P vs. NP

Moshe Y. Vardi

Rice University



An Outstanding Open Problem

Does P = NP7

e The major open problem in computer science

e A major open problem in mathematics

— A Clay Institute Millennium Problem
— Million dollar prize!

e On August 6, 2010, Vinay Deolalikar announced a proof (100-page
manuscript) that P £ NP.

What is this about? It is about computational complexity — how hard it
is to solve computational problems.
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Computational Problems

Example: Graph- G = (V,F)

e |V — set of nodes
o F — set of edges

Two notions:

Hamiltonian Cycle: a cycle that visits every node exactly once.
Eulerian Cycle: a cycle that visits every edge exactly once.

Question: How hard it is to find a Hamiltonian cycle? Eulerian cycle?
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Figure 2: The Graph of The Bridges of Konigsburg




Figure 3: Hamiltonian Cycle




Computational Complexity

Measuring complexity: How many (Turing machine) operations does it
take to solve a problem of size n?

e Size of (V, E): number of nodes plus number of edges.

Complexity Class P: problems that can be solved in polynomial time
— n® for a fixed c

Examples:

e |s a number even?
e |s a number square?
e Does a graph have an Eulerian cycle?

What about the Hamiltonian Cycle Problem?



Hamiltonian Cycle

e Naive Algorithm: Exhaustive search — run time is n! operations

e “Smart” Algorithm: Dynamic programming — run time is 2™ operations

Note: The universe is much younger than 22%° Planck time units!

Fundamental Question: Can we do better?

e Is HamiltonianCycle in P?



Checking Is Easy!

Observation: Checking if a given cycle is a Hamiltonian cycle of a
graph G = (V, E) is easy!

Complexity Class NP: problems where solutions can be checked in
polynomial time.

Examples:

e HamiltonianCycle
e Factoring numbers

Significance: Tens of thousands of optimization problems are in NP!!!

e CAD, flight scheduling, chip layout, protein folding, ...



P vs. NP

e P: efficient discovery of solutions
e N P: efficient checking of solutions

The Big Question: Is P = NP or P # NP?
e |s checking really easier than discovering?

Intuitive Answer: Of course, checking is easier than discovering, so
P # NP

e Metaphor: finding a needle in a haystack
e Metaphor: Sudoku
e Metaphor: mathematical proofs

Alas: We do not know how to prove that P £ NP.
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P+NP

Consequences:

e Cannot solve efficiently numerous important problems
e RSA encryption may be safe.

Question: Why is it so important to prove P # NP, if that is what is
commonly believed?

Answer:

e |f we cannot prove it, we do not really understand it.
e May be P = NP and the “enemy” proved it and broke RSA!
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P=NP

S. Aaronson, MIT: “If P = NP, then the world would be a profoundly
different place than we usually assume it to be. There would be no special
value in ‘creative leaps,” no fundamental gap between solving a problem
and recognizing the solution once its found. Everyone who could appreciate
a symphony would be Mozart; everyone who could follow a step-by-step
argument would be Gauss.”

Consequences:

e Can solve efficiently numerous important problems.
e RSA encryption is not safe.

Question: Is it really possible that P = N P?
Answer: Yes! lt'd require discovering a very clever algorithm, but it
took 40 years to prove that LinearProgramming is in P.
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Sharpening The Problem

N P-Complete Problems: hardest problems is NP
e HamilatonianCycle is N P-complete!

Corollary: P = NP if and only if HamiltonianCycle is in P

There are thousands of N P-complete problems. To resolve the P = NP
question, it'd suffice to prove that one of them is or is not in P.
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History

e 1950-60s: Futile effort to show hardness of search problems.

e Stephen Cook, 1971: Boolean Satisfiability is NP-complete.

e Richard Karp, 1972: 20 additional NP-complete problems— 0-1 Integer

Programming, Clique, Set Packing, Vertex Cover, Set Covering,
Hamiltonian Cycle, Graph Coloring, Exact Cover, Hitting Set, Steiner
Tree, Knapsack, Job Scheduling, ...

— All NP-complete problems are polynomially equivalent!

e Leonid Levin, 1973 (independently): Six NP-complete problems

e M. Garey and D. Johnson, 1979: “Computers and Intractability: A Guide
to NP-Completeness” - hundreds of NP-complete problems.

Clay Institute, 2000: $1M Award!
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Terminology

Terminological Chaos: The standard terminology did not converge until
1974.

