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Abstract. We systematically investigate the connections betweestrint sat-
isfaction problems, structures of bounded treewidth, aefindbility in logics
with a finite number of variables. We first show that constraatisfaction prob-
lems on inputs of treewidth less tha&nare definable using Datalog programs
with at mostk variables; this provides a new explanation for the traditstoof
these classes of problems. After this, we investigate caimstsatisfaction on
inputs that are homomorphically equivalent to structurebaunded treewidth.
We show that these problems are solvable in polynomial tignestablishing that
they are actually definable in Datalog; moreover, we obtddgial characteriza-
tion of the property “being homomorphically equivalent tsteucture of bounded
treewidth” in terms of definability in finite-variable logicUnfortunately, this ex-
pansion of the tractability landscape comes at a price,Usecae also show that,
for eachk > 2, determining whether a structure is homomorphically eajiairt

to a structure of treewidth less tharis an NP-complete problem. In contrast, it is
well known that, for eaclt > 2, there is a polynomial-time algorithm for testing
whether a given structure is of treewidth less tharfrinally, we obtain a logical
characterization of the property “having bounded treelVidhat sheds light on
the complexity-theoretic difference between this propartd the property ‘being
homomorphically equivalent to a structure of bounded tid#w.

1 Introduction and Summary of Results

Constraint satisfaction problems are ubiquitous in sdwdifferent areas of artificial
intelligence, computer science, algebra, logic, and coatbrics. An instance of a
constraint-satisfaction problem consists of a set of \eis a set of possible values,
and a set of constraints on tuples of variables; the quesstimdetermine whether there
is an assignment of values to the variables that satisfiggitka constraints. A particu-
larly fruitful way to formalize the above informal descrigpn, articulated first by Feder
and Vardi [FV98], is to identify the GNSTRAINT SATISFACTION PROBLEM with the
HoMOMORPHISM PROBLEM: given two relational structureA andB, is there a ho-
momorphismh from A to B? Intuitively, the structure\ represents the variables and

* Supported in part by NSF grant 11S-9907419.

** Supported in part by NSF grants CCR-9988322, 11S-99084859978135, and EIA-0086264,
and by BSF grant 9800096.



the tuples of variables that participate in constraints,dtnuctureB represents the do-
main of values and the tuples of values that these constraindes of variables are
allowed to take, and the homomorphisms fréxmto B are precisely the assignments
of values to variables that satisfy the constraints. Foraimse, 3-@LORABILITY is
equivalent to the problem of deciding whether there is a howwmhismh from a given
graphG to K3, whereK3 is the complete graph with 3 nodes. This identification makes
it possible to approach constraint satisfaction problemmmsfan algebraic perspective
[Jea98,FV98]. Moreover, it makes transparent the conoedietween constraint sat-
isfaction problems and certain fundamental problems ialukzde theory, such as con-
junctive query evaluation and conjunctive query containbfer implication) [KV00a].

Since in its full generality the HMOMORPHISMPROBLEM is NP-complete [GJ79],
researchers have intensively pursued tractable casedsoptbblem, often referred
to as “islands of tractability”, that are obtained by impwasrestrictions on the input
structuresA andB. If ¢ is a relational vocabulary, and, B are two classes of fi-
nite o-structures, the@SP (A, B) is the following decision problem: given a structure
A € Aandastructur® € B, is there a homomorphism frosh to B? In other words,
CSP(A, B) is the restriction of the BMOMORPHISMPROBLEM to inputs from.4 and
B. If the classB consists of a single structu, then we writeCSP (A, B) instead
of CSP(A, B). Furthermore, if4 is the classF (o) of all finite o-structures, then we
simply write CSP(B) instead ofCSP (F (), B).

Note that ifG is the class of all undirected graphs aKg is the complete graph
with 3 nodes, thelSP (G, K3) is the 3-GLORABILITY problem. Consequently, there
are fixed structure® such that constraint satisfaction problems of the f@fP(B)
are NP-complete. It is a major open problem to charactetipsd structure® for
which CSP(B) is tractable. Closely related to this problem is the Fedmd/[FV98]
Dichotomy Conjecture, which asserts that for every fixedctireB eitherCSP(B) is
NP-complete o€£SP(B) is solvable in polynomial time. Although special cases & th
conjecture have been confirmed (see, for instance, [SCINGH, the full conjecture
has not been settled thus far. Nonetheless, research andpes problems has led to
the discovery of numerous tractable cases of constraiisfaetion (see [Jea98]).

Feder and Vardi [FV98] identified two general sufficient cibiaths for tractabil-
ity of CSP(B) that are broad enough to account for essentially all trédetehses of
CSP(B) that were known at that time. One of these two conditionsdsigftheoretic,
while the other has to do with expressibility of constraetisfaction problems in Data-
log, the main query language for deductive databases [[JM88re precisely, Feder and
Vardi [FV98] showed that for many polynomial-time solvalgenstraint satisfaction
problems of the fornCSP(B) there is a Datalog program that defines the complement
-CSP(B) of CSP(B).

