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ABSTRACT
When numerical and machine learning (ML) computations are
expressed relationally, classical query execution strategies (hash-
based joins and aggregations) can do a poor job distributing the
computation. In this paper, we propose a two-phase execution
strategy for numerical computations that are expressed relationally,
as aggregated join trees (that is, expressed as a series of relational
joins followed by an aggregation). In a pilot run, lineage information
is collected; this lineage is used to optimally plan the computation
at the level of individual records. Then, the computation is actually
executed. We show experimentally that a relational system making
use of this two-phase strategy can be an excellent platform for
distributed ML computations.
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1 INTRODUCTION
There has been a lot of recent work aimed at making database-style
systems applicable for for numerical computing and ML [14, 24, 29,
37]. There are several aspects of database-style systems that make
them attractive as a platform for ML. One is pragmatic: databases
already store a significant amount of the world’s data, and moving
data out of a database and into a special-purpose ML or numerical
computing system (such as TensorFlow[8], PyTorch[3], MXNet[2],
scikit-learn[7], etc.) is error prone and can be costly. Another is
flexibility: databases are built to support important ideals such as
declarativity and logical and physical data independence. A user
writes one code—typically an SQL code—and that code is optimized
to run over the particular data set, using the hardware available
in the best way possible. In theory, a database engine should be
able to produce an optimized implementation targeted at the data/
hardware, whether the data are small enough to fit in RAM, or huge
and must be buffered in secondary storage.

Limitations of current ML systems. This contrasts with special-
purpose ML systems such as TensorFlow and PyTorch, which are
built to make a very specific class of computation run easily and fast.
These systems are optimized for so-called data parallel learning. In
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data parallel learning, each site maintains a complete copy of the
model, and each site uses it own subset of the data to perform a
portion of the computation required to update the model, typically
by computing a gradient of a loss function, with respect to the
local data. Simple data parallel learning has significant limitations.
Data parallel learning does not work for very large models, where
the model plus various intermediate results cannot fit on a single
compute site. This increasingly looks like a fundamental limitation,
especially for transformers [44] (such as BERT [18] or GPT-3 [15])
which seem to get better as they are made larger and fed huge data
sets—trillion parameter models are not out of the question [33].

A database engine as a mathematical computing engine. Sur-
prisingly, it is easy to get a database engine to run the sort of
computation required for high-performance ML. Consider the ven-
erable matrix multiply, which serves as the workhorse of modern
ML. We lightly augment a database system with MATRIX types
and store two large matrices “tiled” into 2000 × 2000 chunks:
A(tileRow INT, tileCol INT, mat MATRIX[2000][2000])
B(tileRow INT, tileCol INT, mat MATRIX[2000][2000])

Then a simple SQL code specifies a distributed matrix multiply:
SELECT A.tileRow, B.tileCol,

SUM (matrix_multiply (A.mat, B.mat))
FROM A, B
WHERE A.tileCol = B.tileRow
GROUP BY A.tileRow, B.tileCol

While a database may be able to run this computation well, the
set of implementations available to a relational database engine does
not always allow it to perform optimally. The fundamental problem
with executing such a computation on a relational engine is that
the join and the aggregation are treated as separate computations,
and not a single computation to be optimized. For example, in a
distributed system with𝑚 sites, a communication-optimal matrix
multiplication algorithm [11] (see Section 2) must replicate data
during the join in such a way that the join’s communication cost
is𝑚

1
3 times higher than a join that simply co-partitions A and B

on the join key. In return for this additional cost, the subsequent
aggregation is a factor of at least 𝑚

2
3 less expensive (in terms of

communication) than the aggregation that a database system would
run, resulting in a much less expensive computation overall.
Two-phase execution of aggregated join trees. We propose a
new strategy for executing relational computations in a distributed
environment. Our ideas are designed for numerical or ML compu-
tations such as the matrix multiply described above, though they
could be applied to any relational computation over large objects.

We explore the idea of two-phase execution of aggregated join
trees. An “aggregated join tree” is a relational expression consisting
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Figure 1: 3x3x3 Kernel applied to 3-dimensional data.

of zero or more joins followed by an (optional) aggregation. Many
numerical and ML computations—such as a matrix multiply—are
naturally expressed as one or more aggregated join trees computed
over tuples containing vectors or matrices.

In two-phase execution, the aggregated join tree is run twice.
During the first phase—called the pilot phase—the aggregated join
tree is executed over tuples where the payloads have been stripped
out; that is, it is executed over tuples that contain only the keys
necessary to collect lineage information describing how the tuples
are linked together by the computation. The pilot run is followed by
an optimization procedure where the full distributed computation
is carefully planned so as to minimize the communication overhead.
Finally, the execution phase is run, where the planned distributed
computation is executed. For large tuples where the numerical
payload is a considerable fraction of the tuple—in our tiled matrix
multiply, the payload is 99.9998% of the total tuple—the cost of the
pilot phase is negligible, and the savings can be considerable.

Our contributions. Our work has several specific contributions.
• We propose the idea of two-phase execution of aggregated
join trees. While others have considered the idea of two
phase-execution of single joins [41], and optimal data place-
ment for distributed aggregations [36], we are the first to
consider such ideas for numerical/ML computations.
• We propose a heuristic procedure for optimizing the compu-
tation and communication plan for an aggregated join tree,
with a focus on numerical computations over dense data
(which is typical in neural networks).
• We implement our ideas on a relational engine.We show that
the optimization procedure can beat many special-purpose
ML and distributed computing softwares.

2 AGGREGATED JOIN TREES: BASICS
2.1 The Importance of Aggregated Join Trees
As mentioned in the introduction, an aggregated join tree is a re-
lational algebra (RA) expression where sub-expression containing
zero or more joins is fed into an (optional) grouping and aggrega-
tion.
Example: FFNNLearning.Aggregated join trees are foundwidely
in ML. Consider the computation of a feed-forward neural net-
work (FFNN) with one hidden layer, over a matrix of input vectors:
𝑓ffnn (X) = 𝑓2

(
W2 𝑓1 (W1X)

)
Here, X is a matrix of feature vec-

tors, where if x𝑖 is a the 𝑖th feature vector (a column vector), then
X = [x1, x2, ...]. W1 and W2 are weight matrices, and 𝑓1 and 𝑓2

Input Matrix

Kernel

Output Matrix

Figure 2: 2x2 convolution kernel applied onto a 4x4 matrix
split into 2x2 blocks. The grayed out areas are used generate
the middle element of the output.

are activation functions. Typically, 𝑓1 would be a rectifier (ramp or
ReLU), and 𝑓2 would compute a softmax in the case of classification.

Several different aggregated join trees are required to implement
FFNN learning. Most obviously, during inference (or during the
forward pass of the backpropagation algorithm), thematrixmultiply
W1X must be computed. But there are additional aggregated join
trees that are not matrix multiplies, that must be computed during
learning. Let us consider the weight update for an FFNN in iteration
𝑖 , followed by the activation calculation for iteration 𝑖 + 1, which
will be performed during gradient descent:

W(𝑖+1)1 ←W(𝑖)1 − [∇W(𝑖 )1
; A← 𝑓1

(
XW(𝑖+1)1

)
Here, W(𝑖)1 and W(𝑖+1)1 are the versions of weight matrix W1 in
iteration 𝑖 and 𝑖 + 1, ∇W(𝑖 )1

the gradient of the weight matrix, [ the
learning rate, and A the activation matrix we are computing.

Assuming a similar schema to the one from the introduction,
this computation can be performed using the following SQL:
SELECT x.tileRow, wi.tileCol, 𝑓1(SUM
(matrix_multiply (x.mat, wi.mat - [ dwi.mat )))

FROM W(𝑖 ) wi, ∇(𝑖 )W dwi, X x
WHERE wi.tileRow = dwi.tileRow AND

wi.tileCol = dwi.tileCol AND
x.tileCol = wi.tileRow

GROUP BY x.tileRow, wi.tileCol

This is, by definition, an aggregated join tree. A join of the three
tablesW(𝑖) , ∇(𝑖)W , and X is followed by an aggregation.
Example: Convolutions. A convolution is a filter that extracts
low-dimensional features from input data, commonly used in image
or audio processing. A convolution is a 𝑑-dimensional tensor that
“slides” over a 𝑑-dimension tensor; at each point as the filter “slides”
over the input tensor, a dot product is computed between the filter
and the current portion of the input that is covered by the filter.
Figure 1 illustrates a three-dimensional filter.

