Dilip Abreu, David Pearce, and Ennio Stacchetti. Toward a theory of
discounted repeated games with imperfect monitoring. Econometrica,
pages 1041–1063, 1990.

[3] Garrett Andersen and Vincent Conitzer. Fast equilibrium computation
for infinitely repeated games. In Proc. of AAAI, pages 53–59, 2013.

[4] David Basanta, Haralambos Hatzikirou, and Andreas Deutsch. Study-
ing the emergence of invasiveness in tumours using game theory. The

European Physical Journal B, 63(3):393–397, 2008.

[5] Kimmo Berg and Mitri Kitti. Computing equilibria in discounted 2×
2 supergames. Computational Economics, 41(1):71–88, 2013.

[6] Kimmo Berg, Mitri Kitti, et al. Equilibrium paths in discounted
supergames. Technical report, Working paper, 2012.

[7] Andriy Burkov and Brahim Chaib-draa. An approximate subgame-
perfect equilibrium computation technique for repeated games. In
Proc. of AAAI, pages 729–736, 2010.

[8] Colin Camerer. Behavioral game theory. New Age International,
2010.

[9] Andrew M Colman. Game theory and its applications: in the social

and biological sciences. Psychology Press, 2013.

[10] Mark B Cronshaw. Algorithms for finding repeated game equilibria.
Computational Economics, 10(2):139–168, 1997.

[11] David Easley and Jon Kleinberg. Networks, crowds, and markets:
Reasoning about a highly connected world. Cambridge University
Press, 2010.

[12] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining
is vulnerable. In Financial Cryptography and Data Security, pages
436–454. Springer, 2014.

5 2016/5/9

[13] James W Friedman. Game theory with applications to economics.
Oxford University Press New York, 1990.

[14] Drew Fudenberg and Eric Maskin. The folk theorem in repeated
games with discounting or with incomplete information. Economet-

rica, 54(3):533–554, 1986.

[15] Kenneth L Judd, Sevin Yeltekin, and James Conklin. Computing
supergame equilibria. Econometrica, pages 1239–1254, 2003.

[16] Michael L Littman and Peter Stone. A polynomial-time nash equi-
librium algorithm for repeated games. Decision Support Systems,
39(1):55–66, 2005.

[17] George J. Mailath and Larry Samuelson. Repeated games and reputa-

tions: Long-running relationships. Oxford University Press, 2006.

[18] Matthieu Manceny, A Lackmy, C Chettaoui, F Delaplace, and
Cours Monseigneur Romero. Application of game theory to gene net-
works analysis. 2005.

[19] Robert E Marks. Repeated games and finite automata. Australian
Graduate School of Management, University of New South Wales,
1990.

[20] Paul R Milgrom and Robert J Weber. A theory of auctions and
competitive bidding. Econometrica, pages 1089–1122, 1982.

[21] James D Morrow. Game theory for political scientists. Princeton
University Press Princeton, NJ, 1994.

[22] Herve Moulin. Game theory for the social sciences. NYU press, 1986.

[23] John Nash. Non-cooperative games. Annals of mathematics, pages
286–295, 1951.

[24] Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay Vazirani. Al-

gorithmic game theory. Cambridge University Press, 2007.

[25] Martin J Osborne and Ariel Rubinstein. Bargaining and markets.
Academic press, 1990.

[26] Martin J Osborne and Ariel Rubinstein. A course in game theory. MIT
press, 1994.

[27] Ariel Rubinstein. Finite automata play the repeated prisoner’s
dilemma. Journal of Economic Theory, 39(1):83–96, 1986.

[28] Herbert A Simon. A behavioral model of rational choice. The
quarterly journal of economics, pages 99–118, 1955.

[29] GOAL. GOAL. http://goal.im.ntu.edu.tw/wiki/ .

[30] RABIT-REDUCE. Rabit-reduce. http://www.languageinclusion.org/ .

[31] Wolfgang Thomas, Thomas Wilke, et al. Automata, logics, and infinite

games: a guide to current research, volume 2500. Springer Science &
Business Media, 2002.

[32] John Von Neumann and Oskar Morgenstern. Theory of games and

economic behavior. Princeton university press, 2007.

[33] Jörgen W Weibull. Evolutionary game theory. MIT press, 1997.

6 2016/5/9

http://goal.im.ntu.edu.tw/wiki/
http://www.languageinclusion.org/

	Introduction
	Preliminaries
	Repeated Games
	Büchi automata

	Regular repeated games (RRG)
	Solution concepts in regular repeated games
	Size of regular repeated games

	Methodology
	Results
	Bitcoin Protocol
	Repeated Auctions

	Conclusion

