
Lecture 8: NP Completeness

1 Complexity Theory

We have seen that problems have varying hardness, but some problems have a
”subproblem” that is easily checkable. For example:

• SAT (ϕ): Is a given formula ϕ satisfiable?

• 3-colorability: Is a given graph 3-colorable?

A common characteristic shared by these problems is that it is “hard” to find
a solution for them, but we can easily check whether a given solution is correct.
In the case of SAT (ϕ), if we are given a particular truth assignment τ , we have
already developed a polynomial time algorithm eval(ϕ, τ) that deterministically
decides if τ |= ϕ. Thus, given a (possible) solution τ we can easily verify that ϕ
is satisfiable (finding the appropriate τ is a different problem). Similarly for the
3-colorability problem, if we are given a particular coloring of the nodes, we can
easily check every node to see whether its neighbors are all of a different color;
if they are, the coloring we were given ”testifies” that the graph has the desired
property that makes it belong to the class of graphs with no monochromatic
edges. In the literature, the example that helps determine if an instance of the
problem has a solution is called a witness since it witnesses that the instance has
the desired property. In the case of SAT (ϕ), the witness is the truth assignment
τ .

The above problems also have a common formulation: they both aim at
answering a question of the form: Given an instance of an object, does it satisfy
certain property?. There are other types of problems that cannot be stated in
this way, for example:

• Chess: In a chess game, does white always win?

For this kind of problem, we cannot get a solution easily (in fact, it is very
difficult to even state the problem formally, which would require a discussion on
game theory and assumptions on the opponent’s strategy). Next we formally
define a decision problem.

Definition 1 (Decision Problem). Given a finite alphabet Σ, a Decision Prob-
lem is some language L ⊆ Σ∗. It is nontrivial if L 6= ∅ and L 6= Σ∗.

1

Thus we know SAT and 3-colorability are decision problems, while the Chess
problem is not. We can think of the first two problems as decision problems
where x is a string encoding an instance of the problem, and L is the language
of all instance encodings that have some property P .

As part of the exhaustive algorithms that solve the above problems, we have
a subproblem: given a candidate witness y, does y make x have property P?
This subproblem can be formalized as a decision problem by itself as follows:
”Does (x, y) ∈ LP , where LP is the language of all strings (x, y) where y makes
x have property P ?” For our previous examples, this subproblem is decidable
in polynomial time. Often, the subproblems need not be formalized, i.e. it will
suffice to say ”... and checking if a witness y makes x have property P is easy...”

To make matters more clear, going back to our 2 examples we have:

• LSAT is the language of all satisfiable formulas x ∈ Σ∗, where Σ is the set
of all valid formula symbols (propositions, connectives and parentheses).
A formula ϕ ∈ LSAT iff ϕ has property P : ϕ is satisfiable. One way to
see if ϕ ∈ LSAT is to use some truth assignment τ that witnesses that ϕ
has property P , which is decidable in polynomial time by eval(ϕ, τ).

• L3C is the language of all 3-colorable graphs x (here assume that x is some
valid encoding of a graph using some alphabet Σ that makes x unambigu-
ous). Thus, a particular graph G ∈ L3C iff G has property P : there is a
3-coloring for G that makes all of its edges non-monochromatic. Again,
one way to check if G ∈ L3C is to provide some 3-coloring of the vertices
of G. It is decidable in polynomial time if the witness is a valid 3-coloring
of G.

1.1 The class NP

In the previous examples we recognized that we have at our disposal a polyno-
mial time algorithm to solve the subproblem, i.e. to check whether a particular
witness y makes x have property P . The question that arises immediately is:
how do we come up with a candidate solution?. The search space for these can-
didate solutions is exponential in the size of the problem for the above examples,
so it becomes increasingly time consuming to try them all.

