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Abstract. We systematically investigate the connections between constraint sat-
isfaction problems, structures of bounded treewidth, and definability in logics
with a finite number of variables. We first show that constraint satisfaction prob-
lems on inputs of treewidth less thank are definable using Datalog programs
with at mostk variables; this provides a new explanation for the tractability of
these classes of problems. After this, we investigate constraint satisfaction on
inputs that are homomorphically equivalent to structures of bounded treewidth.
We show that these problems are solvable in polynomial time by establishing that
they are actually definable in Datalog; moreover, we obtain alogical characteriza-
tion of the property “being homomorphically equivalent to astructure of bounded
treewidth” in terms of definability in finite-variable logics. Unfortunately, this ex-
pansion of the tractability landscape comes at a price, because we also show that,
for eachk � 2, determining whether a structure is homomorphically equivalent
to a structure of treewidth less thank is an NP-complete problem. In contrast, it is
well known that, for eachk � 2, there is a polynomial-time algorithm for testing
whether a given structure is of treewidth less thank. Finally, we obtain a logical
characterization of the property “having bounded treewidth” that sheds light on
the complexity-theoretic difference between this property and the property ‘being
homomorphically equivalent to a structure of bounded treewidth”.

1 Introduction and Summary of Results

Constraint satisfaction problems are ubiquitous in several different areas of artificial
intelligence, computer science, algebra, logic, and combinatorics. An instance of a
constraint-satisfaction problem consists of a set of variables, a set of possible values,
and a set of constraints on tuples of variables; the questionis to determine whether there
is an assignment of values to the variables that satisfies thegiven constraints. A particu-
larly fruitful way to formalize the above informal description, articulated first by Feder
and Vardi [FV98], is to identify the CONSTRAINT SATISFACTION PROBLEM with the
HOMOMORPHISM PROBLEM: given two relational structuresA andB, is there a ho-
momorphismh fromA toB? Intuitively, the structureA represents the variables and? Supported in part by NSF grant IIS-9907419.?? Supported in part by NSF grants CCR-9988322, IIS-9908435, IIS-9978135, and EIA-0086264,
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the tuples of variables that participate in constraints, the structureB represents the do-
main of values and the tuples of values that these constrained tuples of variables are
allowed to take, and the homomorphisms fromA to B are precisely the assignments
of values to variables that satisfy the constraints. For instance, 3-COLORABILITY is
equivalent to the problem of deciding whether there is a homomorphismh from a given
graphG toK3, whereK3 is the complete graph with 3 nodes. This identification makes
it possible to approach constraint satisfaction problems from an algebraic perspective
[Jea98,FV98]. Moreover, it makes transparent the connection between constraint sat-
isfaction problems and certain fundamental problems in database theory, such as con-
junctive query evaluation and conjunctive query containment (or implication) [KV00a].

Since in its full generality the HOMOMORPHISMPROBLEM is NP-complete [GJ79],
researchers have intensively pursued tractable cases of this problem, often referred
to as “islands of tractability”, that are obtained by imposing restrictions on the input
structuresA andB. If � is a relational vocabulary, andA, B are two classes of fi-
nite�-structures, thenCSP(A;B) is the following decision problem: given a structureA 2 A and a structureB 2 B, is there a homomorphism fromA toB? In other words,CSP(A;B) is the restriction of the HOMOMORPHISMPROBLEM to inputs fromA andB. If the classB consists of a single structureB, then we writeCSP(A;B) instead
of CSP(A;B). Furthermore, ifA is the classF(�) of all finite �-structures, then we
simply writeCSP(B) instead ofCSP(F(�);B).

Note that ifG is the class of all undirected graphs andK3 is the complete graph
with 3 nodes, thenCSP(G;K3) is the 3-COLORABILITY problem. Consequently, there
are fixed structuresB such that constraint satisfaction problems of the formCSP(B)
are NP-complete. It is a major open problem to characterize those structuresB for
whichCSP(B) is tractable. Closely related to this problem is the Feder-Vardi [FV98]
Dichotomy Conjecture, which asserts that for every fixed structureB eitherCSP(B) is
NP-complete orCSP(B) is solvable in polynomial time. Although special cases of this
conjecture have been confirmed (see, for instance, [Sch78,HN90]), the full conjecture
has not been settled thus far. Nonetheless, research on these open problems has led to
the discovery of numerous tractable cases of constraint satisfaction (see [Jea98]).

