NP-completeness:

1. The exact cover by 3-sets problem is as follows. You are given a finite set \(X \) and a collection \(C \) of 3-element subsets of \(X \). You have to decide whether \(C \) has an exact cover, i.e., a subcollection \(C' \subseteq C \) such that every element of \(X \) occurs in exactly one member of \(C' \).

 Show that this problem can be polynomially reduced to SAT.

2. The integer programming (IP) problem is to check whether a system of linear inequalities, with integral coefficients, has an integral solution. Show that this problem is NP-hard by reducing 3-SAT to it.

3. A problem \(L \subseteq \Sigma^* \) is in co-NP if there is a polynomial \(p \) and a polynomial-time algorithm \(A \) such that for all \(x \in \Sigma^* \) the following holds:

 \[
 x \not\in L \text{ iff there exists some } y \in \Sigma^{\leq p(|x|)} \text{ such that } A(x, y) = 1.
 \]

 The problem \(L \) is co-NP-complete if \(L \) is in co-NP and for all \(L' \) in co-NP we have that \(L' \leq_p L \).

 (a) Show that \(L \) is in co-NP iff \(\Sigma^* - L \) is in NP.

 (b) Show that \(L \) is co-NP-complete iff \(\Sigma^* - L \) is NP-complete.

 (c) Show that if \(L \) is co-NP complete and \(L \) is in NP, then NP=co-NP.

Satisfiability:
1. Prove that for $\varphi \in \text{Form}$, $\tau \in 2^{AP(\varphi)}$, and $p \in AP(\varphi)$, we have that $\tau \models \varphi$ if and only if $\tau|_{AP(\varphi)-\{p\}} \models \varphi[p \mapsto \tau(p)]$.

2. Prove, using only de Morgan’s laws and the distributive laws (for \wedge and \vee) that every formula is equivalent to a formula in conjunctive normal form (CNF), i.e., a conjunction of disjunctions of literals. (Recall that a literal is an atomic proposition or a negated atomic proposition.) Show that if there is a poly-time algorithm that translate each formula to its conjunctive normal form, then $P = NP$.

3. Boole’s Example 5: The following problem was posed by Boole in 1854.

 Let the observation of a class of natural productions be supposed to have led to the following general results.

 1st, That in whichever of these productions the properties A and C are missing, the property E is found, together with one of the properties B and D, but not with both.

 2nd, That wherever the properties A and D are found while E is missing, the properties B and C will either both be found or both be missing.

 3rd, That wherever the property A is found in conjunction with either B or E, or both of them, there either the property C or the property D will be found, but not both of them. And conversely, wherever the property C or D is found singly, there the property A will be found in conjunction with either B or E, or both of them.

 Let it then be required to ascertain, first, what in any particular instance may be concluded from the ascertained presence of the property A, with reference to the properties B, C, and D; also whether any relations exist independently among the properties B, C, and D. Secondly, what may be concluded in like manner respecting the property B, and the properties A, C, and D.

 Formalize Boole’s example using a modern terminology and solve it, using an implementation of the splitting method (attach the code) (focus on code elegance rather than speed).

Adequacy (see lectures notes on “Formulas and Circuits”)

1. Let $ttot$ be a ternary connective such that $ttot(p_1, p_2, p_3)$ is true if $3p_1 + 2p_2 + p_3 \geq 4$. Write a $\{\neg, \wedge, \vee\}$-formula that is logically equivalent to $ttot(p_1, p_2, p_3)$.

2. Let $succ_carry$ be a $3n$-ary connective such that $succ_carry(p, c, q)$ is true, for $p = \langle p_1, \ldots, p_n \rangle$, $c = \langle c_1, \ldots, c_n \rangle$, and $q = \langle q_1, \ldots, q_n \rangle$, when q is obtained by adding 1 to p (modulo 2^n) with c being the carry. Write a $\{\neg, \wedge, \vee\}$-formula of size $O(n)$ that is logically equivalent to $succ_carry(p, c, q)$.

3. Prove that $\{\vee, \wedge\}$ is not adequate.

4. Let the binary connective \downarrow mean “nor” (i.e., $p \downarrow q$ holds if neither p nor q hold), and let the binary connective \mid mean “not both” (i.e., $p\mid q$ holds if not both p and q hold). Write a truth table for \downarrow and \mid and prove that both $\{\downarrow\}$ and $\{\mid\}$ are adequate.

5. Let false be a 0-ary connective such that $\tau(false) = 0$ for all truth assignments τ. Show that $\{false, \rightarrow\}$ is adequate.
6. Let the binary connective $+$ mean “exclusive or” (i.e., $p + q$ holds if precisely one of p and q hold). Write a truth table for $+$ and prove that $\{+\}$ is not adequate.