Knuth, 1974, “A terminological Proposal”

e Competing terms: arduous, bad, costly, difficult, exorbitant, exparent,
formidable, heavy, Herculean, impractical, interminable, intractable,
obdurate, perarduous, polychronious, prodigious, Sisyphean, tricky.

e Winning terms: NP-hard and NP-complete.
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Logic and Complexity

Richard Lipton, Aug. 8 Blog:

“At the highest level he is using the characterization of polynomial
time via finite-model theory. His proof uses the beautiful result of
Moshe Vardi (1982) and Neil Immerman (1986)."

Theorem: On ordered structures, a relation is defined by a first-order
formula plus the Least Fixed Point (LFP) operator if and only if it is
computable in polynomial time.

Paper: “The complexity of relational query languages”, 1982 — 1050
citations.
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Terminology:

e Relation: set of tuples of elements, e.g., < is set of pairs

e Model Theory: logical theory of mathematical structures — branch of
mathematical logic

e Finite-Model Theory: logical theory of finite mathematical structures —
between mathematical logic and computer science

17



The Language of Mathematics

Frege, Begriffsschrift, 1879: a universal mathematical language — first-order
logic

e Objects, e.g., numbers

e Predicates (relationships), e.g., 2 < 3

e Operations (functions), e.g., 2+ 3

e Boolean operations: “and” (A), “or” (V), “not” (=), “implies” (—)
e Quantifiers: “for all” (Vx), “there exists” (Jx)

Back to Aristotle:

“All men are mortal”

o
e “For all z, if x is a man, then z is mortal”
o (Vo)(Man(x) — Mortal(x))
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First-Order Logic on Graphs

Syntax:

e Variables: x, y, z, . . . (range over nodes)
e Atomic formulas: E(x,y), z =1y

e Formulas: Atomic Formulas + Boolean Connectives -+ First-Order
Quantifiers
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Examples:

® ;. 'node x has at least two distinct neighbors”

(Fy)(32)(~(y = 2) A E(z,y) N E(x, 2))

® 5. ‘nodes x and y are connected by a path of length two":

(32)(E(z,2) N E(2,y))

Formulas as Queries:

e (p; ‘computes’ the set of nodes with at least two distinct neighbors.
® vy ‘computes’ the set of pairs of nodes connected by a path of length
two.
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Logic and Complexity

Theorem: [Immerman-V.]: Polynomial time computability is equivalent to
computability by iterating positive first-order queries.

Significance:

e Machine-free characterization of P

— Note: No Turing machines, no polynomial, no time!

e Normal form for P
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Positivity

e Positive: po: “nodes x and y are connected by a path of length two":
(F2)(E(z,2) AN E(z,y))

e Non-Positive: @3: “nodes x and y are connected by an incomplete
triangle”:
(F2)(E(z,y) N E(x,2) N —E(y, 2))

Significance of Positivity: Iteration yields an increasing sequence of
relations, guaranteeing convergence.
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Example: 2-Colorability

Graph Coloring:

Graph - G = (V, E)

k-coloring: h:V — {1,... k}

Nonmonocromacity: h(u) # h(v)) for all (u,v) € E
k-Colorability: Does G have k-coloring?

Complexity:

e 3-Colorability is NP-complete.
e 2-Colorability is in PTIME.
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Figure 4: 3-Coloring
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2-Colorability

Fact: A graph is 2-colorable iff it has no cycle of odd length.

Example: Logical characterization of non-2-colorability

OX,Y) «— E(X)Y)
O(X,Y) — O(X,Z),E(Z,W), E(W,Y)
Not2Colorable — O(X, X)
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Another Connection between Logic and Complexity

Boolean Satisfiability (SAT); Given a Boolean expression in the form
of “and of ors”, is there a satisfying solution (an assignment of 0's and 1's
to the variables that makes the expression equal 1)7

Example:
(_12131 vV o V 1‘3) A\ (_IZL‘Q V X3 V 513‘4) A\ (2133 V I V 1‘4)
Solution: 1 = 0, LTy = 0, r3 = 1, LTy = 1

Cook-Levin Theorem: SAT is NP-complete
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A Physics Perspective

e [iteral: Positive or negative variable — 1, —x2
e (Clause: Disjunction (or) of literals — (—x1 V 2 V x3)

Energy State:

e Satisfied clause: 0
e Unsatisfied clause: 1
e Total energy: sum of clausal energies=number of unsatisfied clauses

Physics Perspective: Does expression have a zero-energy state?

e Formula satisfied < zero-energy state
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k-SAT

k-SAT:

e Each clause contains precisely £ literals.
e 2-SAT isin P.