Feder and Vardi [FV98] identified two general sufficient conditions for tractabil-
ity of CSP(B) that are broad enough to account for essentially all tractable cases ofCSP(B) that were known at that time. One of these two conditions is group-theoretic,
while the other has to do with expressibility of constraint satisfaction problems in Data-
log, the main query language for deductive databases [Ull89]. More precisely, Feder and
Vardi [FV98] showed that for many polynomial-time solvableconstraint satisfaction
problems of the formCSP(B) there is a Datalog program that defines the complement:CSP(B) of CSP(B).

Tractable constraint satisfaction problems of the formCSP(B) represent restricted
cases of the HOMOMORPHISM PROBLEM “is there a homomorphism fromA to B?”
in whichB is kept fixed and also required to satisfy certain additionalconditions that
imply tractability. Tractable cases of constraint satisfaction can also be obtained, how-
ever, by imposing conditions onA while lettingB be arbitrary. In particular, an im-
portant large “island of tractability” is formed by the class of structures ofbounded
treewidth, where thetreewidthof a relational structure is a positive integer that mea-



sures how “close” to a tree the structure is. Specifically, Dechter and Pearl [DP89] and
Freuder [Fre90] have shown that, for everyk � 2, the constraint satisfaction problemCSP(T k(�);F(�)) is solvable in polynomial time, whereT k(�) is the class of all�-
structures of treewidth less thank (and, as before,F(�) is the class of all�-structures).
In [KV00b], a different proof of this result was obtained by exploiting the tight connec-
tion between the constraint satisfaction and conjunctive query evaluation, as well as the
tractability of query evaluation for fragments of first-order logic with a finite number
of variables. IfA is a relational structure, then thecanonical conjunctive queryof QA
is a positive existential first-order sentence that describes which tuples fromA are in
the various relations ofA. Chandra and Merlin [CM77] pointed out that, given two
structuresA andB, a homomorphism fromA to B exists if and only ifB satisfiesQA. In general,QA requires as many variables as elements in the universe ofA. In
[KV00b], however, it was shown that ifA is of treewidth less thank, thenk variables
suffice to expressQA, i.e.,QA is equivalent to a sentence ofLk, which is the fragment
of first-order logic withk variables containing all atomic formulas in thesek variables
and closed only under conjunction and existential quantification over these variables.
The tractability ofCSP(T k(�);F(�)) follows then by combining this result with the
fact that the evaluation problems forLk-sentences is polynomial-time solvable, which
follows from more general results in [Var95].

Our goal in this paper is to systematically explore the connections between con-
straint satisfaction problems, structures of bounded treewidth, and definability in logics
with a finite number of variables. The first main result asserts that definability in Data-
log provides also an explanation for the tractability of constraint satisfaction problems
on structures of bounded treewidth. Specifically, we show that, for everyk � 2 and
every�-structureB, the complement:CSP(T k(�);B) is expressible ink-Datalog,
i.e., it is definable by a Datalog program withk variables in the body and the head of
each rule. From this it follows that, for everyk � 2,CSP(T k(�);F(�)) is definable inLFP2k, whereLFP2k is the fragment of least fixed-point logic with2k variables. Since
query evaluation in this fragment is solvable in polynomialtime, this result provides
another proof of the tractability of the constraint satisfaction problem on structures of
bounded treewidth. We also show that testing whether strongk-consistency can be es-
tablished onA andB is a sound and complete algorithm for determining whether there
is a homomorphism fromA toB, whenA is a structure of treewidth less thank. The
proofs of these results make use of certain connections between constraint satisfaction,
finite-variable logics, and combinatorial pebble games that were studied in [KV00b].

After this, we turn attention on the classesH(T k(�)), k � 2, of all �-structuresA that arehomomorpically equivalentto a�-structureD of treewidth less thank (i.e.,
there are homorphisms fromA toD and fromD toA). Clearly, each of these classes
properly contains the classT k(�). We show thatCSP(H(T k(�));F(�)) is solvable in
polynomial time by establishing that:CSP(H(T k(�));B) is in k-Datalog, for every�-structureB. Thus, the classesH(T k(�)), k � 2, constitute new large “islands of
tractability” for constraint satisfaction and, moreover,their tractability is once again
due to definability in Datalog. We then proceed to characterizeH(T k(�)) in terms of
definability in finite-variable logics by showing that for each k � 2, a structureA is



homomorphically equivalent to a structure of treewidth less thank if and only if the
canonical queryQA ofA is logically equivalent to anLk-sentence.