Tractable constraint satisfaction problems of the f@8P(B) represent restricted
cases of the HMOMORPHISM PROBLEM “is there a homomorphism from to B?”
in which B is kept fixed and also required to satisfy certain additi@ualditions that
imply tractability. Tractable cases of constraint satitifan can also be obtained, how-
ever, by imposing conditions oA while letting B be arbitrary. In particular, an im-
portant large “island of tractability” is formed by the cfasf structures obounded
treewidth where thetreewidthof a relational structure is a positive integer that mea-



sures how “close” to a tree the structure is. SpecificallyGiider and Pearl [DP89] and
Freuder [Fre90] have shown that, for evéry> 2, the constraint satisfaction problem
CSP(T*(0), F(0)) is solvable in polynomial time, wherg* () is the class of alb-
structures of treewidth less than(and, as beforeF (o) is the class of alb-structures).
In [KVVOODb], a different proof of this result was obtained bypéoiting the tight connec-
tion between the constraint satisfaction and conjunctiwerygevaluation, as well as the
tractability of query evaluation for fragments of first-erdogic with a finite number
of variables. IfA is a relational structure, then tltanonical conjunctive queryf Q*

is a positive existential first-order sentence that dessrilwhich tuples fromA are in
the various relations oA. Chandra and Merlin [CM77] pointed out that, given two
structuresA and B, a homomorphism fromA to B exists if and only ifB satisfies
Q™. In generalQ” requires as many variables as elements in the universe. dh
[KVOO0b], however, it was shown that & is of treewidth less thak, thenk variables
suffice to expres§4, i.e.,Q* is equivalent to a sentence bf, which is the fragment
of first-order logic withk variables containing all atomic formulas in thésgariables
and closed only under conjunction and existential quaatifion over these variables.
The tractability of CSP(7* (o), F(o)) follows then by combining this result with the
fact that the evaluation problems fbf-sentences is polynomial-time solvable, which
follows from more general results in [Var95].

Our goal in this paper is to systematically explore the catinas between con-
straint satisfaction problems, structures of boundednticth, and definability in logics
with a finite number of variables. The first main result asstirat definability in Data-
log provides also an explanation for the tractability of stvaint satisfaction problems
on structures of bounded treewidth. Specifically, we shaoat, tfor everyk > 2 and
every o-structureB, the complement.CSP(7* (o), B) is expressible ink-Datalog,
i.e., it is definable by a Datalog program withvariables in the body and the head of
each rule. From this it follows that, for eveky> 2, CSP(7* (o), F (o)) is definable in
LFP?*, whereLFP?* is the fragment of least fixed-point logic wigtt variables. Since
query evaluation in this fragment is solvable in polynontiale, this result provides
another proof of the tractability of the constraint sati$ian problem on structures of
bounded treewidth. We also show that testing whether stkeognsistency can be es-
tablished omA andB is a sound and complete algorithm for determining whethergh
is a homomorphism fromA to B, whenA is a structure of treewidth less thanThe
proofs of these results make use of certain connectionsdsgtwonstraint satisfaction,
finite-variable logics, and combinatorial pebble gameswere studied in [KVOODb].

After this, we turn attention on the classB47* (o)), k& > 2, of all o-structures
A that arehomomaorpically equivalerib aco-structureD of treewidth less thak (i.e.,
there are homorphisms frotk to D and fromD to A). Clearly, each of these classes
properly contains the class* (o). We show thaCSP(H(T* (o)), F (o)) is solvable in
polynomial time by establishing thatCSP(#(7*(s)), B) is in k-Datalog, for every
o-structureB. Thus, the classel (7% (o)), k > 2, constitute new large “islands of
tractability” for constraint satisfaction and, moreovtireir tractability is once again
due to definability in Datalog. We then proceed to charaotg(7% (o)) in terms of
definability in finite-variable logics by showing that forakek > 2, a structureA is



homomorphically equivalent to a structure of treewidthslésank if and only if the
canonical query)® of A is logically equivalent to ah.*-sentence.

The above properties of the classés7"(0)), k > 2, appear to make them large
and appealing “islands of tractability”. Unfortunatelyijs expansion of the tractability
landscape comes at a price, because accessing these reawdsisif tractability” turns
outto be a hard problem. Indeed, we show that, for ekery2, testing for membership
in #(T* (o)) is an NP-complete problem. This should be contrasted wittsthte of
affairs for 7*, since it is well known that, for every > 2, testing for membership in
T* is solvable in polynomial time [Bod93].

Our study of the connections between bounded treewidth aitd-frariable logics
culminates with a logical characterization of boundedwidéh that sheds light on the
differences betweef* (¢) andH (7% (o)). For this, we analyze a set @writing rules
that are widely used in database query processing and shaiwftih eacht > 2, a
structureA has treewidth less thanif and only if the canonical quer@ of A can be
rewritten to anL*-sentence using these rules.

2 Preliminariesand Background

A vocabularys is a finite se{ Ry, . .., R, } of relation symbols of specified arities. A
o-structureis a relational structure of the fort = (4, R, ..., RA), where eactR®

is a relation on the universé of A such that the arity oR* matches that of the relation
symbolR;. We write F (o) for the class of all finiter-structures, i.e.g-structures with

a finite set as universe. In what follows, we will assume tHataictures under consid-
eration are finite; for this reason, the tera-$tructure” should be understood to mean
“finite o-structure” (on a few occasions, however, we will spell dinite o-structure”
for emphasis). Also, whenever we refentndirected graphsve mean structures of the
form G = (V, E) such that£ is a symmetric binary relation ovi without self-loops,
i.e., E contains no pairs of the forifv, v), wherev € V.