A distributed convolution can be challenging to compute. The
the input data being filtered can be very large. For example, a
three-dimensional tensor with a length of just 2000 along each
axis would roughly be 32GB in size. In this case, it makes sense to
decompose the input tensor into blocks or tiles, as in the matrix
multiply example. Once the input tensor has been decomposed, the
filter needs to have access values (or pixels) are in neighboring tiles
to compute the convolution. Figure 2 illustrates the problem for the
case of 2D convolution. To enable the sliding of the filter over the
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four pixels in the center of the image, the four tiles adjacent to the
center of the image must be re-composed.

The composition of tiles during a distributed convolution natu-
rally gives rise to an aggregated join tree. When the 𝑑-dimensional
data to be filtered are decomposed into tiles along a rectilinear grid,
a 2𝑑 -way join is required to compute the set of 2𝑑 tiles adjacent to
each vertex in the grid. This forms a set of larger, overlapping tiles.
Then, the filter is run over each of those larger, overlapping tiles,
leaving a “halo” so that the convolution is never run at more than
one position in the original grid.

Note that if the filter itself is also decomposed, an additional
join and an aggregation would be needed—a join to link each sub-
filter to each larger, overlapping tile, and an aggregation to sum the
results of the various sub-filters.

Aggregated Join Trees and Einstein Notation. For more evi-
dence of the centrality of aggregated join trees to ML computations,
consider the Einstein notation, which has become a standard ten-
sor manipulation language (see, for example [4]). Variants of the
Einstein notation are supported by both TensorFlow and PyTorch.
Einstein notation allows one to express the computation of a ten-
sor as an implicit summation indices listed in the expression. For
example, A𝑖 𝑗B𝑖 𝑗 is Einstein notation for the (double) dot product
of A and B. This double dot product can be expressed as an aggre-
gated join tree, as the SQL code joins the two matrices and then
aggregates:
SELECT SUM (sum_elements (hadamard_product
(A.mat, B.mat)) FROM A, B
WHERE A.tileCol = B.tileCol AND

A.tileRow = B.tileRow

In fact, every expression in the Einstein notation can be imple-
mented relationally as an aggregated join tree. Intuitively, a set of
joins are used to link up the terms in the expression, followed by an
aggregation to perform an explicit summation; see the discussion
in Yuan et al [47].

2.2 Options for Computing Agg’ed Join Trees
Efficient computation of aggregated join trees is difficult, both for
classical, relational systems, and newer, ML systems.

Consider, for example, the matrix multiply XW1 in the FFNN
example of the previous subsection. In a system like TensorFlow,
the weight matrix W1 is broadcast to the various sites, each of
which has a subset of the vectors x1, x2, .... LetX𝑖 denote the matrix
containing the list of feature vectors located at site 𝑖 . After broadcast,
the product X𝑖W1 is computed locally at each site. Logically, this
now completes a distributed matrix multiply, as each site has a
subset of the columns of XW1.

In database terms, the data parallel matrix multiply mentioned
above is a broadcast join, where the the mini-batch matrix is sharded
across sites and weight matrixW1 is broadcast to each site. If the
weight matrix has 𝑁𝑤 bytes and the mini-batch matrix has 𝑁𝑥

bytes, in a system with𝑚 sites, the communication cost is:

Costbcast =𝑚 × 𝑁𝑤 + 𝑁𝑥 .

A database system running this computation as an aggregated
join tree can do better. If we decompose both matrices into tiles,
a database may instead decide to run the join by co-partitioning

Figure 3: The 3D matrix multiply algorithm, on 𝑚 = 83

sites. First, A and B are both replicated 8 times across the
83 sites, and a local matrix multiply is run, followed by ag-
gregation/reduce.

one matrix on tileCol and the other on tileRow, then joining
the partitioned matrices locally. The communication cost for the
join is 𝑁𝑤 + 𝑁𝑥 . But the join must be followed by a distributed
aggregation that requires data to be shuffled. If the output matrix
size is 𝑁𝑜 and there are 𝑐 tiles horizontally in X vertically in W1,
then the aggregation cost is 𝑐 ×𝑁𝑜 bytes, for a total communication
cost, in bytes, of:

Costcopart = 𝑁𝑤 + 𝑁𝑥 + 𝑐𝑁𝑜
Consider the realistic case of a 50-thousand input dimensional

feature vector, a size 1000 mini-batch, and a hidden layer with 212

neurons. Assuming single-precision floating point numbers, we
have 𝑁𝑤 = 800 MB, 𝑁𝑥 = 200 MB, and 𝑐 = 50. If we have 32 nodes
in a distributed system, the total communication cost Costbcast is
25.6 GB, whereas Costcopart is 800+200+50×16 MB = 1.8 GB. That
is, such a matrix multiply costs less than one fourteenth as much
(in terms of communication) as the same multiplication run in the
standard, data parallel way.

2.3 Roadblock to an Optimal Solution
However, neither of these two options is optimal. In fact, both
options can be many times worse in terms of communication and
memory performance than an optimal algorithm.

Consider a matrix multiply of two, 8 × 104 by 8 × 104 matrices
tiled as above. 𝑐 , the number of row-tiles for the first input matrix,
is 80. In this case, both of the above algorithms will perform poorly.
The standard “co-partition join plus aggregation” implementation
will transmit more than 2 TB of data. The data parallel, broadcast
join is more efficient, transmitting 819 GB of data. Were we to use
a classical distributed matrix multiply algorithm—such as the 3D
algorithm (Figure 3) [11], which is asymptotically optimal in terms
of communication—we could get this cost down to only a bit more
than 243 GB of data transmitted.

The 3D algorithm replicates each tuple in X andW1 𝑚
1
3 times

during the join—that is, it does not process each tuple with the same
x.tileCol value and w1.tileRow value at the same node, but
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spreads the work around the cluster. In effect, the 3D algorithm is
making the join𝑚1/3 more expensive than it needs to be. But this
radically reduces the amount of intermediate data that needs to
be shuffled during the aggregation from 𝑐𝑁𝑜 bytes to𝑚

1
3𝑁𝑜 bytes

(note that 𝑐 should be larger than𝑚 to ensure that each process has
work to do during the join). By running a sub-optimal join algorithm
(whose communication cost is𝑚

1
3 higher than the database join)

the 3D algorithm has managed to place its data so that the cost of
the aggregation is significantly reduced.

Unfortunately, a database cannot do this, as a database considers
the join and the aggregation to be two separate operations. No
classical relational engine would choose to increase the cost of
the join by a polynomial factor to make a subsequent aggregation
inexpensive.1

2.4 Optimizing Aggregated Join Trees
One could simply implement the 3D algorithm on top of a database.
But this does not generalize to other aggregated join trees. Thus, we
propose an alternative execution strategy for executing aggregated
join trees over large objects, such as a matrix tiles. We would ideally
like to run a distributed execution plan that is instance optimal [20]
in terms of the the overall runtime, approximated by some cost
function. Instance optimality is a high bar: it means that for every
aggregated join tree, our system would execute the tree in time that
is no more than a constant factor greater than the minimum time to
execute that tree. In fact, developing any algorithm that is instance
optimal in the general case seems difficult. Had we removed the
GROUP BY from the SQL code for the matrix multiply, a classical
hash partition join whose local output is pre-aggregated and then
sent over a network is close to optimal; adding the GROUP BY
requires that we switch to a completely different algorithm.

Therefore, we mitigate the problem, by first running the ag-
gregated join tree over data whose payload has been removed,
collecting perfect lineage information, under the theory that for
numerical computations, running the tree with only keys is mostly
costless. We then run an optimization procedure using the collected
linage. Thus, rather than developing an algorithm that is instance
optimal, we instead collect the data necessary to plan an optimal
execution.

3 AGG’ED JOIN TREES: FORMALITIES
Let R0,R1, ..., R𝑖 be a set of input relations to an aggregated join
tree. Assume each relation 𝑅𝑖 has the following schema:

R𝑖 (keyAtt1,keyAtt2, ...,payAtt)
Assume that we can partition input relation attributes into a set
of “key” attributes and a “payload” attribute. Key attributes are
referenced by join predicates or GROUP BY clauses. For each base
relation, the set of key attributes together provide a candidate key
for the relation.2 The payload stores the data that is to be operated
over. This partitioning into key attributes and a payload attribute is
1Note that classical ideas in database systems such as pipelining and utilizing “inter-
esting” sort orders [22, 45] do attempt to realize performance gains by relaxing the
isolation of various operations, but these ideas do not go as the pre-placement of tuples
for efficient aggregation in the 3D algorithm.
2This is necessary so that we can uniquely track the tuple during a lineage computation;
if necessary, a surrogate key attribute can be added to uniquely identify each tuple.

ubiquitous in ML and distributed linear algebra computations. The
payload attribute can be dropped before a pilot run of the aggregated
join tree, leading to an inexpensive pilot computation, as moving
and operating over the payload tends to dominate execution times.