The above properties of the classesH(T k(�)), k � 2, appear to make them large
and appealing “islands of tractability”. Unfortunately, this expansion of the tractability
landscape comes at a price, because accessing these new “islands of tractability” turns
out to be a hard problem. Indeed, we show that, for everyk � 2, testing for membership
in H(T k(�)) is an NP-complete problem. This should be contrasted with the state of
affairs forT k, since it is well known that, for everyk � 2, testing for membership inT k is solvable in polynomial time [Bod93].

Our study of the connections between bounded treewidth and finite-variable logics
culminates with a logical characterization of bounded treewidth that sheds light on the
differences betweenT k(�) andH(T k(�)). For this, we analyze a set ofrewriting rules
that are widely used in database query processing and show that, for eachk � 2, a
structureA has treewidth less thank if and only if the canonical queryQA ofA can be
rewritten to anLk-sentence using these rules.

2 Preliminaries and Background

A vocabulary� is a finite setfR1; : : : ; Rmg of relation symbols of specified arities. A�-structureis a relational structure of the formA = (A;RA1 ; : : : ; RAm), where eachRAi
is a relation on the universeA ofA such that the arity ofRAi matches that of the relation
symbolRi. We writeF(�) for the class of all finite�-structures, i.e.,�-structures with
a finite set as universe. In what follows, we will assume that all structures under consid-
eration are finite; for this reason, the term “�-structure” should be understood to mean
“finite �-structure” (on a few occasions, however, we will spell out “finite �-structure”
for emphasis). Also, whenever we refer toundirected graphswe mean structures of the
formG = (V;E) such thatE is a symmetric binary relation onV without self-loops,
i.e.,E contains no pairs of the form(v; v), wherev 2 V .

2.1 Conjunctive Queries and Homomorphisms

An n-ary conjunctive queryQ over a vocabulary� is a query definable by a positive
existential first-order formula over� having conjunction as its only propositional con-
nective, i.e., by a formula of the form(9z1) � � � (9zs) (x1; : : : ; xn; z1; : : : ; zs), where (x1; : : : ; xn; z1; : : : ; zs) is a conjunction of atomic formulas over�. For example, the
binary conjunctive query “there is a path of length 3 fromx1 to x2” is definable by the
formula(9z1)(9z2)(E(x1; z1) ^E(z1; z2) ^E(z2; x2)). A Boolean conjunctive query
is definable by a positive existential first-order sentence having conjunction as its only
propositional connective, i.e., all variables of have been quantified out.

Every finite�-structureA gives rise to acanonicalBoolean conjunctive queryQA;
the positive existential first-order sentence definingQA asserts that there exist as many
elements as the cardinality of the universe ofA and states all atomic facts satisfied by
tuples from the universe ofA. For example, ifA = (A;E) is the graph withA =f1; 2; 3; 4g andE = f(1; 2); (2; 3); (3; 4); (4; 1)g, thenQA is definable by the sentence(9x1)(9x2)(9x3)(9x4)(E(x1; x2) ^ E(x2; x3) ^E(x3; x4) ^ E(x4; x1)):



In what follows, we will mildly abuse the notation by usingQA to denote both the
canonical conjunctive queryQA associated with the structureA and the positive exis-
tential first-order sentence that defines the canonical query QA.

If A andB are �-structures, then ahomomorphism fromA to B is a mappingh : A 7! B from the universeA ofA to the universeB ofB such that for every relation
symbolRi of � and every tuple(a1; : : : ; an) 2 RAi , we have that(h(a1); : : : ; h(an)) 2RBi . Chandra and Merlin discovered the following fundamental result.

Theorem 1. [CM77] The following are equivalent for finite�-structuresA andB.

1. There is a homomorphismh fromA toB.
2. QB j= QA, i.e.,QB logically impliesQA.
3. B j= QA, i.e., the structureB satisfies the canonical queryQA ofA.