2.1 Conjunctive Queriesand Homomor phisms

An n-ary conjunctive queryy) over a vocabulary is a query definable by a positive
existential first-order formula over having conjunction as its only propositional con-
nective, i.e., by a formula of the forif¥z, ) - - - (3z,)¢ (21, ..., zn, 21, - - -, 25), Where
v(x1, ..., 2y, 21,...,2s) IS @ conjunction of atomic formulas over For example, the
binary conjunctive query “there is a path of length 3 framto x»” is definable by the
formula(3z1)(3z2) (E (1, 21) A E(z1,22) A E(z2,x2)). A Boolean conjunctive query
is definable by a positive existential first-order sentermértg conjunction as its only
propositional connective, i.e., all variableswhave been quantified out.

Every finites-structureA gives rise to aanonicalBoolean conjunctive querg?;
the positive existential first-order sentence definiiy asserts that there exist as many
elements as the cardinality of the universefofind states all atomic facts satisfied by
tuples from the universe oA. For example, ifA = (A, E) is the graph withA =
{1,2,3,4} andE = {(1,2),(2,3),(3,4), (4,1)}, thenQ? is definable by the sentence

(3.7,‘1)(31'2)(31'3)(E|$4)(E(.’L'1,.7,‘2) A E(.’L‘Q,.’L‘3) A E($3,$4) A E(.Z‘4,.731)).



In what follows, we will mildly abuse the notation by usig® to denote both the
canonical conjunctive quer@” associated with the structuse and the positive exis-
tential first-order sentence that defines the canonicalyér.

If A andB are o-structures, then @aomomorphism fronA to B is a mapping
h : A — B fromthe universed of A to the universe3 of B such that for every relation
symbolR; of o and every tupléay, . ..,a,) € RA, we have thath(a;),. .., h(a,)) €
RB. Chandra and Merlin discovered the following fundamereadit.

Theorem 1. [CM77] The following are equivalent for finite-structuresA andB.

1. There is a homomorphisinfrom A to B.
2. QB = QA i.e.,QB logically impliesQ?.
3. B = Q4, i.e., the structur@ satisfies the canonical que@* of A.

To illustrate this result, recall that an undirected gré&phk= (V, E) is 3-colorable if and
only if there is a homomorphism froi& to K3. Consequently, Theorem 1 implies that
G is 3-colorable if and only i satisfies the canonical queff of G.

We say that twar-structuresA and B arehomomorphically equivalerit there is
a homomorphisnh from A to B and a homomorphisrh’ from B to A. We write
A ~; B to denote thatA is homomorphically equivalent t8. Clearly, ~, is an
equivalence relation on the class of all finitestructures. Moreover, Theorem 1 implies
that~;, can be characterized in terms of logical equivalence.

Corollary 2. The following are equivalent for finiie-structuresA andB.

1. A ~, B.
2. QA = QB,i.e.,Q” isis logically equivalent ta@)®B.

2.2 Datalog, Pebble Games, and Constraint Satisfaction

Datalog is a database query language that can be succiestyided as logic program-
ming without function symbols. More formally[@atalog prograrmis a finite set of rules
of the formty « ¢1,...,t,, where each; is an atomic formul&k(zy,...,z,). The
left-hand side of each rule is called theadof the rule, while the right-hand side is
called thebody: In effect, the body of each rule is a conjunctive query sunet each
variable occurring in the body, but not in the head, is exisédly quantified. The rela-
tional predicates that occur in the heads of the rules arntkasional databaspred-
icates (IDBs), while all others are tlextensional databageredicates (EDBs). One of
the IDBs is designated as tigoal of the program. Note that IDBs may occur in the
bodies of rules and, thus, a Datalog program is a recursigeifsgation of the IDBs
with semantics obtained via least fixed-points of monotqrexators, see [UII89]. Each
Datalog program defines a query which, given a set of EDB pegés, returns the value
of the goal predicate. If the goal predicate is 0-ary, thengtogram defines a Boolean
query. Note that a Datalog query is computable in polynoniiag, since the bottom-
up evaluation of the least fixed-point of the program terrteéaavithin a polynomial
number of steps (in the size of the given EDBSs), see [UlI8%Jug, expressibility in



Datalog is a sufficient condition for tractability of a queAs an example, NIN-2-
CoLORABILITY is definable by the goal predicafg of the Datalog program below,
which asserts that the graggh = (V, E) contains a cycle of odd length:

P(J,‘,y) P E(.’L‘,y)
P(z,y): — P(x,2),E(z,w), E(w,y)

QZ—P(CU,CU)

A key parameter in analyzing Datalog programs is the numbgapables used. For
every positive integek, let k-Datalog be the collection of all Datalog programs in which
the body of every rule has at madstdistinct variables and also the head of every rule
has at mosk variables (the variables of the body may be different fromvéariables of
the head). For instance, the preceding example shows that NCOLORABILITY is
definable by a 4-Datalog program (in fact, it is also defindlyla 3-Datalog program).

