

Incentive Compatibility

- A multi-agent system is incentive compatible if selfish agents interact *truthfully*.
- Incentive compatible systems are more trusted by agents.

Example: Auction Systems

- Bidders are agents
 - **T**: Bidder's actual valuation of the item
- **B** : Value bidder bids at
- Highest bidder wins the bid
- Bidder utility
- **T B**, if bidder wins
- **0**, otherwise
- Bidder bids **truthfully** if $\mathbf{T} == \mathbf{B}$
- Auction system is not incentive compatible

Problem

All agents in a multi-agent system M are selfish. Is multi-agent system M incentive compatible? Generally, what properties are true on multi-agent systems under selfishness assumptions?

Prior Work

Analysis of selfish agents extensively studied

- No unifying framework for analysis of systems of selfish agents
- No automated approaches to analysis of selfish agents

Our Contribution

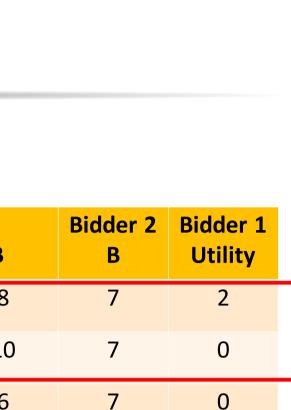
Weighted Regular Games A unifying framework for modeling systems of selfish agents • Quantitative abstraction of these systems

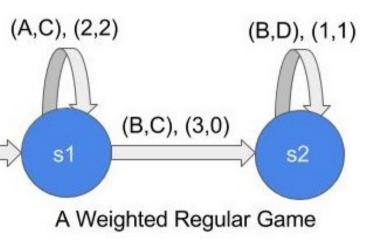
ComputeNash: An algorithm to compute all Nash equilibria in weighted regular games

Framework: Weighted Regular Games

- Quantitative abstraction of systems of selfish agents
- Quantitative utilities indicate agent motives
- Finite state model
- Executions in model correspond to collective behavior of agents
 - Action-tuples correspond to collective action of agents
 - Weight-tuples correspond to collective utility of agents
 - *i*-th weight sequence corresponds to rewards of *i*-th agen
- Utility of an agent: Utility of agent with weight sequence A

 $\operatorname{ut}(A,d) = \sum_{i=0}^{\infty} \frac{a_i}{d^i}$ for discount factor d > 1.


Nash Equilibria: Analysis in WRG


- An execution is in Nash equilibria if no agent can receive greater utility by unilaterally deviating from the execution
- A notion of collective selfish behavior of all agents • Many other notions exist

	Bidder 1	
	т	В
Γ	10	8
	10	10
	10	6

Reasoning about Incentive Compatibility Suguman Bansal **Rice University**

Bitcoin Protocol Model

- A 2-agent game: Dishonest agent A_1 , honest agent A_2 . • Agnet A_1 and A_2 Actions:
- Action s: Searching for a bitcoin.
- Action r: Releases bitcoin finding one.
- Dishonest agent A_1 Action h: May hide bitcoin after finding it.

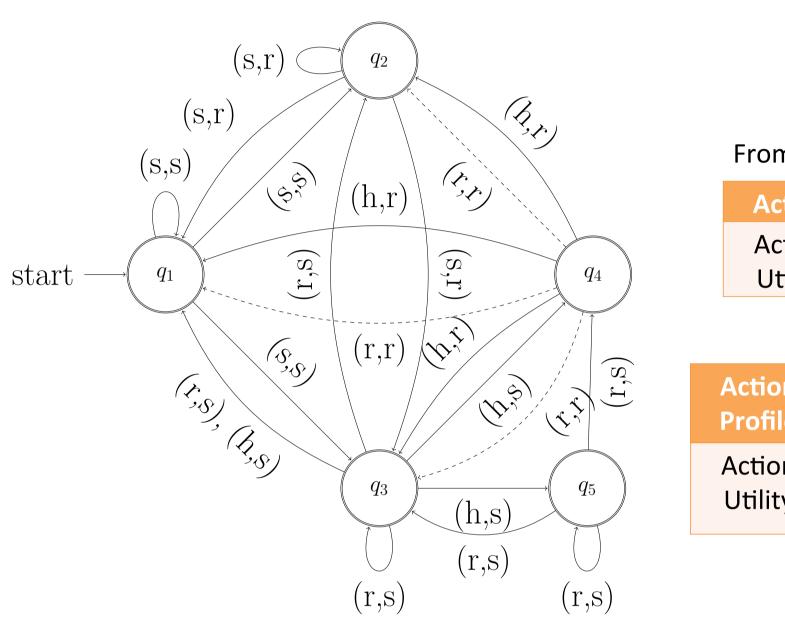


Figure : Bitcoin Protocol Game, and its weight tuples

Analysis of WRG

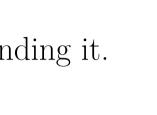
Comparing utilities of sequences

<u>Given</u>: Weight sequences A, B, and discount factor d > 1, $\mathsf{ut}(A,d) > \mathsf{ut}(B,d) ?$