To illustrate this result, recall that an undirected graphG = (V;E) is 3-colorable if and
only if there is a homomorphism fromG toK3. Consequently, Theorem 1 implies thatG is 3-colorable if and only ifK3 satisfies the canonical queryQG ofG.

We say that two�-structuresA andB arehomomorphically equivalentif there is
a homomorphismh from A to B and a homomorphismh0 from B to A. We writeA �h B to denote thatA is homomorphically equivalent toB. Clearly,�h is an
equivalence relation on the class of all finite�-structures. Moreover, Theorem 1 implies
that�h can be characterized in terms of logical equivalence.

Corollary 2. The following are equivalent for finite�-structuresA andB.

1. A �h B.
2. QA � QB, i.e.,QA is is logically equivalent toQB.

2.2 Datalog, Pebble Games, and Constraint Satisfaction

Datalog is a database query language that can be succinctly described as logic program-
ming without function symbols. More formally, aDatalog programis a finite set of rules
of the formt0  t1; : : : ; tm, where eachti is an atomic formulaR(x1; : : : ; xn). The
left-hand side of each rule is called theheadof the rule, while the right-hand side is
called thebody. In effect, the body of each rule is a conjunctive query such that each
variable occurring in the body, but not in the head, is existentially quantified. The rela-
tional predicates that occur in the heads of the rules are theintensional databasepred-
icates (IDBs), while all others are theextensional databasepredicates (EDBs). One of
the IDBs is designated as thegoal of the program. Note that IDBs may occur in the
bodies of rules and, thus, a Datalog program is a recursive specification of the IDBs
with semantics obtained via least fixed-points of monotone operators, see [Ull89]. Each
Datalog program defines a query which, given a set of EDB predicates, returns the value
of the goal predicate. If the goal predicate is 0-ary, then the program defines a Boolean
query. Note that a Datalog query is computable in polynomialtime, since the bottom-
up evaluation of the least fixed-point of the program terminates within a polynomial
number of steps (in the size of the given EDBs), see [Ull89]. Thus, expressibility in



Datalog is a sufficient condition for tractability of a query. As an example, NON-2-
COLORABILITY is definable by the goal predicateQ of the Datalog program below,
which asserts that the graphG = (V;E) contains a cycle of odd length:P (x; y) : � E(x; y)P (x; y) : � P (x; z); E(z; w); E(w; y)Q : � P (x; x)
A key parameter in analyzing Datalog programs is the number of variables used. For
every positive integerk, letk-Datalog be the collection of all Datalog programs in which
the body of every rule has at mostk distinct variables and also the head of every rule
has at mostk variables (the variables of the body may be different from the variables of
the head). For instance, the preceding example shows that NON-2-COLORABILITY is
definable by a 4-Datalog program (in fact, it is also definableby a 3-Datalog program).

If A is a class of�-structures andB is a�-structure, then:CSP(A;B) is the com-
plement (relative toA) of CSP(A;B), i.e., it is the class of all�-structuresA 2 A such
that there isno homomorphismh fromA to B. Feder and Vardi [FV98] showed that
the tractability of many constraint satisfaction problemsof the formCSP(A;B) is due
to the fact that:CSP(A;B) is expressible ink-Datalog, for some positive integerk. In
other words, in many cases in whichCSP(A;B) is tractable there is a positive integerk
and ak-Datalog programP with a0-ary goal predicate such that, for every�-structureA 2 A, we have thatP onA evaluates to “true” iffA 62 CSP(A;B). A concrete in-
stance of this phenomenon is 2-COLORABILITY , since it is the same decision problem
asCSP(G;K2), whereG is the class of all undirected graphs andK2 is the undirected
graph consisting of a single edge. It should be pointed out that, when linking tractabil-
ity of constraint satisfaction problems with definability in Datalog, it is necessary to
consider the complement:CSP(A;B) of CSP(A;B), becauseCSP(A;B) itself can-
not be definable in Datalog. The reason is that Datalog-definable queries aremonotone,
in the sense that they are preserved under the addition of tuples in the relations of the
input, whileCSP(A;B) lacks this monotonicity property.

