
Formulas and Circuits

1 Formulas as circuits

So far, we have looked at logic from the mathematician’s point of view. Now
let’s look at it from the electrical engineer’s point of view.

• If for all truth assignments τ we have ϕ(τ) = 1, then mathematicians say
that ϕ is valid. EEs say the corresponding circuit is “stuck at one”.

• If for all turth assignments τ we have ϕ(τ) = 0, then mathematicians
say that ϕ is unsatisfiable. EEs say the corresponding circuit is “stuck at
zero”.

• If for some τ1, ϕ(τ1) = 1, and for some τ2, ϕ(τ2) = 0, then mathematicians
say ϕ is satisfiable but not valid. To an electrical engineer, such circuits
are the only interesting ones.

• Equivalence of logical formulas: ϕ |==|ψ if and only if for all τ ∈ 2Prop

we have ϕ(τ) = ψ(τ). In circuitry, the idea of equivalence is the basis for
modularity.

2 Building formulas from functions

We would like to show that for every boolean function, we can create a formula
and, hence, a circuit that corresponds to that formula.

Definition 1 We say a formula ϕ MATCH a boolen function f, if for all τ ∈
2Prop, we have f(τ) = 1 iff τ |= ϕ

Theorem 1 Let Prop = {p1, p2, . . . , pn}. For every function f : 2Prop 7→
{0, 1}, there is a macthing formula ϕf such that for all τ ∈ 2Prop, we have
f(τ) = 1 iff τ |= ϕf

First let’s see an example of how we construct this formula ϕf .

p1 p2 f(p1, p2)

0 0 1
0 1 1
1 0 1
1 1 0

We recognize this immediately as the NAND function, so one equivalent formula
would be ¬(p1∧p2). However, if we want to construct the formula methodically,
we can create a conjunction of the literals in every line of the truth table where
f = 1 and then create the disjunction of these conjunctions. For this function,
we get (¬p1 ∧ ¬p2) ∨ (¬p1 ∧ p2) ∨ (p1 ∧ ¬p2).
Before proving the theorem,we give following definition:

Definition 2 A literal is a proposition or the negation of a proposition. In the
following proof, we will denote a positive literal p by p1 and a negative literal ¬p
by p0.

Now let’s prove theorem 1 by construction:
Proof: Let

ϕf =
∨

f(τ)=1

(

n∧

j=1

p
τ(pj)
j),

where we consider all truth assignments τ : Prop → 0, 1. We need to show that
this formula is equivalent to the function.

Consider the case where f(τ) = 1. We need to show that ϕf (τ) = 1, i.e.,
τ |= ϕf . Since ϕf is a disjunction of conjunctions, ϕf (τ) = 1 when τ satisfies
one of the conjunctions, so let’s show

τ |=

n∧

j=1

p
τ(pj)
j

We know, however, that τ(pj) = 1 ⇒ τ |= p1
j , and τ(pj) = 0 ⇒ τ |= p0

j , so for

all j we have τ |= p
τ(pj)
j , so τ models the conjunction, and τ |= ϕf .

The other case to consider is where f(τ) = 0. We leave this as an exercise
for the reader.

Corollary 1 Any boolean function can be expressed using only the symbols ¬,
∧, and ∨.

Proof: Immediate from the construction in the theorem.

Definition 3 A formula is in disjunctive normal form (DNF) if it has the form∨∧
literals.

Corollary 2 Every formula ϕ has an equivalent formula ϕ′ in DNF such that
ϕ |==|ϕ′.

Proof: Take ϕ as a function from 2Prop → {0, 1}. Using the construction
in the theorem, we can build ϕϕ in DNF such that for all τ ∈ Prop, we have
ϕ(τ) = ϕϕ(τ).

Example: Let’s express the statement “if p1 then p2, else p3”. The truth
table for this statement is as follows:

p1 p2 p3 f(p1, p2, p3)

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

2

Applying the construction gives us (¬p1 ∧¬p2 ∧ p3)∨ (¬p1 ∧ p2 ∧ p3)∨ (p1 ∧
p2 ∧ ¬p3) ∨ (p1 ∧ p2 ∧ p3).

However, we can reduce this to (¬p1 ∧ p3) ∨ (p1 ∧ p2). We can also bypass
the construction entirely and simply from the statement construct the following
formula: (p1 → p2) ∧ (¬p1 → p3), which is equivalent to (¬p1 ∨ p2) ∧ (p1 ∨ p3).

Thus, there are many different ways to express the same formula, and our
construction does not necessarily give us the shortest. In fact, the worst case is
valid formulas, which clearly result in exponential size.

3 Size of formulas

Up until now, we have used the length of a formula as the measure of its size,
but this is not entirely accurate. Sure, we can represent most symbols, like (,),
¬, ∧, and ∨ with just a few bits each, but what about a proposition, like p5? In
binary, we can represent this as #101. Thus, a proposition grows to size logn,
where n is the length of the formula, and the entire formula grows to O(n log n).

