COMP 382: Reasoning about algorithms
Fall 2014

Swarat Chaudhuri

Unit 8: Randomized algorithms
Randomization: Allow fair coin flip in unit time

- In practice, access to pseudorandom number generator

Can lead to the simplest, fastest, or only known efficient algorithm for a particular problem.
Contention resolution

- n processes P_1, \ldots, P_n, want to access a shared database
- Time is divided into discrete *rounds*
- If two or more processes access the database simultaneously, all processes are locked out in that round.
Contention resolution

- **Restriction:** Processes cannot communicate
- Devise protocol to ensure all processes get through on a regular basis.
 - Doesn’t make sense for all processes to request access all the time!
Contention resolution

Each process requests access to the database at time t with probability $p = 1/n$
Claim: Let $S[i, t] = \text{event that process } i \text{succeeds in accessing the database at time } t$. Then

$$\frac{1}{e \cdot n} \leq \Pr[S(i, t)] \leq \frac{1}{2n}$$

where e is the base of natural logarithms.
Claim: Let $S[i, t]$ = event that process i succeeds in accessing the database at time t. Then $\frac{1}{e \cdot n} \leq \Pr[S(i, t)] \leq \frac{1}{2n}$, where e is the base of natural logarithms.

Proof:

- $S[i, t]$ happens when process i requests access, and none of the other processes request access
- By independence, $\Pr[S(i, t)] = p(1 - p)^{n-1} = \frac{1}{n}(1 - \frac{1}{n})^{n-1}$.
Claim: Let $S[i, t] = \text{event that process } i \text{ succeeds in accessing the database at time } t$. Then $\frac{1}{e^n} \leq \Pr[S(i, t)] \leq \frac{1}{2n}$, where e is the base of natural logarithms.

Proof:

- $S[i, t]$ happens when process i requests access, and none of the other processes request access.
- By independence, $\Pr[S(i, t)] = p(1-p)^{n-1} = \frac{1}{n}(1 - \frac{1}{n})^{n-1}$.

Useful facts from calculus:

As n increases from 2,
- $(1 - 1/n)^n$ converges monotonically from 1/4 up to 1/e
- $(1 - 1/n)^{n-1}$ converges monotonically from 1/2 down to 1/e.
Analysis

Claim: The probability that process i fails to access the database in $\lceil e \cdot n \rceil$ rounds is at most $1/e$. After $\lceil e \cdot n \rceil \lceil c \ln n \rceil$ rounds, the probability is at most n^{-c}.

Proof: Let $F[i,t]$ = event that process i fails to access database in rounds 1 through t. By independence and previous claim, we have $\Pr[F(i,t)] \leq (1 - 1/e)^t$. Choosing $t = \lceil e \cdot n \rceil$: $\Pr[F(i,t)] \leq (1 - 1/e)^{\lceil e \cdot n \rceil} \leq (1 - 1/e)^{e \cdot n} \leq 1/e$. Choosing $t = \lceil e \cdot n \rceil \lceil c \ln n \rceil$: $\Pr[F(i,t)] \leq (1/e)^{c \ln n} = n^{-c}$.

Swarat Chaudhuri
Claim: The probability that process i fails to access the database in $\lceil e \cdot n \rceil$ rounds is at most $1/e$. After $\lceil e \cdot n \rceil \lceil c \ln n \rceil$ rounds, the probability is at most n^{-c}.

Proof: Let $F[i, t] = \text{event that process } i \text{ fails to access database in rounds 1 through } t$. By independence and previous claim, we have $\Pr[F(i, t)] \leq (1 - \frac{1}{en})^t$.