While it would be possible to extend our ideas past numerical
computations, for simplicity, we assume that each payload attribute
stores a multi-dimensional array. As in [47] a payload attribute has
an associated array type that consists of:

(1) A rank 𝑟 ∈ Z∗
(2) A bound b ∈ (Z∗)𝑟 .

For two vectors u = ⟨𝑢𝑖 ⟩ and v = ⟨𝑣𝑖 ⟩, define u ≤ v ≡ ∧𝑖 (𝑢𝑖 ≤ 𝑣𝑖 ).
Define u < v similarly. Informally, we say that an array of rank 𝑟
is bounded by vector b if the array is 𝑟 dimensional, and for any
𝑟 -dimensional vector i that is less than the bound, arrayi returns
a real number. Formally:

(1) For any index i ∈ (Z∗)𝑟 , ®0 ≤ i < b =⇒ arrayi ∈ R.
(2) ¬(®0 ≤ i < b) =⇒ arrayi = ⊥. That is, for any index i

outside of the bound [®0, b], arrayi is undefined.
Subsequently, we denote the set of all arrays of rank 𝑟 and bound

b as𝑇 (𝑟,b) . Thus,𝑇 (𝑟,b) defines as array type. Each payload attribute
is assumed to implement an array type.

Given this, an aggregated join tree is an relational algebra ex-
pression generated by the following grammar:

Start→ΣG,F (Proj) | Proj
Proj→ΠK,P (JoinRes) | R𝑖

JoinRes→Proj 1B (Proj) |
(Proj) 1B Proj

Intuitively,G is a set of grouping functions,F if the themap and com-
bine function used to perform the aggregation, K is the functions
used to compute new key values in a projection, P is a mathemati-
cal kernel function, such as a convolution or a matrix multiply, and
B is the functions used to extract join attributes. In more detail:
(1) The grouping G = {𝑔1, 𝑔2, ...} compute each of the attributes
used to perform the grouping in the final aggregation. By definition,
any attribute examined by a grouping function is a key attribute,
and so each grouping function examines only the key attributes of
the relation to be aggregated.
(2) The two aggregation functionsF = {𝑓𝑚𝑎𝑝 , 𝑓𝑎𝑑𝑑 } are perform the
aggregation; 𝑓𝑚𝑎𝑝 is a kernel function that transforms the payload
attribute from the input relation into objects to be aggregated; 𝑓𝑎𝑑𝑑
is a kernel function that aggregates those objects. If the payload
attribute from the relation being aggregated is of type 𝑇 (𝑟in,bin) ,
then:

𝑓𝑚𝑎𝑝 : 𝑇 (𝑟in,bin) → 𝑇 (𝑟out,bout)

𝑓𝑎𝑑𝑑 : 𝑇 (𝑟out,bout) ×𝑇 (𝑟out,bout) → 𝑇 (𝑟out,bout)

The assumption is that 𝑓𝑎𝑑𝑑 is commutative and associative.
Aggregation operates by first partitioning an input relationR into

subsets R(1) ,R(2) , ... such that for two tuples t1 and t2 in R, t1 and
𝑡2 are in the same partition R( 𝑗) if and only if

∧
𝑖

(
𝑔𝑖 (t1) = 𝑔𝑖 (t2)

)
.

That is, two tuples are in the same partition if all of the grouping
functions return the same result for both t1 and t2.
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Then, for each partition R( 𝑗) having payload attribute values
{p1,p2, ...p𝑛} we compute one tuple twhere t.keyAtt𝑖 = 𝑔𝑖 (t′)
for arbitrary t′ ∈ R( 𝑗) , and t.payAtt =

𝑓𝑎𝑑𝑑

(
𝑓𝑚𝑎𝑝 (p1), 𝑓𝑎𝑑𝑑

(
𝑓𝑚𝑎𝑝 (p2), 𝑓𝑎𝑑𝑑

(
𝑓𝑚𝑎𝑝 (p3), 𝑓𝑎𝑑𝑑 (...)

)))
.

(3)K = {𝑘1, 𝑘2, ...} is a set of functions that compute the key values
of the tuples generated by the projection, where the 𝑗th key is
computed as 𝑘 𝑗 (t) over tuple t. Each of functions in set K only
make use of the key attributes in t.

(4) P : 𝑇 (𝑟lhs,blhs) ×𝑇 (𝑟rhs,brhs) → 𝑇 (𝑟out,bout) is a kernel function that
computes the payload of the tuples generated by the projection.
Since the projection is applied after a join, the function P is applied
to a join result, and operates over the payload attributes inherited
from the left and right joined tuples, to compute a single payload.

(5) B = { 𝑗𝑙 , 𝑗𝑟 } compute the join keys for the left and right input
relations, respectively. Let t𝑙 and t𝑟 be tuples from the left input
relation and right input relations to a join, respectively. The pair
of tuples is accepted if and only if 𝑗𝑙 (t𝑙 ) = 𝑗𝑟 (t𝑟 ). In this case,
the tuple t𝑙 ◦ t𝑟 is added to the output ( ◦ is concatenation). For
multi-key joins, the output from 𝑗𝑙 and 𝑗𝑟 will be vector-valued.

Re-consider matrix multiplication, performed over relations
R𝑋(XrowID, XcolID, Xblock)
R𝑌 (YrowID, YcolID, Yblock)

Here, Xblock and Yblock are 2 × 2 matrices, and hence both
have type 𝑇 (2, ⟨2,2⟩) , as depicted in Figure 4. The SQL for a matrix
multiplication of these relations is given as:
SELECT XrowID, YcolID, SUM(Xblock × Yblock)
FROM R𝑋, R𝑌
WHERE XcolID = YrowID GROUP BY XrowID = YcolID

This can be written as an un-nested aggregated join tree as follows:

S(XrowID,XcolID,Xblock,
YrowID,YcolID,Yblock) ← R𝑋 1B R𝑌

T(XrowID, YcolID, block)← ΠK,P (S)
U(XrowID, YcolID, block)← ΣG,F (T)

where:
• For the join, we have B = { 𝑗𝑙 , 𝑗𝑟 } where 𝑗𝑙 := (t) ↦→
t.XcolID and 𝑗𝑟 := (t) ↦→ t.YrowID.
• For the projection, to generate keys, we have K = {𝑘1, 𝑘2}
where 𝑘1 := (t) ↦→ t.XrowID and 𝑘2 := (t) ↦→ t.YcolID.
• For the projection, to generate payload attributes, we have
P : 𝑇 (2, ⟨2,2⟩) ×𝑇 (2, ⟨2,2⟩) → 𝑇 (2, ⟨2,2⟩) where P := (Xblock,
Yblock) ↦→ matMul(Xblock,Yblock).
• For the aggregation, to generate the grouping attributes,
we have G = {𝑔1, 𝑔2} where 𝑔1 : 𝑇 (2, ⟨2,2⟩) × 𝑇 (2, ⟨2,2⟩) →
𝑇 (2, ⟨2,2⟩) and 𝑔2 has the same type signature. 𝑔1 := (t) ↦→
t.XrowID and 𝑔2 := (t) ↦→ t.YcolID.
• To perform aggregation, F = {𝑓𝑚𝑎𝑝 , 𝑓𝑎𝑑𝑑 } where 𝑓𝑚𝑎𝑝 :
𝑇 (2, ⟨2,2⟩) → 𝑇 (2, ⟨2,2⟩) and 𝑓𝑎𝑑𝑑 : 𝑇 (2, ⟨2,2⟩) × 𝑇 (2, ⟨2,2⟩) →
𝑇 (2, ⟨2,2⟩) . Further, 𝑓𝑚𝑎𝑝 := (block) ↦→ block and 𝑓𝑎𝑑𝑑 :=
(Lblock, Rblock) ↦→ matAdd(Lblock, Rblock).

Two matrices:

𝑋 =


1 2 −1 −2
1 0 −1 0
0 1 0 1
1 2 −2 1


𝑌 =


2 3 1 0
1 1 1 1
1 2 −2 1
1 2 −1 −2


Stored relationally: R𝑋 =©«1, 1,

[
1 2
1 0

]ª®¬ , ©«1, 2,
[
−1 −2
−1 0

]ª®¬ , ©«2, 1,
[
0 1
1 2

]ª®¬ , ©«2, 2,
[

0 1
−2 1

]ª®¬


and R𝑌 =©«1, 1,
[
2 3
1 1

]ª®¬ , ©«1, 2,
[
1 0
1 1

]ª®¬ , ©«2, 1,
[
1 2
1 2

]ª®¬ , ©«2, 2,
[
−2 1
−1 −2

]ª®¬


Figure 4: Two matrices stored relationally.

