Computer-Aided Program Design
Spring 2015, Rice University

Unit 1

Swarat Chaudhuri

January 22, 2015
Reasoning about programs

- A program is a mathematical object with rigorous meaning.
- It should be possible to prove *theorems* about programs.
A program is a mathematical object with rigorous meaning.
It should be possible to prove *theorems* about programs.

- “The program P *always* terminates”
- “On each input x such that $(x > 0)$, P terminates and outputs $(x + 5)$.”
- “There is an input on which P does not terminate.”
- “There is a way to complete the partial program P such that the resulting program always terminates.”
Reasoning about programs

- A program is a mathematical object with rigorous meaning.
- It should be possible to prove *theorems* about programs.
 - “The program P always terminates”
 - “On each input x such that $(x > 0)$, P terminates and outputs $(x + 5)$.”
 - “There is an input on which P does not terminate.”
 - “There is a way to complete the partial program P such that the resulting program always terminates.”
- Proof gives us *certainty, reliability*...
 - …to an extent not achieved by testing.
Reasoning about programs: Spot the bug!

int computeCurrentYear (int days) {
 /* input: number of days since Jan 1, 1980 */
 int year = 1980;
 while (days > 365) {
 if (isLeapYear(year)){
 if (days > 366) {
 days = days - 366;
 year = year + 1;
 }
 } else {
 days = days - 365;
 year = year + 1;
 }
 }
 return year;
}

Reasoning about programs: Is this program correct?

do {
 AcquireSpinLock();
 nPacketsOld = nPackets;
 req = devExt->WLHV;
 if (req && req->status) {
 devExt->WLHV = req->Next;
 ReleaseSpinLock();
 nPackets++;
 }
} while (nPackets != nPacketsOld);
ReleaseSpinLock();
Challenges

- How to specify correctness properties of programs?
Challenges

- How to specify correctness properties of programs?
 - Mathematical logic
 - $\forall i, j : i < j \rightarrow A[i] < A[j]$
Challenges

▶ How to specify correctness properties of programs?
 ▶ Mathematical logic
 ▶ $\forall i, j : i < j \rightarrow A[i] < A[j]$

▶ Proofs about programs are complicated and tedious. Won’t a human get them wrong?
Challenges

- How to specify correctness properties of programs?
 - Mathematical logic
 - $\forall i, j : i < j \rightarrow A[i] < A[j]$
 - Proofs about programs are complicated and tedious. Won’t a human get them wrong?
 - **Machine-checked proofs**: Proofs must be fully formal, and checked by an algorithm.
 - **Automatic proofs**: The proofs must be *generated* by an algorithm.
Automated reasoning about programs

- In principle, proving the correctness or incorrectness of a general program is *undecidable*.

Questions:
- Program verification
- Program synthesis
Automated reasoning about programs

- In principle, proving the correctness or incorrectness of a general program is undecidable.
- In practice:
 - Focus on solvable special cases (in particular, finite-state programs)
 - Give semi-algorithms rather than algorithms.
Automated reasoning about programs

- In principle, proving the correctness or incorrectness of a general program is *undecidable*.
- In practice:
 - Focus on solvable special cases (in particular, finite-state programs)
 - Give *semi-algorithms* rather than algorithms.
- Questions:
 - Program verification
 - Program synthesis
This course: components

- Logic
 - Decision procedures for logic
- Verification of finite-state programs
- Verification of infinite-state programs
- Program synthesis
Rules

- No laptops in class.
- Attendance is important
 - No single textbook
 - Few slides
 - In-class activities
- TA: Keliang He
- More information on course webpage:
 http://www.cs.rice.edu/~swarat/COMP507
Propositional logic

Let us first consider finite-state systems:

- Hardware
- Network protocols
- Perhaps not software

How do you describe correctness properties of such a system?
Propositional logic: Syntax

Let Prop be a set of propositional variables. A formula F in propositional logic has the form

$$F ::\ = \ p | \neg F_1 | F_1 \lor F_2 | F_1 \land F_2 |$$
$$F_1 \rightarrow F_2 | F_1 \leftrightarrow F_2 | \top | \bot$$

where $p \in \text{Prop}$.

In the above, F_1 and F_2 are subformulas of F.

A literal is a formula of the form p or $\neg p$, where $p \in \text{Prop}$.
Propositional logic: Semantics

- Interpretation $I : \{ P \mapsto \text{true}, Q \mapsto \text{false}, \ldots \}$
 - $I \models F$ if F evaluates to true under I
 - $I \not\models F$ false
Propositional logic: Semantics

- Interpretation $I : \{P \leftrightarrow \text{true}, Q \leftrightarrow \text{false}, \ldots\}$

 $I \models F$ if F evaluates to true under I

 $I \not\models F$ if F evaluates to false under I

- Inductive definition of semantics:

 $I \models \top$

 $I \not\models \bot$

 $I \models \neg F$ iff $I \not\models F$

 $I \models F_1 \land F_2$ iff $I \models F_1$ and $I \models F_2$

 $I \models F_1 \lor F_2$ iff $I \models F_1$ or $I \models F_2$

 $I \models F_1 \rightarrow F_2$ iff $I \not\models F_1$ or $I \models F_2$

 $I \models F_1 \leftrightarrow F_2$ iff $I \models F_1$ and $I \models F_2$,

 or $I \not\models F_1$ and $I \not\models F_2$.
What does the following program do?

```c
bool foo(unsigned int v) {
    unsigned int f;
    f = v & (v - 1);
    return (f == 0);
}
```
What does the following program do?

```c
bool foo(unsigned int v) {
    unsigned int f;
    f = v & (v - 1);
    return (f == 0);
}
```

Verify this!
Satisfiability

- F is *satisfiable* iff there exists an interpretation I such that $I \models F$.
- F is *valid* iff for all interpretations I, $I \models F$.
Satisfiability

- F is *satisfiable* iff there exists an interpretation I such that $I \models F$.
- F is *valid* iff for all interpretations I, $I \models F$.
- F is valid iff $\neg F$ is unsatisfiable.