If Ais a class ofr-structures and is ao-structure, themCSP (A, B) is the com-
plement (relative to4) of CSP (A, B), i.e., itis the class of ali-structuresA. € A such
that there isno homomorphisnh from A to B. Feder and Vardi [FV98] showed that
the tractability of many constraint satisfaction probleshthe formCSP (A, B) is due
to the fact that-CSP (A, B) is expressible irk-Datalog, for some positive integér In
other words, in many cases in whi€l$P (A, B) is tractable there is a positive inteder
and ak-Datalog progran® with a 0-ary goal predicate such that, for evenstructure
A € A, we have tha” on A evaluates to “true” iffA ¢ CSP(A4, B). A concrete in-
stance of this phenomenon is 2C0RABILITY, since it is the same decision problem
asCSP(G,K2), whereg is the class of all undirected graphs aKd is the undirected
graph consisting of a single edge. It should be pointed att thhen linking tractabil-
ity of constraint satisfaction problems with definability Datalog, it is necessary to
consider the complemenrtCSP (A, B) of CSP(A, B), becaus€SP(.A, B) itself can-
not be definable in Datalog. The reason is that Datalog-daérgperies arenonotone
in the sense that they are preserved under the addition Efstupthe relations of the
input, whileCSP (A, B) lacks this monotonicity property.

Itis well known that the expressive power of some of the magidal formalisms,
including first-order logic and second-order logic, can balgzed using certain combi-
natorial two-person games. In particular, the expressovegp of k-Datalog can be an-
alyzed usingexistentialk-pebble gamesvhich were introduced by Kolaitis and Vardi
[KV95] in the context of database theory. These games ayegdlbetween two players,
theSpoilerand theDuplicator, on twoo-structuresA andB according to the following
rules: a round of the game consistsiomoves of each player; on theth move of a
round,1 < ¢ < k, the Spoiler places a pebble on an elemgmf A, and the Duplicator
responds by placing a pebble on an elentgrif B. At the end of the round, if the
mappinga; — b;, 1 < i < k, is not a homomorphim between the corresponding sub-
structures ofA andB induced by{as, . ..,ax} and{bi, ..., b;}, then the Spoiler wins
the game. Otherwise, the Spoiler removes one or more pelaridsa new round of the
game begins. The Duplicator wins the existentigiebble game if he haswinning
strategy i.e., a systematic way that allows him to sustain playirayefer”, so that the
Spoiler can never win a round of the game.



In [KVO0O0a], it was shown that existenti&lpebble games can be used to charac-
terize when—CSP (A, B) is expressible irk-Datalog. Moreover, in [KVOO0Db] it was
pointed out that there is a tight connection between existeh-pebble games and
strongk-consistency properties of constraint satisfaction protd. Recall that a CSP-
instance isstrongly k-consistentf, for every i < k, every partial solution o — 1
variables can be extended to a partial solution @ariables. Moreover, the statement
“strongk-consistency can be established for a CSP-instance” miearsdditional con-
straints can be added, so that the resulting CSP-instarstenisgly k-consistent and
has the same solutions as the original one (see [Dec92]égrétise definitions). The
following is the key link between existential pebble gamed strong consistency prop-
erties: given twar-structuresA andB, it is possible to establish strorgconsistency
for the CSP-instance associated withandB (“is there a homomorphism from to
B?”) if and only if the Duplicator wins the existentiatpebble game oA andB. By
combining the results in [KV00a,KV0O0b], we obtain severiffiedlent characterizations
of when—-CSP (A, B) is expressible irnt-Datalog. Before stating these characteriza-
tions we note that, whenever we write “strokeconsistency can be established for
two o-structuresA andB”, we mean that strong-consistency can be established for
the CSP-instance associated withandB (see [KV0ODb] for the formal definition of
establishing strong-consistency foA andB).

Theorem 3. [KV00a,KVO0b] Assume that4 is a class ofo-structures,B is a o-
structure, andk is a positive integer. Then the following statements arevadgent.

1. -CSP(A,B) is expressible ik-Datalog.

2. CSP(A, B) consists precisely of all structure& € A such that the Duplicator
wins the existentiat-pebble game oA andB.

3. Forevery structurd € A, if the Duplicator wins the existentizlpebble game on
A andB, then there is a homomorphism fromto B.

4. For every structured € A, if strong k-consistency can be established farand
B, then there is a homomorphism frafnto B.

When applied to our running example of 22C0RABILITY, the preceding Theorem 3
implies (among other things) that a gra@his 2-colorable if and only the Duplicator
wins the existential 4-pebble game @nandK. As we will see in the sequel, Theorem
3 is a useful tool for determining when a tractable case ofcthrestraint satisfaction

problem is actually definable in Datalog. In addition, iteals that close links exists
between concepts in artificial intelligence and conceptiatabase theory and logic.