4 COLLECTING LINEAGE IN A PILOT RUN
4.1 Goals and Practical Considerations
Our tactic is to execute the aggregated join tree twice. The first run
(the “pilot run”) is tasked with collecting lineage on the aggregated
join tree, which is used as input into an optimization problem. Data
lineage is commonly used by analytics systems to trace errors to
their cause [42], but knowing the lineage can also be used to avoid
unnecessary control-flow or I/O during an analytics workflow [41].

Computing lineage can be expensive, and researchers have done
much work attempting to compute and manage lineage inexpen-
sively [12], or to approximate it [42]. However, our problem is
amenable to brute force. The data sets we consider, while (possibly)
large, typically do not contain many tuples. A 105 × 105 matrix may
be 80GB in size, but tiled into 2000 × 2000 chunks, there are only
2500 individual tuples. Collecting exhaustive lineage information
on a computation over such data can be inexpensive, once we drop
the payload attributes, leaving only the (relatively small) keys.

To collect lineage or not? The pilot run and lineage collection
are often low cost compared to actually executing the aggregated
join tree. However, this is not always the case. For a large database
consisting of a large number of small tuples, the cost of linage col-
lection may be debilitating, and the ideas in this paper would be
inappropriate. A production system having both a classical rela-
tional engine as well as a special-purpose engine for aggregated
join trees would need to estimate the cost of the pilot run and
linage collection compared to the cost of running the computation
itself. If the former is much lower—say, less than 1% of the cost of
running the computation—then the ideas in this paper can be used.
Otherwise, classical implementation methods may be preferred.

4.2 Aggregated Join Tree Rewrites
To collect the necessary lineage, we first perform a simple set of re-
writes on the input RA expression to drop the payload and replace it
with lineage. Our goal is to produce two categories of information:

(1) We wish to know which tuples from the input relations are
in each each join group, defined as a set of tuples contributing
to a tuple produced by the join tree.
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(2) We wish to know which join groups contribute to each ag-
gregation group, defined as the set of tuples that contribute
to one of the groups output from the aggregation.

To compute the required information about the join groups and
the aggregation groups, we perform the following re-writes:

(1) Replace each reference to a base table R𝑖 in the RHS of an
operation with a reference to a new intermediate relation R′

𝑖
.

(2) Next, we add operations to drop the payload and replace it with
lineage. For each base relation R𝑖 (keyAtt1, keyAtt2, ..., payAtt)
that is in the query, we add an operation of the form R′

𝑖
(keyAtt1,

keyAtt2, ...,payAtt) ← ΠK,P , where K = {𝑓1, 𝑓2, ...} and 𝑓1 :=
(t) ↦→ 𝑡 .keyAtt1, 𝑓2 := (t) ↦→ 𝑡 .keyAtt2, and so on (that is, each
𝑓𝑖 simply returns the 𝑖th key attribute). Further P simply returns
a data structure holding this tuple’s lineage information. Assume
𝑠𝑖𝑡𝑒 (t) returns the site in the distributed system holding tuple t
and 𝑟𝑒𝑙 (t) returns the identity of the relation holding tuple t. Then
P := (t) ↦→ {(𝑟𝑒𝑙 (t),t.keyAtt1, t.keyAtt2, ..., 𝑠𝑖𝑡𝑒 (t))}. That
is, 𝑔 creates a data structure—a set with a single tuple—where the
set contains (i) the relation the tuple came from, (ii) the set of key
attributes for t, and (iii) the site where t is located.

(3) Next, we modify each projection that sits on top of a join, so that
it accumulates the lineage from the left and right sides. Specifically,
for each such projection of the form ΠK,P (.) in the original aggre-
gated join tree, we perform a simple re-write to obtain ΠK,P′ (.)
where P ′ := (LpayAtt,RpayAtt) ↦→ LpayAtt ⋓ RpayAtt.

(4) Finally, we modify the aggregation so that it also accumulates
lineage information, rather than applying kernel functions. For each
ΣG,F (.) in the original computation, we perform a re-write to ob-
tain ΣG,F′ (.)whereF ′ = {𝑓𝑚𝑎𝑝 , 𝑓𝑎𝑑𝑑 } such that 𝑓𝑚𝑎𝑝 (payAtt) ↦→
{payAtt} and 𝑓𝑎𝑑𝑑 (LpayAtt, RPayAtt) = LpayAtt ∪ RPayAtt.
Thus, the aggregation simply collects lineage information for all of
the tuples that contributed to the aggregation result.

4.3 Example Pilot Run
To illustrate a pilot run, consider the multiplication of the two
matrices, stored relationally, as depicted in Figure 4. We begin by
executing the first projection, which strips out the arrays, replacing
them with lineage information giving us

R′𝑋 =

{ (
1, 1,

{
(𝑋, 1, 1, 𝑠1)

})
,

(
1, 2,

{
(𝑋, 1, 2, 𝑠2)

})
,(

2, 1,
{
(𝑋, 2, 1, 𝑠3)

})
,

(
2, 2,

{
(𝑋, 2, 2, 𝑠1)

}) }
R′𝑌 =

{ (
1, 1,

{
(𝑌, 1, 1, 𝑠3)

})
,

(
1, 2,

{
(𝑌, 1, 2, 𝑠1)

})
,(

2, 1,
{
(𝑌, 2, 1, 𝑠2)

})
,

(
2, 2,

{
(𝑌, 2, 2, 𝑠1)

}) }
Note that the linage associated with each tuple includes (a) the
identifier for the relation it came from, (b) its complete set of key
attributes, and (c) the site where the tuple is currently stored. In
this example, there are three sites: 𝑠1, 𝑠2, and 𝑠3.

Next, we execute the join, followed by the re-written projec-
tion. This gives us the eight-tuple relation T(XrowID, YcolID,

lineage) where T ={ (
1, 1,

{
(𝑋, 1, 1, 𝑠1) , (𝑌, 1, 1, 𝑠3)

})
,

(
1, 2,

{
(𝑋, 1, 1, 𝑠1) , (𝑌, 1, 2, 𝑠1)

})
,(

1, 1,
{
(𝑋, 1, 2, 𝑠2) , (𝑌, 2, 1, 𝑠2)

})
,

(
1, 2,

{
(𝑋, 1, 2, 𝑠2) , (𝑌, 2, 2, 𝑠1)

})
,

(
2, 1,

{
(𝑋, 2, 1, 𝑠3) , (𝑌, 1, 1, 𝑠3)

})
,

(
2, 2,

{
(𝑋, 2, 1, 𝑠3) , (𝑌, 1, 2, 𝑠1)

})
,(

2, 1,
{
(𝑋, 2, 2, 𝑠1) , (𝑌, 2, 1, 𝑠2)

})
,

(
2, 2,

{
(𝑋, 2, 2, 𝑠1) , (𝑌, 2, 2, 𝑠1)

}) }
Finally, we execute the re-written aggregation, which gives us:{ (

1, 1,
{{
(𝑋, 1, 1, 𝑠1) , (𝑌, 1, 1, 𝑠3)

}
,
{
(𝑋, 1, 2, 𝑠2) , (𝑌, 2, 1, 𝑠2)

}})
,(

1, 2,
{{
(𝑋, 1, 1, 𝑠1) , (𝑌, 1, 2, 𝑠1)

}
,
{
(𝑋, 1, 2, 𝑠2) , (𝑌, 2, 2, 𝑠1)

}})
,(

2, 1,
{{
(𝑋, 2, 2, 𝑠1) , (𝑌, 2, 1, 𝑠2)

}
,
{
(𝑋, 2, 1, 𝑠3) , (𝑌, 1, 1, 𝑠3)

}})
,(

2, 2,
{{
(𝑋, 2, 2, 𝑠1) , (𝑌, 2, 2, 𝑠1)

}
,
{
(𝑋, 2, 1, 𝑠3) , (𝑌, 1, 2, 𝑠1)

}})}
This tells us, for example, that the aggregation group with key
XRowID = 1 and YColID = 2 is composed of two join groups.
The first is composed of two input tuples,

{
(𝑋, 1, 1, 𝑠1) , (𝑌, 1, 2, 𝑠1)

}
,

both located at site 𝑠1. The second is composed of two tuples{
(𝑋, 1, 2, 𝑠2) , (𝑌, 2, 2, 𝑠1)

}
, one located at site 𝑠2, and one at site 𝑠1.

