Counting inversions

Similarity metric: number of inversions between two rankings

- Ranking R_1: 1, 2, ..., n
- Ranking R_2: $a_1, a_2, ..., a_n$.
- Items i and j inverted if $i < j$, but $a_i > a_j$

Goal

Count the number of inversions given two rankings

- Brute-force algorithm has complexity $O(n^2)$

Applications in data mining, voting theory, web search, ...

- For example, rankings could represent musical preferences or voting preferences...
Divide and conquer

- Divide the array into two halves: left and right
 - Takes $O(1)$ time
- Count the number of inversions n_1 and n_2 in the two halves
 - $T(n/2)$ time
- Return $n_1 + n_2 + n'$, where n' is the number of inversions where one item is in the left subarray, and the other is in the right subarray
Divide and conquer

- Divide the array into two halves: left and right
 - Takes $O(1)$ time
- Count the number of inversions n_1 and n_2 in the two halves
 - $T(n/2)$ time
- Apply the *merge* routine used in merge sort to count inversions across subarrays
 - Assumes the subarrays are sorted
procedure sort_and_count(L) =
 if L.Length = 1
 then return (0, L)
 else
 (A1, B1) := split(L)
 (p, A) := sort_and_count(A1)
 (q, B) := sort_and_count(B1)
 (r, L) := merge_and_count(A, B)
 return (p + q + r, L)
procedure merge_and_count(A, B) =
 a := List.head A
 b := List.head B
 if (a > b)
 (p, C) := merge_and_count (A, List.tail B)
 return (p + A.length, b :: C)
 else
 (p, C) := merge_and_count (List.tail A, B)
 return (p, a :: C)

- **Precondition for** Merge-and-Count: A and B are sorted.
- **Postcondition for** Sort-and-Count: L is sorted
- **Recurrence**: $T(n) = 2T(n/2) + n$
Exercise: Finding modes

You are given an array A with n entries. Each entry is a distinct number.

You are told that the sequence $A[1], \ldots, A[n]$ is unimodal. That is, for some index p between 1 and n, values in the array increase up to position p in A, and then decrease the rest of the way up to position n.

Give a $O(\log n)$-time algorithm to find the “peak entry” of the array.
Closest pair of points

Goal

Given n points in the 2-D plane, find a pair with smallest Euclidean distance between them.

- Fundamental geometric primitive
Attempt 1

- Divide the plane into 4 quadrants
- Impossible to guarantee that points are spread equally
Closest pair of points

- **Divide:** Draw vertical line L so that roughly $n/2$ points are on each side
Closest pair of points

- **Divide:** Draw vertical line L so that roughly $n/2$ points are on each side.
- **Conquer:** Find closest pair in each side, recursively.

Closest pair of points

- **Divide:** Draw vertical line L so that roughly $n/2$ points are on each side
- **Conquer:** Find closest pair in each side, recursively
- **Combine:** Find closest pair with one point in each side
 - A quadratic step?
- Return best of 3 solutions
Let δ be the smaller of the shortest distances computed by the recursive calls.

Find closest pair (p, q) where p and q are on opposite sides of L, assuming that the distance between p and q is less than δ.

Let δ be the smaller of the shortest distances computed by the recursive calls.

Find closest pair (p, q) where p and q are on opposite sides of L, assuming that the distance between p and q is less than δ.

- Sort points in the 2δ-strip by their y-coordinate.
• Let δ be the smaller of the shortest distances computed by the recursive calls
• Find closest pair (p, q) where p and q are on opposite sides of L, assuming that the distance between p and q is less than δ
 • Sort points in the 2δ-strip by their y-coordinate
 • Only check distances of those within 11 positions in the sorted list!
Let s_i be the point in the 2δ strip with the i-th smallest coordinate.

If $|i - j| < 12$, then the distance between i and j is at least 12.

- No two points lie in the same $(\delta/2) \times (\delta/2)$ box.
- Two points that are at least two rows apart have distance $> 2(\delta/2)$.
method Closest-Pair(p₁, ..., pₙ) {
 Compute separation line \(L \) such that there are \(n/2 \) points on each side

 \(\delta_1 = \text{Closest-Pair(left half)} \)
 \(\delta_2 = \text{Closest-Pair(right half)} \)
 \(\delta = \min(\delta_1, \delta_2) \)

 Delete all points further than \(\delta \) from \(L \)
 Sort remaining points by y-coordinate
 Scan points in y-order and compare distance between each point and next 11 neighbors
 If any of these distances is less than \(\delta \), update \(\delta \)

 return \(\delta \)
}
\[T(n) = 2T(n/2) + n \log n \quad \Rightarrow \quad T(n) = O(n(\log n)^2) \]
Where do you achieve $O(n \log n)$?