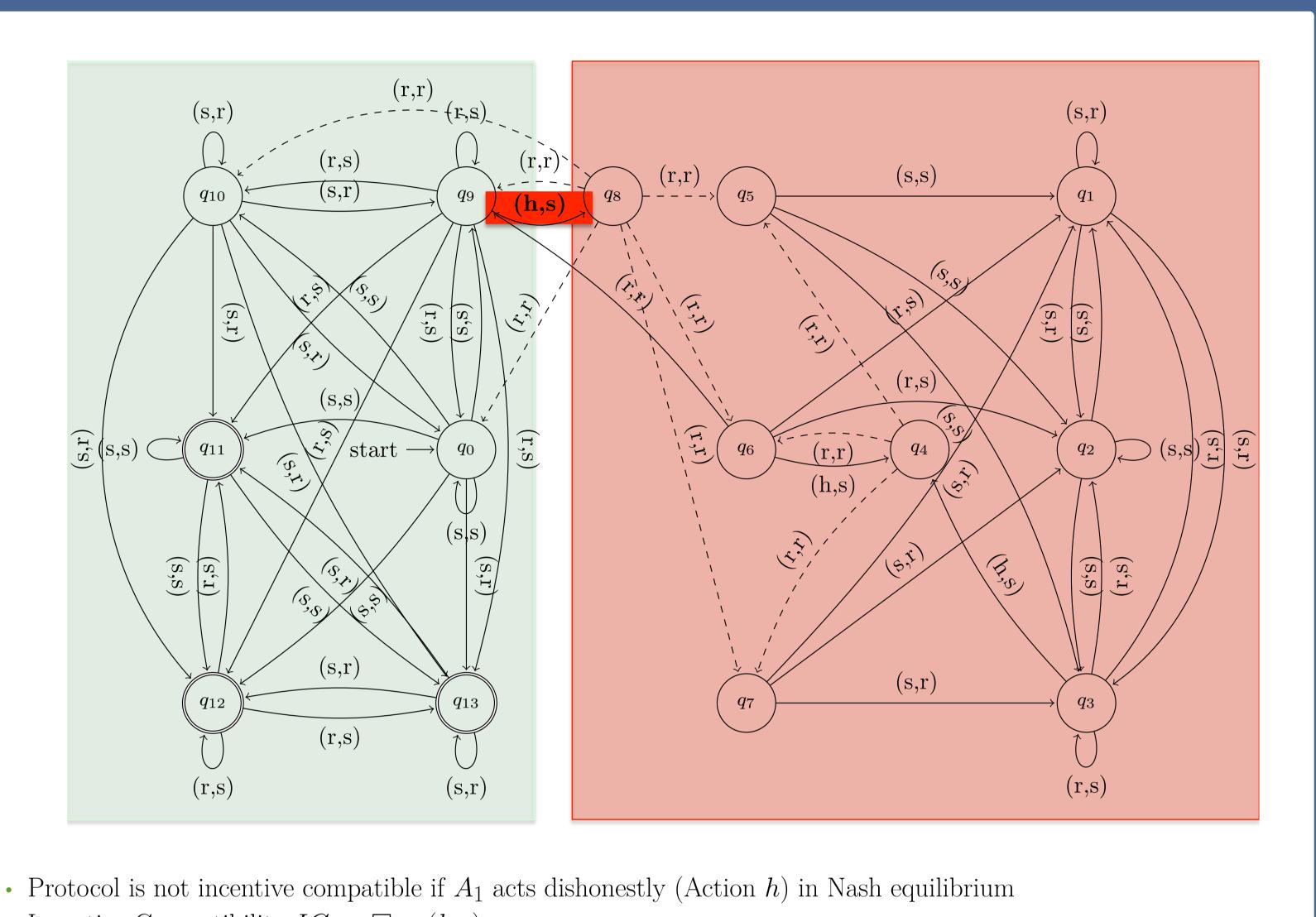
Core Insights

• ut(A, d) is a number in Base d.

• ut(A, d) > ut(B, d) iff there exists C s.t.


$$\operatorname{ut}(A,d) = \operatorname{ut}(B,d) + \operatorname{ut}(C,d)$$
 a

• C can be guessed non-deterministically using properties of arithmetic in Base d.


ComputeNash

- Computes all Nash equilibria in a WRG
- **Complexity**: Exponential in size of input WRG
- **Observation**: All Nash equilibria forms a regular language

Case Study: Bitcoin Protocol is not Incentive Compatible

n q1, q2, q3 and q5					
tion	r	s,h			
tion: tility:	1	0			
From q4					
n le	(h,r)	(r,r)			
n Y	(0,1)	(2,0) or (0,1)			

- Incentive Compatibility $IC := \Box \neg (h, \cdot)$
- $IC \nvDash$ Nash Equilibria of Bitcoin protocol

- $=(a_0.a_1a_2\dots)_d$
- and ut(C, d) > 0

- Presented a unifying framework for analyzing systems of selfish agents
- Analyzed these systems under Nash equilibria

- Extension of framework to
 - Probabilistic systems
 - Infinite state models
- Extension to similar results under other notions of rationality
- Adaption of such algorithms to more real world applications.

• Swarat Chaudhuri (Rice)

Conclusion

Future Work

Collaborators

• Kuldeep S. Meel (Rice)