5 OPTIMIZATION PROBLEM
5.1 Preliminaries
We now define the optimization problem that decides the placement
of join and aggregation groups. We begin by assigning each join
group an identifier (an integer from 1 to the number of join groups)
and we similarly assign each aggregation group an integer identifier.
We then encode the lineage using the following variables:

(1) 𝐿 (𝑖)𝑡𝑠 = 1 if tuple 𝑡 of R𝑖 is located on site 𝑠; 𝐿 (𝑖)𝑡𝑠 = 0 if not.
(2) 𝐽 (𝑖)

𝑡 𝑗
= 1 if tuple 𝑡 of R𝑖 is in join group 𝑗 ; 𝐽 (𝑖)

𝑡 𝑗
= 0 if not.∑

𝑗 𝐽
(𝑟 )
𝑖 𝑗

takes a value from zero to the number of join groups.
(3) 𝐺 𝑗𝑔 = 1 if join group 𝑗 is in aggregation group 𝑔; 𝐺 𝑗𝑔 = 0 if

not. Note that
∑

𝑗 𝐺 𝑗𝑔 is always one.
To assign the join groups and aggregation groups to sites where

they can be processed, we need to create two mappings. One map-
ping relates the identifier for each join group to a site, and another
relates the identifier for each aggregation group to a site; we define
the following variables to represent the assignment:

(1) 𝑋 𝑗𝑠 = 1 if join group 𝑗 is mapped to site 𝑠; else 𝑋𝑖𝑠 = 0.
(2) 𝑌𝑔𝑠 = 1 if aggregation group 𝑔 is mapped to site 𝑠; else

𝑌𝑔𝑠 = 0.
A compute plan is defined as a set of assignments over all𝑋 𝑗𝑠 and

𝑌𝑔𝑠 ), given the constraint that for each 𝑗 ,
∑
𝑠 𝑋 𝑗𝑠 is one (each join

group is assigned to one site), and
∑
𝑠 𝑌𝑔𝑠 is one (each aggregation

group is assigned to one site). Many possible plans may meet these
constraints. To choose one to execute, we introduce a cost model
that approximates the time it will take to run a particular plan.
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5.2 Modeling the Costs
Executing an aggregated join tree incurs multiple transfer costs, as
well as various compute costs. The engine first needs to transfer
the required payload values to the site(s) that need to join them. We
denote the time it takes to complete this transfer as 𝑇𝐹 . Now that
a site has all the required tuples, it can apply the series of kernel
functions required transform the payload values so that they can be
aggregated. We denote that time it takes to do that as 𝑇𝜋 . Next, we
shuffle the output payloads to the sites where the final aggregations
are computed; we denote this time as 𝑇𝑔 . And finally, the tuples
need to be aggregated. We denote this time as𝑇Σ. In our cost model,
we make the simplifying assumption that all the steps involved in
processing the query happen sequentially. This means that the total
time to finish the query is

𝑇 = 𝑇𝐹 +𝑇𝜋 +𝑇𝑔 +𝑇Σ
In the ideal case, each stage’s workload will be perfectly bal-

anced across sites.Unfortunately, that is not always achievable. For
example, it might be that the initial placement had all input data on
only one site, and hence, the cost to move it is very high, whereas
the compute cost is low. Thus, we estimate each stage’s time by
using the approximated time of the site with the costliest workload.
Let𝑇 (𝑠)

𝐹
,𝑇 (𝑠)𝜋 ,𝑇 (𝑠)𝑔 and𝑇 (𝑠)Σ be the times of each stage executed on

site 𝑠 . The total time becomes :
𝑇 = max

𝑠
𝑇
(𝑠)
𝐹
+max

𝑠
𝑇
(𝑠)
𝜋 +max

𝑠
𝑇
(𝑠)
𝑔 +max

𝑠
𝑇
(𝑠)
Σ (1)

Next, we need a way to estimate the communication cost. The
cost for transferring a single payload𝑀 bytes in size can be modeled
as a linear function 𝑘𝑀 + 𝑐 where 𝑘 is the time that grows in
proportion to the size of the tuple, and 𝑐 is the latency. Assuming
that the payload is large, we drop the constant, and our transfer cost
is 𝑘𝑀 . The constant 𝑘 is easily approximated by running a small
network transfer benchmark as the system is brought online. Using
this approximation, we define time it takes to send a tuple of the
relation R𝑖 across the network as 𝑡 (𝑖)

𝐹
= 𝑘 × payload_size(R𝑖 )

and we define the time it takes to send the output of a join group
to be aggregated as 𝑡𝑔 = 𝑘 × payload_size(T). Here T is the
relation corresponding to the result of executing the kernel function
𝑓𝑚𝑎𝑝 on a join group, and so payload_size(T) corresponds to
the output size of an array resulting from executing 𝑓𝑚𝑎𝑝 . See the
note at the end of this subsection regarding the computation of this
size.

Let 𝑡𝜋 be the time it take to process a join group. This includes
the time to perform all kernel functions specified in the aggregated
join tree on a single join result, up to and including the extraction
kernel 𝑓𝑚𝑎𝑝 . The time to process all join groups on a site 𝑠 is:

𝑇
(𝑠)
𝜋 =

∑
𝑗

𝑡𝜋𝑋 𝑗𝑠 (2)

Similarly let 𝑡Σ be the time it takes to aggregate a payload (this is
the time required to execute the kernel function 𝑓𝑎𝑑𝑑 . The time to
aggregate all payloads on particular site 𝑠 can be calculated as:

𝑇
(𝑠)
Σ =

∑
𝑔

𝑡Σ𝑌𝑔𝑠 (3)

Next, we need to establish the time it takes a particular site 𝑠 to
receive the input tuples required to compute all join groups. To do

that we define the variable 𝑍 (𝑖)𝑡𝑠 = 1 if 𝐿𝑡𝑠 = 0 and (∃ 𝑗), 𝑋 𝑗𝑠 𝐽𝑡 𝑗 = 1;
𝑍𝑡𝑠 = 0 if otherwise. The variable 𝑍 (𝑖)𝑡𝑠 tells us whether tuple 𝑡 from
relation R𝑖 needs to be transferred to site 𝑠 .

For every input tuple not co-located with join group, we incur a
cost of 𝑡 (𝑖)

𝐹
. The total time can therefore be expressed as:

𝑇
(𝑠)
𝐹

=
∑
𝑖

𝑡
(𝑖)
𝐹

∑
𝑡

𝑍
(𝑖)
𝑡𝑠 (4)

Similarly for each joined record that is not located at the site where
it needs to be aggregated we incur a cost of 𝑡𝑔 . Therefore for each
aggregated record we need to examine the location of the joined
record and increment the cost accordingly. The total time it takes
for a site 𝑠 to fetch all the required records for the join group is
given as:

𝑇
(𝑠)
𝑔 =

∑
𝑔

𝑌𝑔𝑠

∑
𝑗

𝐺 𝑗𝑔 (1 − 𝑋 𝑗𝑠 )𝑡𝑔 (5)

To find the optimal plan we need to minimize the total time with
respect to 𝑋 and 𝑌 . If we were to substitute equations (2), (3), (4),
(1) into equation (1) we get that total time we want to minimize is:

min
𝑋,𝑌

𝑇 = min
𝑋,𝑌
⟨max

𝑠

∑
𝑗

𝑡𝜋𝑋 𝑗𝑠 +max
𝑠

∑
𝑔

𝑡Σ𝑌𝑔𝑠+

max
𝑠

∑
𝑖

𝑡
(𝑖)
𝐹

∑
𝑡

𝑍
(𝑖)
𝑡𝑠 +

max
𝑠

∑
𝑔

𝑌𝑔𝑠

∑
𝑗

𝐺 𝑗𝑔 (1 − 𝑋 𝑗𝑠 )𝑡𝑔⟩ (6)

As mentioned previously, we need to assign each join group and
aggregation group to one site. This is expressed as the constraints:

∀𝑗,
∑
𝑠

𝑋 𝑗𝑠 = 1; ∀𝑔,
∑
𝑠

𝑌𝑔𝑠 = 1

Costing example. Let us continue with the example of Section
4.3, simplified a bit by removing he last four join groups and last
two aggregation groups, and consider the computation of the cost
of Equation 6. Consider a solution that assigns join groups(

1, 1,
{
(𝑋, 1, 1, 𝑠1) , (𝑌, 1, 1, 𝑠3)

})
,

(
1, 2,

{
(𝑋, 1, 1, 𝑠1) , (𝑌, 1, 2, 𝑠1)

})
to site 1,

(
1, 1,

{
(𝑋, 1, 2, 𝑠2) , (𝑌, 2, 1, 𝑠2)

})
to site 2, and(

1, 2,
{
(𝑋, 1, 2, 𝑠2) , (𝑌, 2, 2, 𝑠1)

})
to site 3, as well as agg group(

1, 1,
{{
(𝑋, 1, 1, 𝑠1) , (𝑌, 1, 1, 𝑠3)

}
,
{
(𝑋, 1, 2, 𝑠2) , (𝑌, 2, 1, 𝑠2)