- Choosing $t = \lceil e \cdot n \rceil$:

 $$\Pr[F(i, t)] \leq (1 - \frac{1}{en})^{\lceil en \rceil} \leq (1 - \frac{1}{en})^{\ln n} \leq \frac{1}{e}$$

- Choosing $t = \lceil e \cdot n \rceil \lceil c \ln n \rceil$:

 $$\Pr[F(i, t)] \leq \left(\frac{1}{e}\right)^{c \ln n} = n^{-c}$$
Claim: The probability that all processes succeed within $2e \cdot n \ln n$ rounds is at least $(1 - \frac{1}{n})$.
Claim: The probability that all processes succeed within $2e \cdot n \ln n$ rounds is at least $(1 - \frac{1}{n})$.

Proof: Let $F[t] =$ event that at least one of the n processes fails to access database in any of the rounds 1 through t.

$$
\Pr[F[t]] = \Pr[\bigcup_{i=1}^{n} F[i, t]] \leq \sum_{i=1}^{n} \Pr[F[i, t]] \leq n\left(1 - \frac{1}{en}\right)^t
$$

Union bound

Given events E_1, \ldots, E_n, we have $\Pr[\bigcup_{i=1}^{n} E_i] \leq \sum_{i=1}^{n} \Pr[E_i]$.

Swarat Chaudhuri
COMP 382: Reasoning about algorithms
Claim: The probability that all processes succeed within $2e \cdot n \ln n$ rounds is at least $(1 - \frac{1}{n})$.

Proof: Let $F[t] = \text{event that at least one of the n processes fails to access database in any of the rounds 1 through } t.$

$$
\Pr[F[t]] = \Pr\left[\bigcup_{i=1}^{n} F[i, t] \right] \leq \sum_{i=1}^{n} \Pr[F[i, t]] \leq n \left(1 - \frac{1}{en}\right)^t
$$

Union bound

Given events E_1, \ldots, E_n, we have $\Pr[\bigcup_{i=1}^{n} E_i] \leq \sum_{i=1}^{n} \Pr[E_i]$.

Setting $t = 2e \cdot n \ln n$, we have

$$
\Pr[F[t]] \leq n \cdot n^{-2} = \frac{1}{n}.
$$
Expectation: Given a discrete random variable X, its expectation $E[X]$ is defined by:

$$E[X] = \sum_{j=0}^{\infty} j \cdot Pr[X = j]$$
Expectation: Given a discrete random variable X, its expectation $E[X]$ is defined by:

$$E[X] = \sum_{j=0}^{\infty} j \cdot Pr[X = j]$$

Waiting for a first success: Coin is heads with probability p and tails with probability $1 - p$. How many independent flips X until first heads?
Expectation: Given a discrete random variables X, its expectation $E[X]$ is defined by:

$$E[X] = \sum_{j=0}^{\infty} j \cdot \Pr[X = j]$$

Waiting for a first success: Coin is heads with probability p and tails with probability $1 - p$. How many independent flips X until first heads?

$$E[X] = \sum_{j=0}^{\infty} j \cdot \Pr[X = j] = \sum_{j=0}^{\infty} j(1 - p)^{j-1}p = \frac{p}{1 - p} \sum_{j=0}^{\infty} j (1 - p)^j$$

$$= \frac{p}{1 - p} \cdot \frac{1 - p}{p^2} = \frac{1}{p}$$
Useful property: If X is a 0/1 random variable, $E[X] = \Pr[X = 1]$.
Useful property: If X is a 0/1 random variable, $E[X] = \Pr[X = 1]$.

Proof:

$$E[X] = \sum_{j=0}^{\infty} 1 \cdot \Pr[X = j] = \Pr[X = 1].$$

Linearity of expectation: Given two random variables X and Y defined over the same probability space, $E[X + Y] = E[X] + E[Y]$.
Guessing Cards

Game: Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

Memoryless guessing: No psychic abilities; can’t even remember what’s been turned over already. Guess a card from full deck uniformly at random. How often will you be correct?

Claim: The expected number of correct guesses is 1.

Proof using linearity of expectation:

Let $X_i = 1$ if i-th prediction is correct and 0 otherwise.