It is well known that the expressive power of some of the main logical formalisms,
including first-order logic and second-order logic, can be analyzed using certain combi-
natorial two-person games. In particular, the expressive power ofk-Datalog can be an-
alyzed usingexistentialk-pebble games, which were introduced by Kolaitis and Vardi
[KV95] in the context of database theory. These games are played between two players,
theSpoilerand theDuplicator, on two�-structuresA andB according to the following
rules: a round of the game consists ofk moves of each player; on thei-th move of a
round,1 � i � k, the Spoiler places a pebble on an elementai ofA, and the Duplicator
responds by placing a pebble on an elementbi of B. At the end of the round, if the
mappingai 7! bi, 1 � i � k, is not a homomorphim between the corresponding sub-
structures ofA andB induced byfa1; : : : ; akg andfb1; : : : ; bkg, then the Spoiler wins
the game. Otherwise, the Spoiler removes one or more pebbles, and a new round of the
game begins. The Duplicator wins the existentialk-pebble game if he has awinning
strategy, i.e., a systematic way that allows him to sustain playing “forever”, so that the
Spoiler can never win a round of the game.



In [KV00a], it was shown that existentialk-pebble games can be used to charac-
terize when:CSP(A;B) is expressible ink-Datalog. Moreover, in [KV00b] it was
pointed out that there is a tight connection between existential k-pebble games and
strongk-consistency properties of constraint satisfaction problems. Recall that a CSP-
instance isstronglyk-consistentif, for every i < k, every partial solution oni � 1
variables can be extended to a partial solution oni variables. Moreover, the statement
“strongk-consistency can be established for a CSP-instance” means that additional con-
straints can be added, so that the resulting CSP-instance isstronglyk-consistent and
has the same solutions as the original one (see [Dec92] for the precise definitions). The
following is the key link between existential pebble games and strong consistency prop-
erties: given two�-structuresA andB, it is possible to establish strongk-consistency
for the CSP-instance associated withA andB (“is there a homomorphism fromA toB?”) if and only if the Duplicator wins the existentialk-pebble game onA andB. By
combining the results in [KV00a,KV00b], we obtain several different characterizations
of when:CSP(A;B) is expressible ink-Datalog. Before stating these characteriza-
tions we note that, whenever we write “strongk-consistency can be established for
two �-structuresA andB”, we mean that strongk-consistency can be established for
the CSP-instance associated withA andB (see [KV00b] for the formal definition of
establishing strongk-consistency forA andB).

Theorem 3. [KV00a,KV00b] Assume thatA is a class of�-structures,B is a �-
structure, andk is a positive integer. Then the following statements are equivalent.

1. :CSP(A;B) is expressible ink-Datalog.
2. CSP(A;B) consists precisely of all structuresA 2 A such that the Duplicator

wins the existentialk-pebble game onA andB.
3. For every structureA 2 A, if the Duplicator wins the existentialk-pebble game onA andB, then there is a homomorphism fromA toB.
4. For every structureA 2 A, if strongk-consistency can be established forA andB, then there is a homomorphism fromA toB.

When applied to our running example of 2-COLORABILITY , the preceding Theorem 3
implies (among other things) that a graphG is 2-colorable if and only the Duplicator
wins the existential 4-pebble game onG andK2. As we will see in the sequel, Theorem
3 is a useful tool for determining when a tractable case of theconstraint satisfaction
problem is actually definable in Datalog. In addition, it reveals that close links exists
between concepts in artificial intelligence and concepts indatabase theory and logic.

3 Bounded Treewidth and Datalog

Through the efforts of several different researchers, it has been established that many
NP-complete problems on graphs become tractable when the input graphs are assumed
to have a “tree-like” structure (see [DF99]). The property of being “tree-like” is for-
malized using the concept of thetreewidthof a graph [DF99] or, more generally, the
concept of thetreewidthof a structrure, which is defined as follows [FV98]. Atree
decompositionof a�-structureA = (A;RA1 ; : : : ; RAm) is a labeled treeT such that:



1. Every node ofT is labeled by a non-empty subset ofV .
2. For every relationRAi and every tuple(a1; : : : ; an) 2 RAi , there is a node ofT

whose label containsfa1; : : : ; ang.
3. For everya 2 A, the setX of nodes ofT whose labels includea is a subtree ofT .