}})
to site 2, and aggregation group(

1, 2,
{{
(𝑋, 1, 1, 𝑠1) , (𝑌, 1, 2, 𝑠1)

}
,
{
(𝑋, 1, 2, 𝑠2) , (𝑌, 2, 2, 𝑠1)

}})
to site 3. Now, consider the cost in Equations 2, 3, 4, and 5. The
cost in Equation 2 corresponds to the CPU time to process each
join group at each site; here, 𝑇 (1)𝜋 is 2𝑡𝜋 (because site 1 has two
join groups assigned), and 𝑇 (2)𝜋 = 𝑇

(3)
𝜋 = 𝑡𝜋 . Equation 3 gives the

aggregation time at each site. In this example, 𝑇 (0)Σ is 0 (site 1 has
no aggregation groups), whereas 𝑇 (2)𝜋 = 𝑇

(3)
𝜋 = 𝑡Σ (sites 2 and 3

have one aggregation group). Equation 4 is the cost to stage the
join groups at a site. For example, 𝑇 (1)

𝐹
is 2𝑇𝑓 , as two tuples must

be transferred to site 1 to be joined (we assume each input tuple

1234



has the same transfer cost). Site 3 has the same cost, but site 2 has
no transfer cost, as the two tuples for the join group assigned there
were originally located at site 2. Finally,𝑇 (1)𝑔 = 0 as no aggregation
occurs at site 1. But 𝑇 (2)𝑔 = 𝑡𝑔 as the input join groups for the
aggregation group assigned to site 2 are computed at site 1 (hence
a transfer cost of 𝑡𝑔) and site 2 (hence no transfer cost), respectively.
𝑇
(3)
𝑔 = 𝑡𝑔 since one of the input join groups is computed at site 1.
Next, we take the max over each site for each cost and get a final

cost of Equation 6 as 2𝑡𝜋 + 𝑡Σ + 2𝑇𝑓 + 𝑡𝑔 .

A note on computing costs. One requirement of this formulation
is the ability to estimate the various costs. We know that for a
given set of input types, dense kernel functions (matrix multiplies,
additions, convolutions, etc.) have very well-defined behavior, and
as previously stated, the payload attribute in each base relation is
of a known array type. Thus, it is possible to infer the array types
of all intermediate results and approximate the cost of computing
them. Hence, we can assume that reasonably accurate performance
models are present in the catalog and can power the optimization.

6 SOLVING THE OPTIMIZATION
It is possible to show that the optimization problem is NP hard,
as a polynomial-time solution could be used to solve the partition
problem in polynomial time.3

Thus, an optimal solution is not an option, and we consider a
greedy heuristic: assign join groups and aggregation groups to
sites, one-at-a-time, until we have assigned all join and aggregation
groups. Eventually, we arrived at two rules used to assign join and
aggregation groups to sites, greedily one-at-a-time:

(1) Rule 1: “Put join groups where they are aggregated.” Let 𝑃 =

(𝑋,𝑌 ) be the current plan. Let 𝑔 be some un-assigned aggregation
group, and 𝑗1, 𝑗2, ..., 𝑗𝑚 be all the join groups that contribute to 𝑔.
For each site 𝑠 we create a new plan 𝑃 (𝑠) = (𝑋 (𝑠) , 𝑌 (𝑠) ) by first
setting 𝑋 (𝑠) = 𝑋 , 𝑌 (𝑠) = 𝑌 , and then setting 𝑌 (𝑠)𝑔𝑠 to 1 and 𝑋 (𝑠)

𝑗𝑠
to 1

for 𝑗 ∈ { 𝑗1, 𝑗2, ..., 𝑗𝑚}. Next for each plan 𝑃 (𝑠) we calculate the cost,
and return 𝑃 (𝑠∗) , the plan with the lowest cost.

(2) Rule 2. “Put the join groups close to their input tuples.” Let
𝑃 = (𝑋,𝑌 ), 𝑔, and 𝑗1, 𝑗2, ..., 𝑗𝑚 be defined as above. There are two
cases. If there is an unassigned join group 𝑗 ∈ 𝑗1, 𝑗2, ..., 𝑗𝑚 , we assign
it greedily. For each site 𝑠 we create a new plan 𝑃 (𝑠) = (𝑋 (𝑠) , 𝑌 (𝑠) )
by first setting 𝑋 (𝑠) = 𝑋 , 𝑌 (𝑠) = 𝑌 , and then setting 𝑋 (𝑠)

𝑗𝑠
to 1. Next

for each plan 𝑃 (𝑠) we calculate the cost, and return 𝑃 (𝑠∗) , the plan
with the lowest cost. Otherwise, if there is not an un-assigned join
group contributing to 𝑔, take the unassigned aggregation group 𝑔
and create 𝑃 (𝑠) for each 𝑠 as above, but this time setting 𝑌 (𝑠)𝑔𝑠 to 1
instead of 𝑋 (𝑠)

𝑗𝑠
to 1 when generating a candidate plan. The return

𝑃 (𝑠∗) , the plan with the lowest cost. Note that as the aggregation
group is not assigned whenwe greedily assign join group, we do not
take into consideration the cost 𝑇Σ, as it is not possible to estimate.

Rule 1 is designed to accommodate the case where getting the join
results to the aggregation site is expensive. Rule 2, on the other
3The partition problem is defined as: Given a multi-set of positive numbers 𝑆 , partition
𝑆 into two subsets, such that the largest sum over the subsets is minimal

1: procedure Greedy Planner
2: Output
3: 𝑋 Join group assignment
4: 𝑌 Aggregation group assignment
5: 𝑋 𝑗𝑠 ← 0 (∀𝑗, 𝑠); 𝑌𝑔𝑠 ← 0 (∀𝑔, 𝑠)
6: while (∃𝑔),∑𝑠 𝑌𝑔𝑠 = 0 do
7: choose 𝑔 where

∑
𝑠 𝑌𝑔𝑠 = 0

8: 𝑋1, 𝑌1 ← Rule1(𝑔,𝑋,𝑌 )
9: 𝑋2, 𝑌2 ← Rule2(𝑔,𝑋,𝑌 )
10: if cost(𝑋1, 𝑌1) ≤ cost(𝑋2, 𝑌2) then
11: 𝑋 ← 𝑋1; 𝑌 ← 𝑌1
12: else
13: 𝑋 ← 𝑋2; 𝑌 ← 𝑌2

Figure 5: Greedy planning algorithm.

hand, tries to handle the case where input tuples are expensive to
transfer to the join location, or it is more favorable to balance the
workload by assigning joined records evenly across sites.

The greedy algorithm is given in in Figure 5. Note that we can
incrementally calculate the cost of the new plan during the greedy
iterations. The greedy algorithm therefore has a overall running
time of𝑂 (𝑁𝑔𝑁𝑠𝑁 𝑗 ), where 𝑁𝑔 is the number of aggregation groups,
𝑁𝑠 number of compute sites and 𝑁 𝑗 the average number of join
groups per aggregation group.

7 IMPLEMENTATION DETAILS
Once a plan has been developed, running that plan differs from
classical relational processing in that there is no longer a tree with
𝑛 joins, followed by an aggregation. Instead, at each site, there is a
single 𝑛-way join, followed by a distributed aggregation. Now, we
briefly describe a few of the implementation details.

7.1 Initial Distribution of Plan and Data
Once the pilot run has completed, there is no reason to retain the
original key attributes in input tuples, nor do we need to re-use the
grouping functions inG, the join key functions in eachK associated
with a join, etc, during the execution of the aggregated join tree.
Instead, recall that during the optimization phase, the collected
lineage was used to map each input tuple to an integer identifier.
The actual computation of the aggregated join tree begins with
each tuple being read from storage and sent over the network to
the location(s) where it will contribute to one or more join groups.
As the tuples are read but before they are transmitted, the set of
key attributes is replaced with that integer identifier, and the result
is sent over the wire.

Each site is also sent the relevant subset of the solution to the
optimization problem, as a set of tuples of the form

(⟨id1,id2, ...,id𝑛⟩, join group identifier, aggregation site,
aggregation group identifier)

where 𝑛 is the number of input relations. The tuple corresponds
to a join group sent to the site, and communicates the list of input
tuples (one from each input relation) that contribute to the group,
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where to send the group for final aggregation, and the aggregation
group.

Finally, each site hosting an aggregation group is sent a tuple
(grouping attributes, aggregation group identifier)

that tells the site the set of grouping attributes for that aggregation
group (that is, the output of the functions in G) so that the site can
map the group identifier back to the actual grouping attributes.