3 Bounded Treewidth and Datalog

Through the efforts of several different researchers, & been established that many
NP-complete problems on graphs become tractable whenplu¢gnaphs are assumed
to have a “tree-like” structure (see [DF99]). The propertyoeing “tree-like” is for-
malized using the concept of thieeewidthof a graph [DF99] or, more generally, the
concept of thereewidthof a structrure, which is defined as follows [FV98]. tlee
decompositionf ac-structureA = (A, R, ..., R2) is a labeled tred such that:



1. Every node of" is labeled by a non-empty subsetiof

2. For every relationR® and every tupl€ay,...,a,) € RA, there is a node of’
whose label containgas, . .., ap }.

3. Forevery € A, the setX of nodes ofl whose labels include is a subtree of .

Thewidth of a tree decompositiof is the maximum cardinality of a label ifi minus

1. Thetreewidthof ao-structureA = (A, R, ..., RA) is the smallest positive integer
k such thatA has a tree decomposition of widkh Several algorithmic problems, in-
cluding 3-GLORABILITY, that are NP-complete when arbitrary structures are alilowe
as inputs become solvable in polynomial time, if the inpuésrastricted to be structures
of treewidth less thak. We write 7* (o) to denote the class of all finite-structures of
treewidth less thak. We also write7 * to denote the class of all structures of treewidth
less thark, i.e., 7* is the union of the classé&” (o) over all vocabularies.

Dechter and Pearl [DP89] and Freuder [Fre90] were the firshtwv that bounded
treewidth is “an island of tractability” for constraint ssfaction problems. In terms
of the notation used here, this means &P (7%, F) is solvable in polynomial time,
whereZ is the class of all finite structures. In [KV00a] a differendpf of the tractabil-
ity of CSP(7T*, F) was obtained by establishing a connection between bouneaitith
and definability in a certain fragment of first-order logic withk variables. We now
describe this fragment and the connection with boundedvtdtk.

Letzy, ...,z be distinct first-order variables. We writé to denote the collection
of first-order formulas over a vocabulasydefined by the following conditions:

1. every atomic formula of with variables among, .. ., z, is anL*-formula;
2. if p andy areL*-formulas, ther(¢ A 1) is anL*-formula;
3. if pis anL*-formula, then(3z;¢) is anL*-formula, wherel < i < k.

Note that, althougl.* hask distinct variables only, each variable may be reused again
and again in ai.*-formula, so that there is no a priori bound on the number cfioc
rences of variables ih*-formulas. Reusing variables is the key technique for shgwi
that the expressive power dF is not as limited as it may initially appear. For exaple,
by judiciously reusing variables, one can show that for gymsitive integem, the
property “there is a path of lengthfrom a to b” is definable by arl.-formula.

If A is ac-structure withn elements in its universe, then clearly the canonical query
Q* is definable by al.”-formula. In general, the number of variables needed to defin
Q* cannot be reduced. Specifically Af is the complete grapK,, with n nodes, then
it can be shown that the canonical quél* is not definable by any.™ formula, for
m < n. The state of affairs is different, howeverAf has bounded treewidth.

Lemma4. [KV00a] If A is ao-structure of treewidth less than then the canonical
queryQ* is definable by af.*-formula, which can be constructed in polynomial time.

A proof that the constraint satisfaction probl&®P (7*, F) is solvable in polynomial
time can be obtained by combining the above result with tieetfaat the evaluation
problem forL*-formulas is solvable in polynomial time [Var95]. Our goaiwm is to

further explore the connection between bounded treewidth definability in logics
with a bounded number of variables. As described in Sectjéeder and Vardi [FV98]
showed that definability in Datalog provides a unifying extion for the tractability



of constraint satisfaction problems of the fof@$P (.4, B), whereA is a class ob-
structures aniB is a fixedo-structure. The next result shows that definability in Dagal
is also the reason for the tractability of constraint satiibn problems on constraints
of bounded treewidth.

Theorem 5. Assume thak is a positive integerg is a vocabulary, andB is a o-
structure. Then=CSP (7% (o), B) is in k-Datalog, whereT* (o) the class of allo-
structures of treewidth less than

Proof: (Sketch) In view of Theorem 3, it suffices to show thatAifand B are two
o-structures such thaA is of treewidth< & and the Duplicator wins the existential
k-pebble game oA andB, then there is a homomorphisirfrom A to B. Let A and
B be two such structures and consider the canonical conjngtieryQ of A. Since
the treewidth ofA is less thark, Lemma 4 implies thaf)? is definable by a sentenge
of Lk, In particular;y is a sentence (ﬂFO’i, which is the fragment of first-order logic
with £ variablesz, . . ., x, that contains all atomic formulas involving these variable
and is closed under conjunction, disjunction, and exigéquantification over these
variables. As shown in [KV95], there is a close connectiomieen existentiat-pebble
games and preservation EFO’i—formulas. Specifically, if ar-structure A satisfies
an HFO’jr—sentencgo and if the Duplicator wins the existentiatpebble game o\
andB, thenB satisfies the sentengeas well. Consider the-structuresA andB at
hand. ClearlyA |= 1, because every structure satisfies its canonical quergeSire
Duplicator wins the existentiat-pebble game oA andB, it follows thatB = ¢,
which means thaB = Q*. By Theorem 1, a homomorphism froi to B exists i

Using Theorem 5, we now derive several additional resuliseming the connec-
tions between constraint satisfaction, bounded treewadtt definability in logics with
a bounded number of variables. The first one follows from Tées 3 and 5.

Corollary 6. Assume that > 2, A is ao-structure of treewidth less than andB is
an arbitrary o-structure. Then the following statements are equivalent:

1. There is a homomorphism frafto B.
2. The Duplicator wins the existentiatpebble game oA andB.
3. Strongk-consistency can be established Arand B.

Consequently, determining whether strariigonsistency can be established is a sound
and complete polynomial-time algorithm f68P (7% (c), F(o)).