Note, however, that if we could ”magically guess” a candidate solution, we
could check it efficiently. These problems are said to belong to the NP class of
problems, which stands for Nondeterministic Polynomial time. ”Magically
guessing” here means nondeterministically selecting a candidate; and once we
have one, it can be checked in polynomial time. Alternatively, we can say
that a problem in NP can be solved in polynomial time by a nondeterministic
algorithm that first guesses a witness and then checks it. Now we are ready to
introduce a formal definition for the NP class of problems.

Definition 2 (NP). A decision problem L ∈ Σ∗ is in NP if there exist:

2

• a polynomial P , and

• a polynomial time algorithm A(x, y),

such that x ∈ L iff ∃ y ∈ Σ≤P (|x|) where A(x, y) = 1.

Where Σ≤k is the set of all strings of length less than or equal to k. In other
words, a decision problem is in NP if when we are given a ”short” witness y, a
polynomial time algorithm A(x, y) exists to check if the witness makes x have
the desired property. Formally, A(x, y) is a membership indicator of (x, y) to
the subproblem language, so we have A(x, y) = 1 iff y is a witness for x.

Example 1 (SAT (ϕ)). For the case of SAT (ϕ), we saw that L = LSAT , x
is ϕ, the witness y is τ , and the algorithm A(x, y) is eval(ϕ, τ) which takes
polynomial time.

The restriction that y ∈ Σ≤P (|x|) ensures that the witness is ”short enough”
so that the checking algorithm A(x, y) is guaranteed to always take polynomial
time. This is important because there may be problems where the witness
cannot be guaranteed to have a length bounded by P (|x|), and thus it could not
be shown that A(x, y) takes polynomial time.

In the following examples the particular L, A, x and y will not be explicitly
pointed out to encourage the reader to formalize them.

1.2 Some Examples

We present some well known problems with a short analysis:

Example 2 (Diophantine equation). Does P (x1, x2) = 0 have integer solutions?

The solution is undecidable because we cannot bound the size of x1 and
x2. Hilbert’s 10th problem asked if a technique for solving a general Diophan-
tine existed. The impossibility of obtaining a general solution was proved by
Matyasevich in the early 1970’s. However, verifying the correctness of a partic-
ular solution (x′1, x

′
2) takes only polynomial time. This problem is not in NP,

because short witnesses may not exist.

Example 3 (Compositness Problem). Given a number n ∈ N , is n composite?

Given two factors n1 and n2, it is easy to verify if n = n1n2. However, the
time taken to find suitable n1 and n2 is exponential on the length of the binary
representation of n. This problem is in NP. However, in this particular case we
can be a little more precise. In 2002 it was shown that this problem is also in
the class PTIME, which is a subclass of NP.

Example 4 (Eulerian Cycle on graph G(V,E)). Is there a bijective mapping
P : E → {1, . . . , |E|} such that if P (e2) = (P (e1) + 1) (mod |E|) then there
exist vertices u, v, w ∈ V such that e1 = (u, v) and e2 = (v, w)?

3

An Eulerian Cycle on a graph G is a cycle that visits each edge exactly once.
An Eulerian Cycle exists iff the degree of each node in the graph is even. Thus,
this problem is not only in NP, it is in fact in PTIME.

Example 5 (Hamiltonian Cycle on graph G(V,E)). Is there a bijective mapping
P : V → {1, . . . , |v|} such that if P (v) = (P (u) + 1) mod |V |, then (u, v) ∈ E?

A Hamiltonian cycle on a graph G is a cycle that visits each node exactly
once and terminates at the initial node. This problem is in NP.

Example 6 (k-Coloring Problem). Consider a graph representation of a map.
G = (V,E), whose nodes are the partitions in the map and neighboring partitions
(nodes) are connected by edges. A k-coloring is a mapping C : V 7→ {1 . . . k},
obeying the constraint C(u) = C(v) only if (u, v) 6∈ E. We say G is k-colorable
if it has a k-coloring. Graph k-colorability is the problem if checking whether a
given graph is k-colorable.

Graph k-colorability is also in NP. The witness is the k-coloring C.