- Can you algorithmically check whether a formula is F is satisfiable?
Normal Forms

1. **Negation Normal Form (NNF)**
 Negations appear only in literals. (only \neg, \wedge, \lor)

2. **Disjunctive Normal Form (DNF)**
 Disjunction of conjunctions of literals
 \[\lor \land \ell_{ij} \text{ for literals } \ell_{ij} \]

3. **Conjunctive Normal Form (CNF)**
 Conjunction of disjunctions of literals
 \[\land \lor \ell_{ij} \text{ for literals } \ell_{ij} \]
The Resolution Procedure

Decides the satisfiability of PL formulae in CNF.

Resolution Rule: For clauses C_1 and C_2 in CNF formula F, derive resolvent using the following rule:

\[
\begin{array}{c}
C_1[P] \\ C_2[\neg P]
\end{array}
\longrightarrow
\begin{array}{c}
C_1[\bot] \lor C_2[\bot]
\end{array}
\]

- Apply resolution and add resolvent to current set of clauses.
- If \bot is ever deduced via resolution, then F must be unsatisfiable, as $F \land \bot$ is unsatisfiable.
- If every possible resolution produces an already-known clause, then F is satisfiable.
Resolution

Example:

1. \((P \rightarrow Q) \land P \land \neg Q\)
Resolution

Example:

1. \((P \to Q) \land P \land \neg Q\)
2. \((\neg P \lor Q) \land \neg Q\)
Resolution: soundness and completeness

Soundness of resolution: Every unsatisfiability judgment derived by resolution is correct.

Completeness of resolution: Every correct unsatisfiability judgment can be derived by resolution.

[Look up the textbook The Calculus of Computation, by Bradley and Manna.]
Boolean Constraint Propagation (BCP)

Based on unit resolution

\[\frac{\ell \quad C[\neg \ell]}{C[\bot]} \quad \text{← clause} \]

where \(\ell = P \) or \(\ell = \neg P \)
Boolean Constraint Propagation (BCP)

Based on unit resolution

\[
\ell \quad C[\neg \ell] \quad \leftarrow \text{clause} \quad \frac{\underbrace{C[\bot]}}{\text{where } \ell = P \text{ or } \ell = \neg P}
\]

Example:

\[
F : P \land (\neg P \lor Q) \land (R \lor \neg Q \lor S)
\]
Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

- Decides the satisfiability of PL formulae in CNF.
- **Decision Procedure DPLL**: Given F in CNF

```
let rec DPLL $F$ =
    let $F'$ = BCP $F$ in
    if $F' = \top$ then true
    else if $F' = \bot$ then false
    else
        let $P = \text{CHOOSE vars}(F')$ in
        (DPLL $F'${{$P \mapsto \top$}}) \lor (DPLL $F'${{$P \mapsto \bot$}})
```
Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

- Decides the satisfiability of PL formulae in CNF.
- **Decision Procedure DPLL:** Given F in CNF

```
let rec DPLL F =
  let $F'$ = BCP $F$ in
  if $F' = \top$ then true
  else if $F' = \bot$ then false
  else
    let $P = \text{CHOOSE vars}(F')$ in
    (DPLL $F'\{P \mapsto \top\}) \lor (DPLL F'\{P \mapsto \bot\})
```

Optimization:
Don't **CHOOSE** only-positive or only-negative variables for splitting.
DPLL Example

\[F : (\neg P \lor Q \lor R) \land (\neg Q \lor R) \land (\neg Q \lor \neg R) \land (P \lor \neg Q \lor \neg R) \]
Exercise

How does DPLL work on the following example?

\((P \lor \neg Q \lor \neg R) \land (Q \lor \neg P \lor R) \land (R \lor \neg Q)\)
Exercise

▶ How does DPLL work on the following example?

\[(P \lor \neg Q \lor \neg R) \land (Q \lor \neg P \lor R) \land (R \lor \neg Q)\]

▶ Solve this example using Z3.
In-class exercise: \(N \)-Queens

- You are given an \(N \times N \) chessboard. Your goal is to place \(N \) queens on the board so that no queen can hit any other.
- Show how to solve this problem using Z3 for \(N = 4 \).
What about formulas that are not in CNF?
Homework exercise

- Use Z3 to check the correctness of
 bool foo(unsigned int v) {
 unsigned int f;
 f = v & (v - 1);
 return (f == 0);
 }
under 4-bit integers.
Homework exercise

- Use Z3 to check the correctness of

  ```c
  bool foo(unsigned int v) {
    unsigned int f;
    f = v & (v - 1);
    return (f == 0);
  }
  
  ```

 under 4-bit integers.

- More precisely, that it checks whether \(v \) is a power of 2.
There is a bug!

- 0 is incorrectly considered to be a power of 2.
There is a bug!

- 0 is incorrectly considered to be a power of 2.
- Fix:

```c
bool foo(unsigned int v) {
    unsigned int f;
    f = v && !(v & (v - 1));
    return (f != 0);
}
```

See more bit hacks at