7.2 Executing the Joins
Each join group consists of 𝑛 tuples over which a computation must
be performed, where 𝑛 is the number of tables being joined in the
aggregated join tree. After the optimization problem of the prior
section is solved and the aggregated join tree is to be executed,
each tuple is sent to the site(s) where some join group requiring
the tuple are located. Each machine will typically have multiple
join groups mapped to it, and the tuples for those join groups will
be received asynchronously, in an arbitrary order. A site needs to
receive those tuples and group them according to the join group
identifier, applying the required kernel function(s) over the tuples’
payloads. Essentially, each site is running an 𝑛-way join, where 𝑛
tuples join if they all belong to the same join group.

Because the computation of an aggregated join tree often has a
high CPU cost, it is important that the join be non-blocking, so that
expensive kernel functions (matrix multiplies, convolutions, etc.)
can be executed as soon as required tuples arrive at a site. There is
classic work on non-blocking join algorithms, such as the ripple
join [23]. A ripple join would address the CPU utilization problem
as it would produce results early, which could then be passed to the
kernel functions. However, the classical hash ripple join is designed
only for binary equijoins—we need to support 𝑛-way joins. Also, we
have lineage information indicating how the tuples link together.

As such, we modify the ripple join, for use with aggregated
join trees. During the distribution of the plan, when a list of tuple
identifiers ⟨id1,id2, ...,id𝑛⟩ that participate in a join group is is
received at a site, an array of 𝑛 bits for that join group is created,
set to all 0’s initially. When a tuple is received at a site, a lookup
table is used to see which join groups it is associated with, and
the appropriate bit is flipped to 1 for each such join group. If any
join group has all 1’s, all of the constituent tuples have arrived at
the site, and they can be processed using the appropriate kernel
functions.

8 EXPERIMENTS
8.1 Overview
In this section, we detail the experimental evaluation of our ideas,
intending to answer the following questions:
• Can the ideas described in this paper be used to improve
how relational systems execute and scale ML computations?
• How does our relational approach compare to the state of
the art linear algebra frameworks such as ScaLAPACK and
ML systems such as PyTorch?
• How well do the two greedy rules work?

Aggregated join tree implementation.We implement all of the
ideas in this paper on top of PlinyCompute [48], which is a high-
performance distributed relational engine. In our PlinyCompute
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Figure 6: Distributed matmul run time, in seconds. The ma-
trices are split into 10𝑘 × 10𝑘 , 2𝑘 × 2𝑘 and 4𝑘 × 4𝑘 blocks.

Table 1: Distributed matmul, with an without ripple join;
comparison with ScaLAPACK.

Distributed Matrix Multiply
Cluster Size Ripple Join w/o Ripple Join ScaLAPACK

5 64.20s 70.98s 66.11s
10 39.67s 49.97s 37.05s
15 31.54s 43.99s 28.30s

implementation, the tuples containing keys and payload attributes
(multi-dimensional arrays) are implementated as C++ objects, and
the kernels that operate over the arrays are either Intel MKL [1]
operations or kernels borrowed from PyTorch [3].
Experimental environment. All of our experiments were run on
Amazon’s r5dn.2xlarge instances, except for our comparison
with ScaLAPACK (using matrix multiplication), where we used
r5d.2xlarge instances that have a slower, 10 Gb/s interconnect.
In this case, wanted to increase the importance of avoiding com-
munication. For the more ML-oriented data sets, we used instances
with a faster interconnect to benefit PyTorch, which makes full use
of the 25 Gb/s interconnect of the r5dn.2xlarge instances, as it
has to broadcast the whole model at every iteration. Both types of
instances have eight cores and 64GB of RAM, with a 300GB SSD.

When we report the time for the aggregated join tree implemen-
tation to complete a computation, the time includes (a) the pilot run,
(b) the time to plan, and (c) the time to perform the computation.

8.2 Experiments: Matrix Multiply
We begin with a series of experiments where a distributed matrix
multiply of two matrices of size forty-thousand by forty-thousand.
Each input matrix is stored as set of square blocks.

We first compare our approach to a textbook hash join, followed
by a hash aggregation (“NoPlan”). At the same time, we explore the
impact of splitting the matrix into larger and smaller block sizes as
well as the scalability of each approach. Execution times are given
in Figure 6. In all of our plots and tables, “Planning” refers to the
full implementation of the ideas described in this paper.
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Table 2: Rule 1 and Rule 2 on strip-based matmul.

Strip Matrix Multiply
N M K Number Strips Rule 1 Rule 2 Full

Cluster with 5 workers
320K 2K 3K 80 10.16s 3.17s 3.10s
640K 2K 3K 160 19.05s 5.23s 5.21s

Cluster with 10 workers
320K 2K 3K 80 10.46s 2.63s 2.60s
640K 2K 3K 160 19.64s 3.62s 3.64
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Figure 7: Matmul algorithm runtimes, in seconds. For each
algorithm, we chose the optimal block size.

Table 3: Distributed matmul, only Rule 1, only Rule 2.

Distributed Matrix Multiply
Cluster Size Rule 1 Rule 2

5 61.12s 70.2s
10 39.14s 46.41s
15 27.17s 40.82s

Then, we run an experiment to determine how much of the
performance on a distributed matrix multiply is related to the use
of a non-blocking implementation. In Table 1 we show the time
required to complete the distributed matrix multiply with our ripple
join variant, and also using a traditional blocking hash join. Also
we compare our approach to Intel’s version of ScaLAPACK [6].
This is generally considered to be one of the fastest—if not the
fastest—distributed matrix multiplications available. ScaLAPACK
was initialized with the recommended block-cyclic layout.

We compare our implementation with other options for dis-
tributed matrix multiplication from the database literature, also
built on top of PlinyCompute. RMM and CPMM are distributed
matrix multiply algorithms proposed in the original SystemML
paper [21]. “BMM” is a Broadcast matrix multiply (this is the “ML
System” matrix multiply from Section 2). We attempted to compare
directly with SystemML (now called SystemDS) but it could not
scale to a matrix multiply of the size tested. We also compare with
the optimal, 3D matrix multiply; results are in Figure 7.

Table 4: BMM compared to planned matmul with non-
square matrices of size 𝑁 × 𝐾 and 𝐾 × 𝑀 into split 1𝑘 × 1𝑘
blocks.

Non-Square Matrix Multiply
N M K BMM Planning

Cluster with 2 workers
1K 1K 1000K 17.19s 5.03s
1K 40K 40K 16.98s 7.49s

Cluster with 7 workers
1K 1K 1000K 16.62s 2.99s
1K 40K 40K 16.87s 3.15s

Cluster with 16 workers
1K 1K 1000K 18.40s 2.50s
1K 40K 40K 19.78s 2.57s

Next, we examine the efficacy of optimization rules 1 and 2.
Whereas the prior experiment used both rules, we now re-run the
multiply, once using only rule 1, and a second time using only rule
2. The results can be seen in Table 3.

It is not always the case that distributed matrix multiplication is
applied to square tiles. Instead of splitting the input matrices into
regularly sized blocks, can split them into vertical and horizontal
strips of a specified width. This is a fairly common implementation
of the dot operator in ML systems [33]. We perform this experiment
using just optimization rule 1, just optimization rule 2, and also
using both rules. The results are given in the Table 2.

Finally, we multiply non-square matrices and compare with the
BMM algorithm, as BMM is clearly one of the best options for
square matrices. Results are given in Table 4.

Discussion. Planning before the execution of an aggregated join
tree results in a distributed compute platform whose performance
meets or exceeds the obvious alternatives. Our relational matrix
multiply implementation had performance nearly identical to the
state-of-the art, hand-coded Intel implementation. For square matri-
ces, the planning-based approach was consistently on-par with the
optimal 3D algorithm, and for larger clusters it was about twice as
fast as SystemML’s RMM and CPMM algorithms. For square matri-
ces, BMM was as fast as both 3DMM the planning-based method,
but BMM does not work well for other shapes.

Simply using a high-performance relational engine, withoutmod-
ification, to perform these sorts of computations is not adequate
(see Figure 6). Adding the pilot run, along with planning, results
in up to a 4× speedup. The biggest speedup occurs in the largest
cluster, with the largest tiles. The classical, relational implementa-
tion is severely constrained here, as there are only five XcolID
and YcolID values. Thus, a classical hash join cannot effectively
use more than five instances, as it cannot hash each input matrix
more than five ways.

The more targeted micro-benchmarks also show some interest-
ing results. For example, Rule 1 is important for the square-tile
matrix multiply (Table 3) because in this case, moving join results
to the location of the aggregation is so expensive. However, Rule 2
is important for the strip-based matrix multiply (Table 2) as the ag-
gregation is far less expensive. Crucially, the simple greedy solution
seems to be able to apply these rules correctly.
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8.3 Experiments: FFNN Learning
We begin with micro-benchmark for a computation of the form
(A + B) × C, as described in Section 2.1 of the paper. This is an
example of a matrix computation that must be performed when
implementing FFNN learning. The computation is run relationally
with and without planning. Results are given in Figure 8.