- Don’t sort points in strip from scratch each time.
- Each recursive call returns two lists: all points sorted by y coordinate, and all points sorted by x coordinate.
- Sort by merging two pre-sorted lists.
Addition

- **Goal:** Given two n-digit integers a and b, compute $a + b$.
- $O(n)$ bitwise operations
Addition
- **Goal:** Given two n-digit integers a and b, compute $a + b$.
- $O(n)$ bitwise operations

Multiplication
- **Goal:** Given two n-digit integers a and b, compute ab.
- $O(n^2)$ bitwise operations?
To multiply two n-digit numbers:

- Multiply four $n/2$-digit numbers
- Add two $n/2$-digit numbers, and shift to obtain result

\[
x = 2^{n/2}x_1 + x_0
\]
\[
y = 2^{n/2}y_1 + y_0
\]
\[
xy = (2^{n/2}x_1 + x_0)(2^{n/2}y_1 + y_0)
\]
\[
= 2^n x_1 y_1 + 2^{n/2}(x_1 y_0 + x_0 y_1) + x_0 y_0
\]
Divide and conquer: Attempt 1

To multiply two \(n \)-digit numbers:

- Multiply four \(n/2 \)-digit numbers
- Add two \(n/2 \)-digit numbers, and shift to obtain result

\[
x = 2^{n/2} x_1 + x_0 \\
y = 2^{n/2} y_1 + y_0 \\
xy = (2^{n/2} x_1 + x_0)(2^{n/2} y_1 + y_0) \\
\]
\[
= 2^n x_1 y_1 + 2^{n/2}(x_1 y_0 + x_0 y_1) + x_0 y_0
\]

\[
T(n) = 4T(n/2) + \Theta(n)
\]
To multiply two n-digit numbers:

- Multiply four $n/2$-digit numbers
- Add two $n/2$-digit numbers, and shift to obtain result

\[
x = 2^{n/2}x_1 + x_0 \\
y = 2^{n/2}y_1 + y_0 \\
xy = (2^{n/2}x_1 + x_0)(2^{n/2}y_1 + y_0) \\
\quad = 2^n x_1 y_1 + 2^{n/2}(x_1 y_0 + x_0 y_1) + x_0 y_0
\]

\[
T(n) = 4T(n/2) + \Theta(n) \\
T(n) = \Theta(n^2)
\]
Karatsuba’s multiplication

To multiply two \(n \)-digit numbers:

- Add two \(n/2 \)-digit numbers
- Multiply \textit{three} \(n/2 \)-digit numbers
- Add, subtract, and shift two \(n/2 \)-digit numbers

\[
\begin{align*}
x &= 2^{n/2}x_1 + x_0 \\
y &= 2^{n/2}y_1 + y_0 \\
xy &= (2^{n/2}x_1 + x_0)(2^{n/2}y_1 + y_0) \\
 &= 2^n x_1 y_1 + 2^{n/2}(x_1 y_0 + x_0 y_1) + x_0 y_0 \\
 &= 2^n x_1 y_1 + 2^{n/2} ((x_1 + x_0)(y_1 + y_0) - x_1 y_1 - x_0 y_0) + x_0 y_0
\end{align*}
\]
Karatsuba’s multiplication

To multiply two n-digit numbers:

- Add two $n/2$-digit numbers
- Multiply three $n/2$-digit numbers
- Add, subtract, and shift two $n/2$-digit numbers

\[
x = 2^{n/2}x_1 + x_0
\]
\[
y = 2^{n/2}y_1 + y_0
\]
\[
xy = (2^{n/2}x_1 + x_0)(2^{n/2}y_1 + y_0)
\]
\[
= 2^n x_1 y_1 + 2^{n/2} (x_1 y_0 + x_0 y_1 + x_0 y_0)
\]
\[
= 2^n x_1 y_1 + 2^{n/2} ((x_1 + x_0)(y_1 + y_0) - x_1 y_1 - x_0 y_0) + x_0 y_0
\]

\[
T(n) = 3T(n/2) + \Theta(n)
\]
Karatsuba’s multiplication

To multiply two \(n \)-digit numbers:

- Add two \(n/2 \)-digit numbers
- Multiply three \(n/2 \)-digit numbers
- Add, subtract, and shift two \(n/2 \)-digit numbers

\[
x = 2^{n/2}x_1 + x_0 \\
y = 2^{n/2}y_1 + y_0 \\
xy = (2^{n/2}x_1 + x_0)(2^{n/2}y_1 + y_0) \\
= 2^n x_1 y_1 + 2^{n/2}(x_1 y_0 + x_0 y_1) + x_0 y_0 \\
= 2^n x_1 y_1 + 2^{n/2} ((x_1 + x_0)(y_1 + y_0) - x_1 y_1 - x_0 y_0) + x_0 y_0
\]

\[
T(n) = 3T(n/2) + \Theta(n) \\
T(n) = \Theta(n^{\lg 3}) = \Theta(n^{1.585})
\]
Fast matrix multiplication