The typical use of strong-consistency properties in constraint satisfaction pots
is to try to establish strong-consistency for & that is sufficiently large to guarantee
global consistencywhich is the property that every partial solution can beeaged to
a solution (see [Dec92]). Corollary 6 yields a different oéstrongk-consistency as a
sound and complete algorithm for constraint satisfactimbfgms, when the constraints
are of treewidth less than Although this result seems to be implicit in other publidhe
work, we have not been able to locate an explicit referende to

In general, expressibility irk-Datalog is a sufficient condition for tractability of
CSP(A,B), but it does not provide a method for finding a solution to astance of



CSP(A,B), if one exists. This difficulty, however, can be overcome grestringent
definability conditions are satisfied. Specifically, [KVQ@ttroduced the concept df-
locality and showed that it is a sufficient condition for the backtr&rele construction
of solutions to constraint satisfaction problems, if sugluons exist.

Let k be a positive integerd a class ofr-structures, an® a o-structure. We say
that CSP(A, B) is k-local if ~CSP(.A,B*) is in k-Datalog for every expansioB*
of B with constants, that is, for every expansion®bbtained by augmentinB with
a finite sequence of distinguished elements from its unévessich an expansion can
be also viewed as a structure over a relational vocabul&aiiy which unary relational
symbols are used to encode the distinguished elementstinatlie expansion. We say
thatCSP (A, B) is k-local if CSP(.A, B) is k-local, for every structur® € 5.

Theorem 7. [KVOOb] If CSP(A4, B) is k-local, then there is polynomial-time backtrack-
free algorithm such that, giveA € A andB € B, it finds a homomorphism frork to
B, if one exists, or determines that no such homomorphisrsertherwise.

This backtrack-free algorithm builds a homomorphism franto B in a sequence of
steps; in each step, one tests whether stioegnsistency can be established for pro-
gressively longer expansiods* andB* of A andB. SinceCSP (A, B) is k-local, if
strongk-consistency can be established for some such expansi@rsathomomor-
phism between these expansions is guaranteed to existhwihéans that there is a
homomorphism fromA to B mapping the distinguished elementsAfto the corre-
sponding distinguished elements Bf Consequently, the algorithm can proceed and
construct longer expansions &f andB without backtracking, until every element of
A is a distinguished element. Notice that this algorithm nsakejuadratic number of
calls to the test of whether strogconsistency can be established.

Corollary 8. CSP(T*(o), F(c)) is k-local, for everyk > 2 and every.

Proof: (Sketch) If as-structureA has treewidth less than then every expansion of it
with constants also has treewidth less ttkaffo see this notice that each such expan-
sion amounts to augmenting the vocabulary with unary pegds; and the addition of
unary predicates does not change the treewidth of a steuctinme result now follows
immediately from Theorem &

A different polynomial-time backtrack-free algorithm f&tSP (7% (o), F(o)) is
known in the literature. Specifically, Section 1.4.2 of HepkHo097]) contains a de-
scription of a “zero-step lookahead” algorithm for consting a homomorphism from
A to B, whereA is of treewidth< k. This algorithm is based on Freuder’s [Fre90] re-
sult that the treewidth of a graph coincides withitduced widthUnlike the backtrack-
free algorithm based okrlocality, the zero-step lookahead algorithm entails pusin-
gle initial test of whether strong-consistency can be established. It requires, however,
the efficient construction of an order of the universedofi.e., of the variables of the
CSP-instance) of widtk: k. In turn, for each fixed:, such an order of the universe can
be obtained in polynomial time from a tree decompositioAodf width < &, which
has to be constructed first in polynomial time [Bod93].

So far, we have established that definability#Datalog provides an explanation for
the tractability of CSP (7% (o), B), whereB is an arbitrary, but fixeds-structure. This,



however, does not provide an explanation for the tractgiili CSP (7% (o), F(c)) in
terms of definability in some tractable logical formalismiwé bounded number of vari-
ables. Actually, there is a good reason for this, becausentir@tonicity properties of
Datalog, imlpy that neithe€SP(7* (o), F(o)) nor-CSP(T*(c), F (o)) are express-
ible in Datalog. There is, however, a well-known logicalrf@lism that is more power-
ful than Datalog and provides an explanation for the tratitalof CSP (7% (o), F(0)).
Specifically,least fixed-point logit.FP is the extension of first-order logic with least
fixed-points of positive first-order formulas. Datalog casm\bewed as a fragment of
LFP, since Datalog queries are definable using least fixéukgpof positive existen-
tial first-order formulas. Least fixed-point logic has foundmerous applications to
database theory and descriptive complexity theory, becafists close connections
to polynomial-time computability ([Var82,Imm86,Imm99]n particular, every LFP-
definable query is also computable in polynomial-time. Tlegtrresult shows that
the tractability of CSP(7% (o), F(o)). can be explained via definability in LFP with
a bounded number of variables.

Corollary 9. CSP(T*(0), F(0)) is expressible iLFP?*, for everyk > 2 and every
o, whereLFP?* is the collection of alLFP-formulas with at mos2k distinct variables.

Proof: (Hint) The result is derived by combining Corollary 6 withetffiact that de-
termining the winner in the existentialpebble game oA and B is expressible in
LFP?* when both structureA andB are part of the input (see [KVOOb].