We then implement a distributed, two-layer feed-forward neural
network as a series of aggregated join trees. We perform both
forward and back-propagation over the AmazonCat-14K dataset [38,
39], a standard “extreme classification” dataset, so-called because
of the large number of input features (597540) as well as output
labels (14588). Let X be a matrix storing the input features, let Y
be the corresponding matrix of one-hot encoded labels. LetW(𝑖)1
and W(𝑖)2 be the weight matrix for layer 1 and layer 2 for iteration
𝑖 , and [ be the learning rate. Performing forward and backward
propagation of SGD requires the following computations:

a1 = 𝑓relu

(
XW(𝑖)1

)
; a2 = 𝑓sigmoid

(
a1W

(𝑖)
2

)
;

∇a2 = a2 − Y; ∇(𝑖)W2
= a𝑇1 ∇a2 ;

∇a1 = ∇a2W
(𝑖)
2

𝑇
◦ 𝑓 ′relu (a1) ; ∇(𝑖)W1

= X𝑇∇a1 ;

W(𝑖+1)1 = W(𝑖)1 − [∇
(𝑖)
W1

; W(𝑖+1)2 = W(𝑖)2 − [∇
(𝑖)
W2

;

Here, ◦ is the Hadamard product. Each of the equations can be
mapped to an aggregated join tree with the exception of ∇a1 . Here,
the equation has to be split into a binary join followed by an aggre-
gation for the matrix multiply ∇a2W

(𝑖)
2

𝑇
, and another binary join

for the Hadamard product with 𝑓 ′relu (a1).
We experiment with a relatively standard batch size (for a prob-

lem this size) of 1000 inputs records, as well as a larger batch size of
10000. For each batch size we vary the hidden layer size, between
4000 and 7000 neurons. We record the per-iteration running time
of both our aggregated join tree implementation, as well as the
per-iteration running time required for the equivalent PyTorch
implementation. The results are given in Figures 10 and 9. “FAIL”
means system failure, typically do to out-of-memory errors.

Discussion. the relational implementation avoided out-of-memory
problems and met or exceeded the performance of PyTorch.

On the neural network computation, the relational implementa-
tion was about as fast as PyTorch for two 2-instance cluster (size
1000 batch), but crucially PyTorch actually gets slower as more in-
stances are added. The problem is PyTorch’s use of what essentially
amounts to a broadcast join (see Section 2) which cannot obtain
distributed speedups, due to the naive communication pattern. On
the larger, 10000-sized batch neural network computation, the re-
lational and PyTorch implementations are closer in speed, as Py-
Torch’s communication pattern happens to be a better choice for
the larger data size. However, PyTorch has a significant problem
with out-of-memory failures—there is simply too much data for the
non-relational engine.

8.4 Experiments: 3D Convolution
In our last set of experiments, we run a distributed 3D convolution,
as described in Section 2. Our experiment applies ten 3x3x3 kernels
onto a sequence of seventy frames of a 1080x1920 colored video,
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Figure 8: (A+B) ×C with and without planning, where each
matrix is of size 40𝑘 × 40𝑘 . We report the running time, in
seconds, for three block sizes 1𝑘 × 1𝑘 , 2𝑘 × 2𝑘 and 4𝑘 × 4𝑘 .
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Figure 9: Feed-forward neural network training with differ-
ent hidden layer sizes from 4K to 7K with a 1K batch.
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Figure 10: Feed-Forward Neural Network training with dif-
ferent hidden layer sizes from 4K to 7K with a 10K batch.

meaning we have three input channels and ten output channels. We
split our volumetric data into 240 by 270 by 10 tiles. We compare our
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Table 5: Running time for 3D convolution.

3D Convolution
Number of Workers PlinyCompute PyTorch

2 8.92s 20.15s
5 5.34s 20.85s
10 4.63s 21.34s

results to a distributed implementation on PyTorch. For PyTorch,
we chose to split the computation on the output channels. To ensure
that PyTorch does not have an advantage only because it has a faster
kernel library, we used PyTorch’s tensor library ATen to provide
the 3D convolution kernel. We vary the number of instances and
report the execution times in Table 5.

Discussion.Here was again see a significant speedup over PyTorch.
PyTorch is not able to effectively use the larger cluster, whereas the
planning-based implementation shows a significant reduction in
running time as a larger cluster is used.

9 RELATEDWORK

Distributed learning systems. PyTorch [3] and TensorFlow [8]
rely on the parameter server architecture for data-parallel ML. The
parameter server is a key-value store that workers repeatedly access
to fetch or update the model [34]. Recent efforts such as ring-all-
reduce [5] recognize the potential scalability limitations of such an
approach and try to rectify it.

Approaches exist for training models larger than RAM, such as
pipelined model parallelism. This approach enables model partition-
ing across computing sites, with the limitation that the partitioning
can happen only at the operator level, usually a neural network
layer [28, 40, 46]. These methods borrow from pipelined parallelism
(or inter-operation parallelism) found in relational systems [27].

ML in relational databases. There has been recent interest in
adding ML support to relational systems, or using relational tech-
nology to perform ML computations. A notable example of this is
Apache SystemML [21], which uses two relational strategies for
distributed matrix multiplication, RMM and CPMM.

Much of the work in this area is orthogonal to our proposal, in
that the focus is not re-imagining distributed execution strategies
for ML computations expressed relationally. MADlib [25] considers
the idea of implementing various ML computations on top of a rela-
tional system, but does not consider changing the relational engine,
which is the focus of this work. Likewise, Luo et al. [37] consider
running large-scale linear algebra computations on top of a rela-
tional engine, but the only execution strategies considered are those
offered by classical, distributed relational systems. DB4ML extends
the transaction mechanism to facilitate ML [30], but does not con-
sider new relational execution strategies. MLog [35] is a high-level
language that integrates ML into a database. MLog is declarative,
as it manages all data movement, data persistency, and ML-related
optimizations automatically, but does not consider alternative rela-
tional execution strategies and relies on TensorFlow for training.
There have been recent efforts aimed at using a relational system
as a run-time engine for ML computations as opposed to just a data
loader [9, 32], but the focus is not on distributed computation. Some

work has proposed using a relational system for distributed neural
network training [29], but the focus was on handling the very large
query plans obtained by unrolling iterative learning algorithm, and
not on modifying the core relational execution engine.

One of the closest works to our own is that of Afrati and Ullman
[10]. Given a multiway join to execute in a distributed environment,
the consider the problem of (1) how to optimally choose the set of
attributes to use to partition the data, and (2) how many buckets
to use for each attribute when hashing. This is done to minimize
network traffic. Nevertheless, there are key differences from our
work. The authors were interested in operating within a MapRe-
duce framework—not solving large-scale ML problems—and hence
there is no pilot run to collect lineage to ensure that tuples are sent
only where they need to go to join with other tuples. Their frame-
work assumes that a tuple must be sent everywhere that it could
possibly join with another tuple. Most importantly, aggregation
is not considered in depth, nor is balancing CPU load, which is
particularly important for ML computations.

Distributed query optimization. Interest in optimizing distribu-
ted relational queries dates as far back as the late 70s and early 80s
[13, 17, 19, 26]. Initial efforts focused on offline cost-based query
optimization [16, 43].

Several papers explore the idea of executing the query twice to
collect or approximate the lineage information and use it to improve
the performance of the query. DYNO [31] is a system for optimizing
complex queries over Hadoop data. It relies on the concept of pilot
runs that execute the query over a small sampled subset of the data
to estimate selectivities. Track-Join [41] proposes a set of multi-
phase algorithms that in their first phase project the input relations
to their join keys and sends them over the network. Doing so allows
the algorithm to collect lineage information, that subsequent phases
use to minimize the network traffic by creating an optimal transfer
schedule. Track join assumes classical, relational data, and does
not consider processing costs. It works on binary joins without
aggregation. GRASP is a distribution-aware method for optimally
handling high-cardinality aggregations. It generates min-hash sig-
natures of the input data partitions during pre-aggregation, that it
later used to forecast the benefit of each aggregation [36].

10 CONCLUSIONS AND FUTUREWORK
We argued that a relational engine is an excellent platform for
distributed numerical and ML computations. By executing such
computations in two phases: a pilot phase to collect lineage that
powers an optimization problem, and then an execution phase, we
can achieve state-of-the-art performance. There are many avenues
for future work. One obvious avenue is extending the optimization
framework to iterative computations, such as gradient descent. Also,
we have not considered co-processors such as GPUs. How might
such hardware change our ideas? This is another avenue for future
work.
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