Goal

Given two $n \times n$ matrices A and B, compute $C = AB$

$$
\begin{pmatrix}
 c_{11} & c_{12} & \ldots & c_{1n} \\
 c_{21} & c_{22} & \ldots & c_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 c_{n1} & c_{n2} & \ldots & c_{nn}
\end{pmatrix} =
\begin{pmatrix}
 a_{11} & a_{12} & \ldots & a_{1n} \\
 a_{21} & a_{22} & \ldots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \ldots & a_{nn}
\end{pmatrix}
\begin{pmatrix}
 b_{11} & b_{12} & \ldots & b_{1n} \\
 b_{21} & b_{22} & \ldots & b_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 b_{n1} & b_{n2} & \ldots & b_{nn}
\end{pmatrix}
$$

$$
c_{ij} = \sum_{i=1}^{n} a_{ik} b_{kj}
$$

Brute-force algorithm takes $O(n^3)$ time
Matrix multiplication: Attempt 1

Divide and conquer:

- Partition A and B into $n/2 \times n/2$ blocks
- Multiply eight $n/2 \times n/2$ recursively
- Add appropriate products using four matrix additions

\[
\begin{bmatrix}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{bmatrix} =
\begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}
\begin{bmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{bmatrix}
\]

\[
C_{11} = (A_{11}B_{11}) + (A_{12}B_{21}) \quad C_{12} = (A_{11}B_{12}) + (A_{12}B_{22})
\]
\[
C_{21} = (A_{21}B_{11}) + (A_{22}B_{21}) \quad C_{22} = (A_{21}B_{12}) + (A_{22}B_{22})
\]
Matrix multiplication: Attempt 1

Divide and conquer:
- Partition \(A \) and \(B \) into \(n/2 \times n/2 \) blocks
- Multiply eight \(n/2 \times n/2 \) recursively
- Add appropriate products using four matrix additions

\[
\begin{bmatrix}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{bmatrix} =
\begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}
\begin{bmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{bmatrix}
\]

\[
C_{11} = (A_{11}B_{11}) + (A_{12}B_{21}) \quad C_{12} = (A_{11}B_{12}) + (A_{12}B_{22})
\]
\[
C_{21} = (A_{21}B_{11}) + (A_{22}B_{21}) \quad C_{22} = (A_{21}B_{12}) + (A_{22}B_{22})
\]

\[
T(n) = 8T(n/2) + \Theta(n^2)
\]

\[
T(n) = \Theta(n^3)
\]
Strassen’s algorithm

Key idea: Multiply block matrices using seven multiplications

\[
\begin{bmatrix}
 C_{11} & C_{12} \\
 C_{21} & C_{22}
\end{bmatrix} = \begin{bmatrix}
 A_{11} & A_{12} \\
 A_{21} & A_{22}
\end{bmatrix} \begin{bmatrix}
 B_{11} & B_{12} \\
 B_{21} & B_{22}
\end{bmatrix}
\]

\[
C_{11} = (A_{11}B_{11}) + (A_{12}B_{21}) \\
C_{21} = (A_{21}B_{11}) + (A_{22}B_{21}) \\
C_{12} = (A_{11}B_{12}) + (A_{12}B_{22}) \\
C_{22} = (A_{21}B_{12}) + (A_{22}B_{22})
\]
Strassen’s algorithm

Key idea: Multiply block matrices using *seven* multiplications

\[
\begin{bmatrix}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{bmatrix}
= \begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}
\begin{bmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{bmatrix}
\]

\[
C_{11} = (A_{11}B_{11}) + (A_{12}B_{21})
\]

\[
C_{21} = (A_{21}B_{11}) + (A_{22}B_{21})
\]

\[
C_{11} = P_5 + P_4 - P_2 + P_6
\]

\[
C_{21} = P_3 + P_4
\]

\[
P_1 = A_{11}(B_{12} - B_{22})
\]

\[
P_3 = (A_{21} + A_{22})B_{11}
\]

\[
P_5 = (A_{11} + A_{22})(B_{11} + B_{22})
\]

\[
P_7 = (A_{11} - A_{21})(B_{11} + B_{12})
\]

\[
P_2 = (A_{11} + A_{12})B_{22}
\]

\[
P_4 = A_{22}(B_{21} - B_{11})
\]

\[
P_6 = (A_{12} - A_{22})(B_{21} + B_{22})
\]
\[T(n) = 7T(n/2) + \Theta(n^2) \]
\[T(n) = 7T(n/2) + \Theta(n^2) \]
\[T(n) = \Theta(n^{\lg 7}) = O(n^{2.81}) \]
\[T(n) = 7T(n/2) + \Theta(n^2) \]

\[T(n) = \Theta(n^{\log_2 7}) = O(n^{2.81}) \]

Practical issues:

- Sparsity
- Caching effects
- Numerical stability
- Typically useful only for larger values of \(n \)
Complexity

\[
T(n) = 7T(n/2) + \Theta(n^2)
\]

\[
T(n) = \Theta(n^{\lg 7}) = O(n^{2.81})
\]

Practical issues:

- Sparsity
- Caching effects
- Numerical stability
- Typically useful only for larger values of \(n \)

Best current bound

\[O(n^{2.3727}) \text{ [Williams 2011]} \]
Exercise: Exponentiation

Can you compute a^n, for given a and n, in $o(n)$ steps?