Let $X = \text{number of correct guesses} = X_1 + \cdots + X_n$.

$E[X_i] = \Pr[X_i = 1] = \frac{1}{n}$.

$E[X] = E[X_1] + \cdots + E[X_n] = \frac{1}{n} + \cdots + \frac{1}{n} = 1$.

Swarat Chaudhuri

COMP 382: Reasoning about algorithms
Game: Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

Memoryless guessing: No psychic abilities; can’t even remember what’s been turned over already. Guess a card from full deck uniformly at random. How often will you be correct?

Claim: The expected number of correct guesses is 1.
Game: Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

Memoryless guessing: No psychic abilities; can’t even remember what’s been turned over already. Guess a card from full deck uniformly at random. How often will you be correct?

Claim: The expected number of correct guesses is 1.

Proof using linearity of expectation:

- Let $X_i = 1$ if i-th prediction is correct and 0 otherwise.
- Let $X = \text{number of correct guesses} = X_1 + \cdots + X_n$.
- $E[X_i] = \Pr[X_i = 1] = 1/n$.
- $E[X] = E[X_1] + \cdots + E[X_n] = 1/n + \cdots + 1/n = 1$.
Game: Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

Guessing with memory: Guess a card uniformly at random from cards not yet seen.
Guessing cards

Game: Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

Guessing with memory: Guess a card uniformly at random from cards not yet seen.

Claim: The expected number of correct guesses is $\Theta(\log n)$.

Proof using linearity of expectation:

Let $X_i = 1$ if the i-th prediction is correct and 0 otherwise.

Let $X = \text{number of correct guesses} = X_1 + \cdots + X_n$.

$E[X_i] = \Pr[X_i = 1] = \frac{1}{n-i-1}$.

$E[X] = E[X_1] + \cdots + E[X_n] = \frac{1}{n} + \cdots + \frac{1}{2} + 1 = H(n)$, where $H(n)$ is the n-th harmonic number.

$\ln(n+1) < H(n) < 1 + \ln n$.

Swarat Chaudhuri

COMP 382: Reasoning about algorithms
Guessing cards

Game: Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

Guessing with memory: Guess a card uniformly at random from cards not yet seen.

Claim: The expected number of correct guesses is $\Theta(\log n)$.

Proof using linearity of expectation:
- Let $X_i = 1$ if i-th prediction is correct and 0 otherwise.
- Let $X = \text{number of correct guesses} = X_1 + \cdots + X_n$.
- $\mathbb{E}[X_i] = \mathbb{P}[X_i = 1] = 1/(n - i - 1)$.
- $\mathbb{E}[X] = \mathbb{E}[X_1] + \cdots + \mathbb{E}[X_n] = 1/n + \cdots + 1/2 + 1/1 = H(n)$, where $H(n)$ is the n-th harmonic number
 - $\ln(n + 1) < H(n) < 1 + \ln n$
Exercise: coupon collector

Coupon collector:
- Each box of cereal contains a coupon.
- There are n different types of coupons.
- Assuming all boxes are equally likely to contain each coupon, how many boxes before you have ≥ 1 coupon of each type?
Claim: The expected number of steps is $\Theta(n \log n)$.

Proof:

Phase $j = \text{time between } j \text{ and } j+1 \text{ distinct coupons}.$

Let $X_j = \text{number of steps you spend in phase } j$.

Probability of success in phase j for each trial is \(\frac{n-j}{n} \), so expected number of steps is

\[
E[X_j] = \frac{n}{n-j}.
\]

Let $X = \text{number of steps in total} = X_0 + X_1 + \cdots + X_{n-1}$.

\[
E[X] = \sum_{j=0}^{n-1} E[X_j] = \sum_{i=1}^{n} \frac{1}{i} = \sum_{i=1}^{n} \frac{1}{i} = H(n).
\]
Claim: The expected number of steps is $\Theta(n \log n)$.