Example 7 (Perfect Matching on graph G(V,E)). Is there a subset E′ of E
such that every node is touched by one edge of E′?

This problem is in NP. It is in fact also in PTIME.
Note that some problems that look very similar to each other may belong to

different complexity classes, e.g. one may be in P and other in NP. A classical
example is 2-coloring and 3-coloring of a graph. Finding if a graph can be
colored by 2 colors is easy but doing the same with 3 colors is hard.

Note that an upper and lower bound for NP problems can easily be provided:

• NP ⊆ EXPTIME since the problem can be solved by trying all possibili-
ties.

• PTIME ⊆ NP since an NP problem has at least the complexity of A(x, y)
which is in PTIME.

The NP class lies somewhere between polynomial and exponential time.

2 Reducibility and NP-completeness

We turn our attention to a very important tool that will allow us to relate
problems to other “similar” problems.

Definition 3 (Polynomial Reduction). Let L1, L2 ⊆ Σ∗. We say that L1

is polynomially reducible to L2, denoted L1 ≤p L2 if there exists a PTIME-
computable function f : Σ∗ → Σ∗, such that x ∈ L1 iff f(x) ∈ L2.

Example 8. Let L+ be a language such that (a, b, c) ∈ L+ iff a + b = c.
Similarly, let L− be the language such that (a, b, c) ∈ L− only iff a − b = c.
To reduce L+ to L− we have f(a, b, c) = (b, c, a), where f is the function that
reduces an instance of L+ to L−.

4

Notice that ≤p is reflexive and transitive, but not symmetric. It defines a
pre-order on the set of all problems. Also, ≤p is an invariant of PTIME, that
is, if L2 ∈ PTIME and L1 ≤p L2, then L1 ∈ PTIME. This is because, given an
polynomial algorithm A for L2 and a polynomial function f that reduces L1 to
L2, we can obtain a polynomial algorithm A′ for L1 as follows: on input x, A′

first calls f to compute f(x) and then calls A with input f(x). Then A′ accepts
input x iff A accepts f(x) iff f(x) ∈ L2 iff x ∈ L1.

When we say that L1 ≤p L2, it intuitively means that L2 is at least as hard
as L1, or more clearly, that L1 is no harder than L2. Hardness here means that
if we solve the decision problem for L2, we can use the function f to solve the
decision problem for L1.

Definition 4 (NP-hard). A decision problem L ⊆ Σ∗ is NP-hard if for every
L′ ∈ NP we have L′ ≤p L.

Note that this definition does not restrict L to be in NP , that is, L could
be some language harder than NP .

Definition 5 (NP-Complete). A decision problem L ⊆ Σ∗ is NP-complete if
L ∈ NP and L is NP-hard. NPC is the class of all NP-complete problems.

Now, since NP-complete problems lie at a relatively low level in the full com-
plexity hierarchy, it is easy to imagine that NP-hard problems exist. However,
it is not at all obvious that any natural NP-complete problems should exist,
that is, the class NPC is nonempty. That this is the case is one of the central
results of computer science:

Theorem 1 (Cook-Levin). SAT is NP-complete.

If it is the case that L1 ≤p L2 and L2 ≤p L1, we say that L1 ≡p L2. The
relation ≡p defines a set of equivalence classes within NP, ordered by ≤p. In
particular, all NP-complete problems are polynomially equivalent. So they fall
in the same equivalence class under ≡p.

Intuitively, we say that NPC problems are the hardest problems in NP.
Similarly, we can also say that PTIME contains the easiest problems in NP
because of polynomial reducibility. But what is in between? Moreover we might
ask whether P = NP or P 6= NP. We don’t know! It is obvious that P ⊆ NP ,
but it is still unknown whether P (NP . There are a lot of problems in NP
for which we cannot find polynomial algorithms to solve so far. The concept of
NP-completeness is important because it is at the crux of the P ?= NP question:

Theorem 2. If L ∈ NPC, and L ∈ PTIME, then P = NP .