4 Bounded Treewidth and Homomor phic Equivalence

If o is a vocabulary andl is a class ob-structures, then we writg/(.4) to denote the
class of allo-structures that are homomorphically equivalent to somectire in A.
The first result of this section asserts intuitively that defiility of constraint satisfac-
tion problems in Datalog can be extended from a cldge the clas${(A).

Proposition 10. Let A be a class ob-structures,B a o-structure, andk a positive
integer. If-CSP (A, B) is expressible itk-Datalog, then alsa-CSP(#(.A), B) is ex-
pressible ink-Datalog.

Proof: (Sketch) In view of Theorem 3, it suffices to show thafAifis a structure in
‘H(A) such that the Duplicator wins the existenttapebble game oA andB, then
there is a homomorphis from A to B. Assume thafA is such a structure and lét’
be a structure ind that is homomorphically equivalent #&. This means that there is
a homomorphisnk; from A to A’, and a homomorphisra, from A’ to A. By com-
posinghs with the winning strategy for the Duplicator in the existahk-pebble game
on A andB, we obtain a winning strategy for the Duplicator in the exigialk-pebble
game onA’ andB. SinceA’ is in A and—-CSP (A, B) is expressible ink-Datalog,
Theorem 3 implies that there is a homomorphishirom A’ to B. Consequently, the
compositionh = hy o A’ is a homomorphism fromA to B. I

By combining Theorem 5 with Proposition 10, we obtain théoi@ing result.



Corollary 11. Assume that > 2 ando is a vocabulary.

1. If B is ao-structure, them-CSP(H (7% (o)), B) is expressible irk-Datalog and,
hence, itis in PTIME
2. CSP(H(T*(0)), F(0)) is expressible ilLFP?* and, hence, it is in PTIME.

Corollary 11 shows that the classe§ 7% (o)), k > 2, give rise to larger “islands
of tractability” for constraint satisfaction that thosetaimed from the classeg” (o)

of structures of treewidth less than In what follows, we will show that the classes
H(T* (o)), k > 2, possess also algebraic and logical characterizatiohsi¢htagether
some of the key concepts studied here. To establish thi# vesuneed to first bring the
concept of acoreof a structure into the picture.

Let A be ao-structure. A substructurB of A is called acoreof A if there is a
homomorphisnk from A to B, but, for every proper substructul of B, there is no
homomorphism fromA to B’. A o-structureA is acoreif it is its own core. Altough
the study of cores originated in graph theory, the conceptfband applications to
database theory, as cores play an important role in conyj#query processing and
optimization (see [CM77]). The following are some well knoand easy to establish
facts about cores (see [HN92]): (1) Every finitestructureA has a core; (2) IB is a
core of A, thenA is homomorphically equivalent B; (3) If both B andB’ are cores
of A, thenB is isomorphic toB'. In view of the last fact, we writeore(A) for the
unique (up to isomorphism) core @f.

Let us consider some examples that illustrate these comeayt facts. First, the
complete undirected grafK- with two elements (i.e., the graph that consists of a single
edge) is a core. Moreover, an undirected non-empty gfagtasK, as its core if and
only if G is 2-colorable. Note that, fat > 3, this equivalence does not immediately
extend tok-colorable graphs and &, because &-colorable graph need not contain
the complete undirected grafi;, as a subgraph. It is easy to see, however, that for
everyk > 3, an undirected grapks is k-colorable if and only ifK,, is the core of
G & K, whereG ¢ K}, is thedirect sumof G andK . We are now ready to state and
prove the promised characterizationst6f7 * ()).

Theorem 12. Let k be a positive integerr a vocabulary, andA a o-structure. Then
the following statements are equivalent.

1. A € H(T*(0)).
2. core(A) has treewidth less thah
3. The canonical conjunctive que@y” is logically equivalent to ah.*-formula.

Proof: (Sketch) We proceed in a round robin fashion. Assume A& homomorphi-
cally equivalent to ar-structureA’ of treewidth< k. SinceA and A’ are homomor-
phically equivalent, it is easy to see thatre(A) is isomorphic tocore(A'). At the
same timecore(A’) has treewidth less tha since it is a substructure of a structure
having treewidth less thak If core(A) has treewidth less thaln then Lemma 4 im-
plies that the canonical que€y° () is logically equivalent to af.”-formula. Since
A is homomorphically equivalent toore(A), Corollary 2 implies thatQ? is logi-
cally equivalent taQ<er¢(A) Finally, assume that the canonical quér§ is logically



equivalent to arl.*-sentence). As pointed out in [KV0Ob, Remark 5.3], if is a an
L*-sentence, then one can construet-atructureB of treewidth less thak such that
the canonical querg)® is logically equivalent ta). Consequently, Corollary 2 implies
that A is homomorphically equivalent to such a structixdl

It is well known that, for each positive integgr there is a polynomial-time algo-
rithm for determining whether a given structure has tredfwlidss thark [Bod93]. In
other words, for each fixed, membership in the clasg* (o) can be tested in polyno-
mial time. Our next result shows that, unfortunately, treesbf affairs is dramatically
different for the classe® (7% (o)), k > 2.

Theorem 13. For everyk > 2 and every vocabulary containing at least one binary
relation symbol, determining membershighif7* (o)) is an NP-complete problem.