Thewidth of a tree decompositionT is the maximum cardinality of a label inT minus
1. Thetreewidthof a�-structureA = (A;RA1 ; : : : ; RAm) is the smallest positive integerk such thatA has a tree decomposition of widthk. Several algorithmic problems, in-
cluding 3-COLORABILITY , that are NP-complete when arbitrary structures are allowed
as inputs become solvable in polynomial time, if the inputs are restricted to be structures
of treewidth less thank. We writeT k(�) to denote the class of all finite�-structures of
treewidth less thank. We also writeT k to denote the class of all structures of treewidth
less thank, i.e.,T k is the union of the classesT k(�) over all vocabularies�.

Dechter and Pearl [DP89] and Freuder [Fre90] were the first toshow that bounded
treewidth is “an island of tractability” for constraint satisfaction problems. In terms
of the notation used here, this means thatCSP(T k;F) is solvable in polynomial time,
whereF is the class of all finite structures. In [KV00a] a different proof of the tractabil-
ity of CSP(T k;F)was obtained by establishing a connection between bounded treewidth
and definability in a certain fragmentLk of first-order logic withk variables. We now
describe this fragment and the connection with bounded treewidth.

Letx1; : : : ; xk be distinct first-order variables. We writeLk to denote the collection
of first-order formulas over a vocabulary� defined by the following conditions:

1. every atomic formula of� with variables amongx1; : : : ; xk is anLk-formula;
2. if ' and areLk-formulas, then(' ^  ) is anLk-formula;
3. if ' is anLk-formula, then(9xi') is anLk-formula, where1 � i � k.

Note that, althoughLk hask distinct variables only, each variable may be reused again
and again in anLk-formula, so that there is no a priori bound on the number of occur-
rences of variables inLk-formulas. Reusing variables is the key technique for showing
that the expressive power ofLk is not as limited as it may initially appear. For exaple,
by judiciously reusing variables, one can show that for every positive integern, the
property “there is a path of lengthn from a to b” is definable by anL3-formula.

If A is a�-structure withn elements in its universe, then clearly the canonical queryQA is definable by anLn-formula. In general, the number of variables needed to defineQA cannot be reduced. Specifically, ifA is the complete graphKn with n nodes, then
it can be shown that the canonical queryQA is not definable by anyLm formula, form < n. The state of affairs is different, however, ifA has bounded treewidth.

Lemma 4. [KV00a] If A is a �-structure of treewidth less thank, then the canonical
queryQA is definable by anLk-formula, which can be constructed in polynomial time.

A proof that the constraint satisfaction problemCSP(T k;F) is solvable in polynomial
time can be obtained by combining the above result with the fact that the evaluation
problem forLk-formulas is solvable in polynomial time [Var95]. Our goal now is to
further explore the connection between bounded treewidth and definability in logics
with a bounded number of variables. As described in Section 2, Feder and Vardi [FV98]
showed that definability in Datalog provides a unifying explanation for the tractability



of constraint satisfaction problems of the formCSP(A;B), whereA is a class of�-
structures andB is a fixed�-structure. The next result shows that definability in Datalog
is also the reason for the tractability of constraint satisfaction problems on constraints
of bounded treewidth.

Theorem 5. Assume thatk is a positive integer,� is a vocabulary, andB is a �-
structure. Then:CSP(T k(�);B) is in k-Datalog, whereT k(�) the class of all�-
structures of treewidth less thank.

Proof: (Sketch) In view of Theorem 3, it suffices to show that ifA andB are two�-structures such thatA is of treewidth< k and the Duplicator wins the existentialk-pebble game onA andB, then there is a homomorphismh fromA toB. LetA andB be two such structures and consider the canonical conjunctive queryQA ofA. Since
the treewidth ofA is less thank, Lemma 4 implies thatQA is definable by a sentence 
of Lk. In particular, is a sentence of9FOk+, which is the fragment of first-order logic
with k variablesx1; : : : ; xk that contains all atomic formulas involving these variables
and is closed under conjunction, disjunction, and existential quantification over these
variables. As shown in [KV95], there is a close connection between existentialk-pebble
games and preservation of9FOk+-formulas. Specifically, if a�-structureA satisfies
an9FOk+-sentence' and if the Duplicator wins the existentialk-pebble game onA
andB, thenB satisfies the sentence' as well. Consider the�-structuresA andB at
hand. Clearly,A j=  , because every structure satisfies its canonical query. Since the
Duplicator wins the existentialk-pebble game onA andB, it follows thatB j=  ,
which means thatB j= QA. By Theorem 1, a homomorphism fromA toB exists.