This theorem states that if we can find a polynomial solution for any NPC
problem, then all NPC problems become PTIME problems since they are all
reducible to each other.

Another useful result is:

Theorem 3 (Ladner). If P 6= NP , then (NP − P)−NPC 6= ∅

5

This is known as Ladner’s Theorem. It states that there are problems in NP
that are neither NP-complete nor in P, where (NP − P) is the set of problems
that are strictly in NP (but not in P), provided that P 6= NP , which is still
unknown.

3 Co-NP and CoNP-Completeness

Recall that a formula ϕ is satisfiable iff (¬ϕ) is not valid, and that ϕ is valid
iff (¬ϕ) is not satisfiable. Thus the two decision problems SAT and VALID are
related. It is reasonable to ask whether SAT ≡p V ALID?

Suppose that this is indeed the case. Then there is some function f : Expr →
Expr such that ϕ is SAT iff f(ϕ) is VALID. But we have a problem because while
we have a witness for SAT (namely, a truth assignment), it is not immediately
clear what we can use as a witness for validity. (In fact, it can be shown that
a short witness for validity doesn’t exist). However, notice that if we wish to
prove that validity doesn’t hold, then a short witness exists–namely, a truth
assignment which makes the formula as a whole return 0.

It turns out that the class of problems that have short counterexamples is
interesting in itself. The next definition formalizes this concept.

Definition 6 (Co-NP). A problem (language) L ⊆ Σ∗ is in Co-NP is there is
a polynomial P and a PTIME algorithm A, such that for all x ∈ Σ∗, we have
x 6∈ L iff there is some y ∈ Σ≤P (|x|) such that A(x, y) = 0.

Observe that in NP, when given an answer we can ‘easily’ verify that it is
indeed a solution, while for Co-NP, when given something that is not an answer,
we can ‘easily’ verify that it is not a solution.

Lemma 1. A problem L ∈ Co-NP iff L = Σ∗ − L′ for some L′ ∈ NP

Proof. You will prove this result in assignment 3.

Like the NP-complete class, NPC, we can define the Co-NP-complete class,
Co-NPC, which represents the hardest problems in Co-NP as follows:

Definition 7 (Co-NPC). A problem L ∈ Co-NPC if

1. L ∈ Co-NP

2. L′ ≤p L for all L′ ∈ Co-NP

Lemma 2. A problem L ∈ Co-NPC iff L = Σ∗ − L′ for some L′ ∈ NPC.

Proof. Again, you will prove this result in assignment 3.

How are SAT and VALID related? Recall that SAT has two requirements,
namely that we have a well-formed formula and that it is satisfiable, or (WFF ∧
SAT). Taking the negation we get (¬wff ∨ ¬sat). Thus, we cannot exactly say

that SAT is the complement of VALID because VALID contains well-formed

6

formulae and not just expressions. Reformulated, Σ∗−SAT 6= V ALID because
while SAT is all satisfiable formulae, Σ∗−SAT includes nonsensical expressions
as well. However, we can say that SAT ∈ NPC and V ALID ∈ Co-NPC.

More generally, how are NP and Co-NP related? We know that both contain
as a subset the complexity class PTIME. Is P = NP

⋂
Co-NP? Is it possible

that NP = Co-NP?
We know that all problems in P are trivially in NP (discussed earlier). P is

also contained in Co-NP: suppose some problem L ∈ P . If we run the algorithm
to solve the problem, then invert the output, we end up with a solver for Σ∗−L,
which is also in P.

Lemma 3. P ⊆ NP
⋂

Co-NP

Do there exist problems in both NP and Co-NP that are not in P? In this
regard consider the problem PRIMES, which is the problem of testing primality
(is a given natural number prime?). It is trivial to show that PRIMES is in
Co-NP , since any non-trivial factorization of a number gives an easily checked
short counterexample for its primality. Showing that PRIMES is in NP is
attributed to Pratt, 1976. Thus, PRIMES is in NP

⋂
Co-NP . However, it was

not known until 2002 whether PRIMES is in P . In 2002, Agarwal et al showed
that PRIMES is in P . Whether P = NP

⋂
Co-NP remains an open problem.