Proof:

- Phase j = time between j and $j+1$ distinct coupons.
- Let $X_j =$ number of steps you spend in phase j.
- Probability of success in phase j for each trial is $(n - j)/n$, so expected number of steps is $n/(n - j)$
- Let $X =$ number of steps in total $= X_0 + X_1 + \cdots + X_{n-1}$.

\[
E[X] = \sum_{j=0}^{n-1} E[X_j] = \sum_{j=0}^{n-1} \frac{n}{n-j} = n \sum_{i=1}^{n} \frac{1}{i} = nH(n)
\]
Consider a drunken man stumbling through a street lined with street lamps. At each lamp, he independently decides to move right or left: with probability 0.5 he walks left, and with probability 0.5 he moves right. What’s his expected location after n time steps?
Consider a county in which 100,000 people vote in an election. There are only two candidates on the ballot: a Democratic candidate D, and a Republican candidate R. This county is heavily democratic, so 80,000 people go with the intention of voting for D, and 20,000 go with the intention of voting for R.

However, the ballot layout is a bit confusing, so each voter, independently and with probability 0.01, votes for the wrong candidate.

Let X denote the random variable equal to the number of votes received by the Democratic candidate D. Determine the expected value of X.

RandomizedQuicksort(S) {
 if |S| = 0 return

 choose a splitter a[i] ∈ S uniformly at random
 foreach (a ∈ S) {
 if (a < a[i]) put a in S−
 else if (a > a[i]) put a in S+
 }
 RandomizedQuicksort(S−)
 output a[i]
 RandomizedQuicksort(S+)
}
Quicksort

Running time:
- [Best case] Select the median element as the splitter: quicksort makes $\Theta(n \log n)$ comparisons.
- [Worst case] Select the smallest element as the splitter: quicksort makes $\Theta(n^2)$ comparisons.

Randomize: Protect against worst case by choosing splitter at random.

Intuition: If we always select an element that is bigger than 25% of the elements and smaller than 25% of the elements, then quicksort makes $(n \log n)$ comparisons.

Notation: Label elements so that $x_1 < x_2 < \cdots < x_n$.
Quicksort: BST representation of splitters

The first splitter, chosen uniformly at random, is represented by the node x_{10}.

- S^-: Nodes x_5, x_3, x_2, x_4, x_1, x_7, x_6, x_8
- S^+: Nodes x_{13}, x_{11}, x_{12}, x_{15}, x_{14}, x_{16}, x_{17}
Observation: Element only compared with its ancestors and descendants.

- x_2 and x_7 are compared if their lca $= x_2$ or x_7.
- x_2 and x_7 are not compared if their lca $= x_3$ or x_4 or x_5 or x_6.

Claim: $\Pr[x_i \text{ and } x_j \text{ are compared}] = \frac{2}{j - i + 1}$.

![BST representation of splitters](image)
Theorem: Expected number of comparisons is $O(n \log n)$.

Proof:

$$\sum_{1 \leq i \leq j \leq n} \frac{2}{j - i + 1} = 2 \sum_{i=1}^{n} \sum_{j=2}^{i} \frac{1}{j} \leq 2n \sum_{j=1}^{n} \frac{1}{j} \leq 2n \int_{x=1}^{n} \frac{1}{x} \, dx = 2n \ln n$$
Theorem: Expected number of comparisons is $O(n \log n)$.

Proof:

$$\sum_{1 \leq i \leq j \leq n} \frac{2}{j - i + 1} = 2 \sum_{i=1}^{n} \sum_{j=2}^{i} \frac{1}{j} \leq 2n \sum_{j=1}^{n} \frac{1}{j} \leq 2n \int_{x=1}^{n} \frac{1}{x} \, dx = 2n \ln n$$

Theorem: [Knuth 1973] Standard deviation of number of comparisons is about 0.65n.