Using Theorem 5, we now derive several additional results concerning the connec-
tions between constraint satisfaction, bounded treewidth, and definability in logics with
a bounded number of variables. The first one follows from Theorems 3 and 5.

Corollary 6. Assume thatk � 2,A is a�-structure of treewidth less thank, andB is
an arbitrary�-structure. Then the following statements are equivalent:

1. There is a homomorphism fromA toB.
2. The Duplicator wins the existentialk-pebble game onA andB.
3. Strongk-consistency can be established onA andB.

Consequently, determining whether strongk-consistency can be established is a sound
and complete polynomial-time algorithm forCSP(T k(�);F(�)).
The typical use of strongk-consistency properties in constraint satisfaction problems
is to try to establish strongk-consistency for ak that is sufficiently large to guarantee
global consistency, which is the property that every partial solution can be extended to
a solution (see [Dec92]). Corollary 6 yields a different useof strongk-consistency as a
sound and complete algorithm for constraint satisfaction problems, when the constraints
are of treewidth less thank. Although this result seems to be implicit in other published
work, we have not been able to locate an explicit reference toit.

In general, expressibility ink-Datalog is a sufficient condition for tractability ofCSP(A;B), but it does not provide a method for finding a solution to an instance of



CSP(A;B), if one exists. This difficulty, however, can be overcome if more stringent
definability conditions are satisfied. Specifically, [KV00b] introduced the concept ofk-
locality and showed that it is a sufficient condition for the backtrack-free construction
of solutions to constraint satisfaction problems, if such solutions exist.

Let k be a positive integer,A a class of�-structures, andB a �-structure. We say
thatCSP(A;B) is k-local if :CSP(A;B�) is in k-Datalog for every expansionB�
of B with constants, that is, for every expansion ofB obtained by augmentingB with
a finite sequence of distinguished elements from its universe. Such an expansion can
be also viewed as a structure over a relational vocabulary�� in which unary relational
symbols are used to encode the distinguished elements that form the expansion. We say
thatCSP(A;B) is k-local if CSP(A;B) is k-local, for every structureB 2 B.

Theorem 7. [KV00b] If CSP(A;B) isk-local, then there is polynomial-time backtrack-
free algorithm such that, givenA 2 A andB 2 B, it finds a homomorphism fromA toB, if one exists, or determines that no such homomorphism exists, otherwise.

This backtrack-free algorithm builds a homomorphism fromA to B in a sequence of
steps; in each step, one tests whether strongk-consistency can be established for pro-
gressively longer expansionsA� andB� of A andB. SinceCSP(A;B) is k-local, if
strongk-consistency can be established for some such expansions, then a homomor-
phism between these expansions is guaranteed to exist, which means that there is a
homomorphism fromA to B mapping the distinguished elements ofA to the corre-
sponding distinguished elements ofB. Consequently, the algorithm can proceed and
construct longer expansions ofA andB without backtracking, until every element ofA is a distinguished element. Notice that this algorithm makes a quadratic number of
calls to the test of whether strongk-consistency can be established.

Corollary 8. CSP(T k(�);F(�)) is k-local, for everyk � 2 and every�.

Proof: (Sketch) If a�-structureA has treewidth less thank, then every expansion of it
with constants also has treewidth less thank. To see this notice that each such expan-
sion amounts to augmenting the vocabulary with unary predicates, and the addition of
unary predicates does not change the treewidth of a structure. The result now follows
immediately from Theorem 5.

A different polynomial-time backtrack-free algorithm forCSP(T k(�);F(�)) is
known in the literature. Specifically, Section 1.4.2 of Hooker [Hoo97]) contains a de-
scription of a “zero-step lookahead” algorithm for constructing a homomorphism fromA toB, whereA is of treewidth< k. This algorithm is based on Freuder’s [Fre90] re-
sult that the treewidth of a graph coincides with itsinduced width. Unlike the backtrack-
free algorithm based onk-locality, the zero-step lookahead algorithm entails justa sin-
gle initial test of whether strongk-consistency can be established. It requires, however,
the efficient construction of an order of the universe ofA (i.e., of the variables of the
CSP-instance) of width< k. In turn, for each fixedk, such an order of the universe can
be obtained in polynomial time from a tree decomposition ofA of width < k, which
has to be constructed first in polynomial time [Bod93].