(mz1 Vo) A (mx V —x3) A (x1 V xy)

o k-SAT is N P-complete for k > 2.
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Random k-SAT

Random k-SAT:

Parameters:

— number of variables — n,
— number of clauses — m

m/n=Number of clauses divided by number of variables: density —

fixed!
Choose clauses at random, uniformly

Limit: n,m — oo
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Evolution of Random k-SAT

Intuition: Density analogous to temperature

e [ow density: low energy state — high probability of satisfiability — limit=1

e High density: high energy state — low probability of satisfiability —
limit= 0

Empirical Observation: Phase transition — limit probability drops from 1
to 0

e 2-SAT: phase transition at density 1 (also proved formally)
e 3-SAT: phase transition at density 4.26

1991-2010: Extensive research on statistical behavior of random k-SAT
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Essence of V.D.’s Proof

Crux: 9-SAT can not be in P!

e If 9-SAT is in P, then it can be expressed in FO+LFP, by the Immerman-
V. Theorem.

e But, the FO4LFP normal form is inconsistent with what is known about
statistical behavior of random 9-SAT.
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Reaction to Proof Announcement

A huge buzz!!!
Why?

e People announce solutions of the problem all the time.
e Every few months paper posted on arXiv.org.

But:

e V.D. is a Principal Research Scientist at HP.

e Stephen Cook (founding figure in complexity theory): “This appears to
be a relatively serious claim”

e Nice connection of complexity, logic, and physics!

e Richard Lipton (senior complexity theorist and influential blogger): Blog
item on August 8, slashdotted
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Web Fame

H-Index (H-index is max h such that at least h papers each has at least h
citations.)

e Moshe Vardi: 72
e Vinay Deolalikar: 10

Google Index:

e Moshe Vardi: 35,000
e Vinay Deolalikar: 165,000
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Proof Checking at The Internet Age

“Ten Days of Fame’: Proof discredited in ten days!

e Aug. 6: Manuscript sent to 22 people and put on web page
e Aug. 7: First blog post [Greg Baker]
e Aug. 8: Second blog post [Richard Lipton], Slashdot
— extensive commentary
e Aug. 9: Wikipedia article about V.D. (deleted later)
e Aug. 10: Wiki for technical discussion established
— hundreds of edits
— Fields medalists involved
e Aug. 15: CACM blogpost by Lipton
e Aug.16: New York Times article
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The Flaw

A major problem: V.D.'s proof does not seem to distinguish between
intractable and tractable cases of k-SAT.

Cause: Misuse of the Immerman-V. Theorem.
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A Tractable Fragment of SAT

Affine Boolean Satisfiability (Affine SAT): Given a Boolean expression
in the form of “and of xors", is there a satisfying solution (an assignment
of 0's and 1's to the variables that makes the expression equal 1)7

Example:

(1 B a2 D a3) A (2B 3 D xg) A (T3 D 1 D Ty)

In essence: Linear equations modulo 2
e Solve using Gaussian elimination

But: Random k-SAT and random Affine k-SAT are quite similar statistically!
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Revision at the Internet Age

First draft, Aug. 6

Second draft Aug. 9-11

Third draft, Aug. 11-17

All drafts removed after Aug 17

Consensus: The P vs. NP problem withstood another challenge and
remained wide open!
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No Concession!

From V.D.'s website:

“The preliminary version was meant to solicit feedback from a
few researchers as is customarily done. It illustrated the interplay
of principles from various areas, which was the major effort in
constructing the proof. | have fixed all the issues that were raised
about the preliminary version in a revised manuscript; clarified some
concepts; and obtained simpler proofs of several claims. Once | hear
back from the journal as part of due process, | will put up the final
version on this website."

39



Reflection on P vs. NP

Old Cliché “What is the difference between theory and practice? In theory,
they are not that different, but in practice, they are quite different.”

P vs. NP in practice:

e P=NP: Conceivably, NP-complete problems can be solved in polynomial
time, but the polynomial is (10n)1%%° — impractical!

e P£NP: Conceivably, NP-complete problems can be solved by n!ogloglogn
operations — practicall

Conclusion: No guarantee that solving P vs. NP would yield practical
benefits.
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Are NP-Complete Problems Really Hard?

e When | was a graduate student, SAT was a “scary” problem, not to be
touched with a 10-foot pole.

e Indeed, there are SAT instances with a few hundred variables that cannot
be solved by any extant SAT solver.

e But today's SAT solvers, which enjoy wide industrial usage, routinely
solve real-life SAT instances with over one million variables!

Conclusion We need a richer and broader complexity theory, a theory that
would explain both the difficulty and the easiness of problems like SAT.
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