Recall that P is closed under the complement operation. So, if P = NP ,
then also P = Co-NP . Open problem: NP

?= Co-NP

Lemma 4. If L ∈ NPC and L ∈ Co-NP , then NP = Co-NP

Theorem 4 (Ladner). The full glory of Ladner’s theorem can be expressed as
following:

• If P 6= NP ⇒ (NP−NPC)− P 6= ∅.

• If P = NP ⇒ NP = Co-NP .

• If NP 6= Co-NP ⇒ P 6= NP .

4 Reducing 3-COLOR to SAT

The first NP-complete problem was SAT, and the proof that it is NP-complete is
due to Cook and Levin. Cook and Levin proved that all NP problems are polyno-
mially reducible to SAT. Here we show one particular example of reducing a NP
problem to SAT. We will focus on 3-COLOR, and show that 3-Color ≤p SAT.
This means that in theory, if we have a SAT solver, we can do 3-Coloring. But
how practical is this? Prima facie it might seem that using a SAT solver would
be inferior to a system designed especially for 3-Coloring. However, because a
lot of work has been done on SAT-solvers, it turns out that using SAT as a
generic problem solving environment is not a bad idea.

7

4.1 3-COLOR

Informally, the 3-COLOR problem asks if a graph can be colored in such a way
that two nodes connected by an edge have different colors. Formally, given a
graph G = (V,E), does there exist a function f : V → {1, 2, 3}, where 1, 2 and
3 represent “colors”, such that f(u) 6= f(v) if (u, v) ∈ E? If such a function
exists, the graph G is said to be 3-colorable.

3-COLOR ≤p SAT

We first build a formula ϕG that represents the coloring constraints on the graph
G. For each vertex v ∈ V , we define three propositions pv,i, where i ∈ {1, 2, 3}.
pv,i is 1 if vertex v’s color is i and 0 otherwise. The condition that each vertex
is colored with exactly one color i ∈ {1, 2, 3} can be expressed as

ϕ1 =
∧

v∈V

(pv,1 ∨ pv,2 ∨ pv,3) ∧ ¬(pv,1 ∧ pv,2) ∧ ¬(pv,2 ∧ pv,3) ∧ ¬(pv,3 ∧ pv,1)

And the requirement that two adjacent vertices have different colors is expressed
as

ϕ2 =
∧

(u,v)∈E

¬(pu,1 ∧ pv,1) ∧ ¬(pu,2 ∧ pv,2) ∧ ¬(pu,3 ∧ pv,3)

Let ϕG = (ϕ1∧ϕ2). Given G, ϕG can be constructed in time and space linear in
the size of G. So the function that maps G to ϕG is polynomially computable.
To complete the reduction we need to show that G is 3-colorable iff ϕG is
satisfiable.

• If G is 3-colorable then ϕG is satisfiable:

Let c : V → {1, 2, 3} be a 3-coloring of G. Define the truth assignment

τc(pv,i) =
{

1 if c(v) = i,
0 otherwise.

From the construction of ϕG, it is easy to see that τc |= G.

• If ϕG is satisfiable then G is 3-colorable:

Let τ be a truth assignment that satisfies ϕG. Then τ |= ϕ1 and τ |= ϕ2.
Define cτ : V → {1, 2, 3} as follows:

cτ (v) = i for τ(pv,i) = 1

Because ϕ1 is satisfied by τ , every vertex v ∈ V is assigned exactly one
color by cτ . Therefore, cτ is a coloring of G. Because ϕ2 is also satisfied
by τ , vertices v and u cannot have the same color if (v, u) is an edge of G.
Therefore, cτ is a 3-coloring of G.

8