Proof: (Sketch) We first show that i€ > 3 andG is an undirected graph, then the
following are equivalent:

1. Gisk-colorable.
2. core(G @ Kj,) has treewidth less than
3. Ga Ky € H(T(0)).

Indeed, ifG is k-colorable, therore(G @ Kj) = K, which has treewidttt — 1. If
core(G @ Ky,) has treewidth less thakh thenG @ Ky, is certainly homomorphically
equivalent to a graph of treewidth less thiansince every graph is homomorphically
equivalent to its core. Finally, assume tliais homomorphically equivalent to a graph
H having treewidth less thah. It is known that if a graph has treewidth less thign
then it isk-colorable (this is easy to see using the fact that a graplreaewidth less
thank if and only if it is a partialk-tree - see [DF99]). Consequenty,is k-colorable,
because it is homomorphically equivalent th-aolorable graph.

Next, we consider the cade = 2. Let T be a directed tree. We will exhibit a
polynomial-time reduction o€SP(T) to #(72(c)). For everyo-structureG, we de-
fine G* to be(G @ T), if the Duplicator wins the existenti@pebble game o and
T, andK3, otherwise. Clearlyz* can be constructed froi& in polynomial time. We
claim that, for everyG, G € CSP(T) if and only if G* € H(T?(c)). Assume first
thatG is in CSP(T), which means that there is a homomorphism fi@nto T'. Conse-
guently, the Duplicator wins the existentizxpebble game oz and™T. It follows that
G* = (G @ T) and thatG* is homomorphically equivalent t&, which has treewidth
less thar. Conversely, assume th&t* € 7(7?2(0)). It follows thatG* = G & T
is homomorphically equivalent toastructureH of treewidth less than 2, and that the
Duplicator wins the existenti@-pebble game o6z andT. Therefore, the Duplicator
also wins the existential-pebble game oz ¢ T andT. In turn and sincéz ¢ T
is homomorphically equivalent tH, it follows that the Duplicator wins the existential
2-pebble game ol andT. SinceH has treewidth less tha Corollary 6 implies that
there is a homomorphism fro to T'; in turn, this implies that there is a homomor-
phism fromG & T to T. By restricting this homomorphism &, we obtain the desired
homomorphism fronG to T. The NP-hardness follows from the existence of particular
directed treeq such thatCSP(T) is an NP-complete problem [GWW92,HNZ9(].



Theorem 13 suggests that the logical characterizatiomgivdheorem 12 for the
classH(T* (o)) is not feasibly effective. It is natural therefore to ask wiez the prop-
erty “A has treewidth less thaki' possesses a logical characterization that might also
explain the complexity-theoretic difference between phisperty and the propertyA
is homomorphically equivalentto a structure of treewidtsd thark”. Clearly, any such
characterization should involve a refinement of the proptite canonical quer@)*
is logically equivalent to aih.*-formula”. We now introduce such a refinement.

Let A be ao-structure, letQ” be the canonical query associated with Here,
we identify Q4 with its defining formula, i.e., we vieW)* as an existential first-order
formulaofthe form(3z,) - - - (3z,,) (21, . - ., 2n), Wherep(zy, . . ., z,) IS @ conjunction
of atomic formulas oves with variables among,, ..., z,,. We say that a first-order
sentence) is arewriting of Q# if there is a finite sequence of formulas, . .., ¢,
such thatp; is Q?, v, is 1, and each); ., is obtained fromp; by applying one of the
following rewrite rules

A-Rule: Associativityof conjunction is applied to subformulas of

C-Rule: Commutatitivityof conjunction is applied to subformulas¢f

3-Rule: A subformula ofy; of the form (3z(6; A 62)) is replaced by the formula
((3z6:1) A 65), provided the variable is not free inf-.

R-Rule: A subformula ofy of the form(3z6) is replaced by the fomul&dy)8[z/y]),
wherey does not occur free ik and@[z/y] is obtained fron® by replacing all free
occurrences af in 6 by y.

These four rewrite rules are routinely used in databaseyqueccessing and optimiza-
tion in order to transform queries to equivalent, but lesstly-to-evaluate, queries
[UII89]. The final result of this paper asserts that thesesudan also be used to ob-
tain a logical characterization of bounded treewidth.

Theorem 14. Let k be a positive integerr a vocabulary, andA a o-structure. Then
the following statements are equivalent.

1. A has treewidth less thah
2. There is arL*-sentence) that is a rewriting ofQ*.

Moreover, ifA has treewidth less thak, then such a rewriting can be constructed in
time polynomial in the size .

Proof: (Hint) If A has treewidth less than then one can construct in polynomialtime a
linear order of the universé of A of induced width less thak, which means that every
element ofA has fewer thark smaller neighbors in the traingulation of the constraint
graph ofA (see [Fre90]). Using this linear order, it is possible toleage the canonical
conjunctive quenyQ® on everys-structureB using intermediate conjunctive queries
each of which has at mostvariables. Specifically, this evaluation can be carried out
by simulating the steps of the “bucket elimination algarittfor constraint satisfaction

in [Dec99]. In turn, each step of this simulation can be ti@esl to rewriting steps
that transform the canonical conjunctive qué¥* to anL*-sentence. For the other
direction, one can use the rewriting to build a tree decortipasof width less thark

of ao-structure isomorphic té. il
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