Now let’s try to bound the size of formulas. Our usual notion of efficiency
is polynomial time or space, so we would like to bound the size of a formula by
a polynomial. We will see that we cannot do this, however.

Let |Prop| = n, and let f : 2Prop 7→ {0, 1}. We would like to find ϕf

such that for all τ ∈ 2Prop, we have ϕf (τ) = f(τ), and furthermore, we want
‖ϕf‖ ≤ p(n) for some polynomial p(n).

Theorem 2 For every polynomial p, there is a set Prop such that |Prop| = n

and a function f : 2Prop → {0, 1} such that for all ϕ, if ϕ implements f , then
‖ϕ‖ > p(n).

Proof: Consider all formulas ϕ such that ‖ϕ‖ ≤ p(n). Clearly there are at
most 2p(n) such formulas. On the other hand, there are 22n

Boolean functions
from 2{p1,p2,...,pn} → {0, 1}. Thus, there must be functions that cannot be
represented by polynomial-size formulas.

4 Converting between DNF and CNF

A formula in DNF is of the form
∨∧

literals while a formula in CNF is of the
form

∧∨
literals. There is also a normal form called PNF (positive normal

form), in which negations are applied only to atoms.
The negation of a formula in CNF is a formula in DNF because we can

push the negation through the formula: ¬
∧ ∨

literals |==|
∨
¬

∨
literals |==

|
∨∧

¬literals. Similarly, the negation of a formula in DNF is a formula in
CNF.

Corollary 3 Every formula ϕ has a formula ϕ′′ in CNF such that ϕ |==|ϕ′′.

3

Proof: Start with ¬ϕ and using the earlier theorem, find ϕ′ in DNF such
that ¬ϕ |==|ϕ′. Then negate ϕ′ and push the negation through to get ϕ′′ in
CNF.

Fact: For formulas in CNF, SAT is NP-complete. In fact, even 3-SAT is
NP-complete.

Fact: For formulas in DNF, SAT is polynomial time.
Proof:

∨
i

∧
j lij is satisfiable if and only if for some i we have that

∧
j lij

is satisfiable. But a conjunction is satisfiable if and only if it does not contain
contradictory literals, i.e. lij and ¬lij . We can certainly check this in polynomial
time.

Fact: For formulas in DNF, VAL is co-NP-complete.
Proof: ϕ is valid if and only iff ¬ϕ is unsatisfiable. But ¬ϕ is in CNF, and

SAT is NP-complete for formulas in CNF.
Fact: For formulas in CNF, VAL is polynomial time.
Proof: Similar to the previous one.

5 How many types of gates are enough?

We think of formulas as trees, but to an electrical engineer they are really graphs.
For example, (p→ p) → (p→ p) could be represented as the following graph:

→
()
→
()
p

So we can represent formulas more compactly, but can we get by with fewer
types of gates? We have already seen that {¬,∧,∨} is sufficient, and DeMorgan’s
laws show us how to represent conjunction in terms of disjunction and negation
and also disjunction in terms of conjunction and negation, so {¬,∨} and {¬,∧}
are also sufficient. We would like to find some minimal set of operators that
allow us to express any formula.

Definition 4 : A base K is a finite set of Boolean functions. K-logic is defined
as follows:

1. Formulas: FormK

• Prop ⊆ FormK .

• For each m-ary function α ∈ K and K-formulas ϕ1, ϕ2, . . . , ϕm,
α(ϕ1, ϕ2, . . . , ϕm) ∈ FormK .

2. Interpretation

• τ |= pi if τ(pi) = 1.

• τ |= α(ϕ1, ϕ2, . . . , ϕm) if α(τ(ϕ1), τ(ϕ2), . . . , τ(ϕm)) = 1.

4

Definition 5 A base K is adequate if every Boolean function can be imple-
mented by a formula in K-logic.

Proving that K is not adequate by showing that there exists some f such
that f 6∈ Formk, this can be done in two steps:

• Choose a property C such that every boolen function in Formk satisfies
C.

• Show that there exists a boolean function f that f doesn’t satisfies C(here
”property C” is not well defined,will show it in example).

Example:
K={+}

• Every function f in Form+ satisfies f(τ0) = 0,where τ0(pi) = 0 for all pi;
Proof by induction on Form+:

– Base case:τ0(pi) = 0

– Induction step:
Assume that f1, f2 ∈ Form+ and f = f1 + f2. The induction hy-
pothesis implies that f1(τ0) = 0,f2(τ0) = 0, the definition of ”+”
implies f(τ0) = 0.

• The function f1 that assign 1 to every τ doesn’t satisfy this property.
Thus f1 6∈ Form+,i.e. Form+ is not adequate.

By this definition, then, {¬,∧,∨} is adequate. {¬,∧} and {¬,∨} are also ade-
quate.

5