- If $n = 1$ million, the probability that randomized quicksort takes less than $4n \ln n$ comparisons is at least 99.94%.

The sum of independent 0-1 variables is tightly centered on the mean.

Theorem: Suppose X_1, \ldots, X_n are independent 0-1 random variables. Let $X = X_1 + \cdots + X_n$. Then for any $\mu \geq \mathbb{E}[X]$ and for any $\delta > 0$, we have

$$\Pr[X > (1 + \delta)\mu] < \left[\frac{e^\delta}{(1 + \delta)^{1+\delta}}\right]^\mu.$$
For any $t > 0$,

$$\Pr[X > (1 + \delta)\mu] = \Pr[e^{tX} > e^{t(1+\delta)\mu}] \leq e^{-t(1+\delta)\mu} \cdot E[e^{tX}]$$

because $\Pr[X > a] \leq E[X]/a$ for all a
Proof of Chernoff bounds

- For any $t > 0$,
 \[\Pr[X > (1 + \delta)\mu] = \Pr[e^{tX} > e^{t(1+\delta)\mu}] \leq e^{-t(1+\delta)\mu} \cdot E[e^{tX}] \]
 because $\Pr[X > a] \leq E[X]/a$ for all a

- $E[e^{tX}] = E[e^{t\sum_i X_i}] = \prod_i E[e^{tX_i}]$ due to independence
Proof of Chernoff bounds

For any $t > 0$,

$$\Pr[X > (1 + \delta)\mu] = \Pr[e^{tX} > e^{t(1+\delta)\mu}] \leq e^{-t(1+\delta)\mu} \cdot E[e^{tX}]$$

because $\Pr[X > a] \leq E[X]/a$ for all a

$E[e^{tX}] = E[e^{t \sum_i X_i}] = \prod_i E[e^{tX_i}]$ due to independence

Let $p_i = \Pr[X_i = 1]$. Then

$$E[e^{tX_i}] = p_i e^t + (1 - p_i)e^0 = 1 + p_i(e^t - 1) \leq e^{p_i(e^t-1)}$$
Proof of Chernoff bounds

For any $t > 0$,

$$\Pr[X > (1 + \delta)\mu] = \Pr[e^{tX} > e^{t(1+\delta)\mu}] \leq e^{-t(1+\delta)\mu} \cdot E[e^{tX}]$$

because $\Pr[X > a] \leq E[X]/a$ for all a

- $E[e^{tX}] = E[e^{t \sum_i X_i}] = \prod_i E[e^{tX_i}]$ due to independence
- Let $p_i = \Pr[X_i = 1]$. Then
 $$E[e^{tX_i}] = p_i e^t + (1 - p) e^0 = 1 + p_i(e^t - 1) \leq e^{p_i(e^t-1)}$$

- Combining everything,
 $$\Pr[X > (1 + \delta)\mu] \leq e^{-t(1+\delta)\mu} \cdot \prod_i E[e^{tX_i}] \leq e^{-t(1+\delta)\mu} \cdot \prod_i e^{p_i(e^t-1)}$$

- Because $\sum_i p_i = E[X] \leq \mu$, $\Pr[X > (1 + \delta)\mu] \leq e^{-t(1+\delta)\mu} \cdot e^{\mu(e^t-1)}$
- We get the result by choosing $t = \ln(1 + \delta)$.
Theorem: Suppose X_1, \ldots, X_n are independent 0-1 random variables. Let $X = X_1 + \cdots + X_n$. Then for any $\mu \leq \mathbb{E}[X]$ and for any $0 < \delta < 1$, we have

$$\Pr[X < (1 - \delta)\mu] < e^{-\delta^2 \mu / 2}.$$

Proof: Similar.
Consider a drunken man stumbling through a street lined with street lamps. At each lamp, he independently decides to move right or left: with probability 0.5 he walks left, and with probability 0.5 he moves right.

- What’s his expected location after n time steps?
- Give a bound on the probability that he will end up more than t steps away from where he started.
Load balancing: System in which m jobs arrive in a stream and need to be processed immediately on n identical processors. Find an assignment that balances the workload across processors.

Centralized controller: Assign jobs in round-robin manner. Each processor receives at most $\left\lceil \frac{m}{n} \right\rceil$ jobs.
Load balancing: System in which m jobs arrive in a stream and need to be processed immediately on n identical processors. Find an assignment that balances the workload across processors.

Centralized controller: Assign jobs in round-robin manner. Each processor receives at most $\left\lceil \frac{m}{n} \right\rceil$ jobs.

Decentralized controller: Assign jobs to processors uniformly at random. How likely is it that some processor is assigned “too many” jobs?
Load balancing

- Let us consider the case $m = n$.
- Let:
 - $X_i =$ number of jobs assigned to processor i
 - Let $Y_{ij} = 1$ if job j assigned to processor i, and 0 otherwise
- We have:
 - $\mathbb{E}[Y_{ij}] = 1/n$
 - $X_i = \sum_j Y_{ij}$, and $\mu = \mathbb{E}[X_i] = 1$
Load balancing

- Let us consider the case $m = n$.
- Let:
 - $X_i =$ number of jobs assigned to processor i
 - Let $Y_{ij} = 1$ if job j assigned to processor i, and 0 otherwise
- We have:
 - $E[Y_{ij}] = 1/n$
 - $X_i = \sum_j Y_{ij}$, and $\mu = E[X_i] = 1$
- Applying Chernoff bounds with $\delta = c - 1$, $Pr[X_i > c] < \frac{e^{c-1}}{c^c}$
- Let $\gamma(n)$ be the x such that $x^x = n$, and let $c = e\gamma(n)$.

\[
Pr[X_i > c] < \frac{e^{c-1}}{c^c} < \left(\frac{e}{c}\right)^c = \left(\frac{1}{\gamma(n)}\right)^{e\gamma(n)} < \left(\frac{1}{\gamma(n)}\right)^{2\gamma(n)} = \frac{1}{n^2}.
\]

- By union bound, with probability $\geq 1 - 1/n$ no processor receives more than $e\gamma(n) = \Theta(\log n / \log \log n)$ jobs.
Theorem: Suppose the number of jobs $m = 16n \ln n$. Then on average, each of the n processors handles $\mu = 16 \ln n$ jobs. With high probability every processor will have between half and twice the average load.

Proof:

- Let X_i, Y_{ij} be as before.
- Applying Chernoff bounds with $\delta = 1$,

$$\Pr[X_i > 2\mu] < (e/4)^{16n \ln n} < (1/e)^{\ln n} = \frac{1}{n^2}$$

$$\Pr[X_i < \mu/2] < e^{-\frac{1}{2} \left(\frac{1}{2}\right)^2 (16n \ln n)} = \frac{1}{n^2}$$

- By union bound, every processor has load between half and twice the average with probability $\geq 1 - 2/n$.
Consider an auction system where there are \(n \) bidding agents: agent \(i \) has a bid \(b_i \), which is a positive natural number. We assume that all bids \(b_i \) are distinct from each other.

The bidding agents appear in an order chosen uniformly at random. Each agent proposes its bid \(b_i \) in turn, and at all times the system maintains a bid \(b^* \) equal to the highest bid seen so far. (Initially, \(b^* = 0 \).)

What is the expected number of times that \(b^* \) is updated when this process is executed, as a function of the parameters of the problem?
Consider a situation where you have 2 bins and 2n balls. Each ball independently selects one of the two bins, both bins equally likely. The expected number of balls in each bin is n.

Let X_1 and X_2 be the number of balls in the two bins. Prove that for any $\epsilon > 0$ there is a constant $c > 0$ so that

$$\Pr[X_1 - X_2 > c\sqrt{n}] \leq \epsilon$$