So far, we have established that definability ink-Datalog provides an explanation for
the tractability ofCSP(T k(�);B), whereB is an arbitrary, but fixed,�-structure. This,



however, does not provide an explanation for the tractability of CSP(T k(�);F(�)) in
terms of definability in some tractable logical formalism with a bounded number of vari-
ables. Actually, there is a good reason for this, because themonotonicity properties of
Datalog, imlpy that neitherCSP(T k(�);F(�)) nor:CSP(T k(�);F(�)) are express-
ible in Datalog. There is, however, a well-known logical formalism that is more power-
ful than Datalog and provides an explanation for the tractability of CSP(T k(�);F(�)).
Specifically,least fixed-point logicLFP is the extension of first-order logic with least
fixed-points of positive first-order formulas. Datalog can be viewed as a fragment of
LFP, since Datalog queries are definable using least fixed-points of positive existen-
tial first-order formulas. Least fixed-point logic has foundnumerous applications to
database theory and descriptive complexity theory, because of its close connections
to polynomial-time computability ([Var82,Imm86,Imm99]). In particular, every LFP-
definable query is also computable in polynomial-time. The next result shows that
the tractability ofCSP(T k(�);F(�)). can be explained via definability in LFP with
a bounded number of variables.

Corollary 9. CSP(T k(�);F(�)) is expressible inLFP2k, for everyk � 2 and every�, whereLFP2k is the collection of allLFP-formulas with at most2k distinct variables.

Proof: (Hint) The result is derived by combining Corollary 6 with the fact that de-
termining the winner in the existentialk-pebble game onA andB is expressible inLFP2k, when both structuresA andB are part of the input (see [KV00b]).

4 Bounded Treewidth and Homomorphic Equivalence

If � is a vocabulary andA is a class of�-structures, then we writeH(A) to denote the
class of all�-structures that are homomorphically equivalent to some structure inA.
The first result of this section asserts intuitively that definability of constraint satisfac-
tion problems in Datalog can be extended from a classA to the classH(A).
Proposition 10. Let A be a class of�-structures,B a �-structure, andk a positive
integer. If:CSP(A;B) is expressible ink-Datalog, then also:CSP(H(A);B) is ex-
pressible ink-Datalog.

Proof: (Sketch) In view of Theorem 3, it suffices to show that ifA is a structure inH(A) such that the Duplicator wins the existentialk-pebble game onA andB, then
there is a homomorphish fromA toB. Assume thatA is such a structure and letA0
be a structure inA that is homomorphically equivalent toA. This means that there is
a homomorphismh1 fromA toA0, and a homomorphismh2 fromA0 toA. By com-
posingh2 with the winning strategy for the Duplicator in the existential k-pebble game
onA andB, we obtain a winning strategy for the Duplicator in the existentialk-pebble
game onA0 andB. SinceA0 is in A and:CSP(A;B) is expressible ink-Datalog,
Theorem 3 implies that there is a homomorphismh0 fromA0 toB. Consequently, the
compositionh = h1 Æ h0 is a homomorphism fromA toB.

By combining Theorem 5 with Proposition 10, we obtain the following result.



Corollary 11. Assume thatk � 2 and� is a vocabulary.

1. If B is a �-structure, then:CSP(H(T k(�));B) is expressible ink-Datalog and,
hence, it is in PTIME

2. CSP(H(T k(�));F(�)) is expressible inLFP2k and, hence, it is in PTIME.

Corollary 11 shows that the classesH(T k(�)), k � 2, give rise to larger “islands
of tractability” for constraint satisfaction that those obtained from the classesT k(�)
of structures of treewidth less thank. In what follows, we will show that the classesH(T k(�)), k � 2, possess also algebraic and logical characterizations that tie together
some of the key concepts studied here. To establish this result we need to first bring the
concept of acoreof a structure into the picture.

LetA be a�-structure. A substructureB of A is called acore of A if there is a
homomorphismh fromA toB, but, for every proper substructureB0 of B, there is no
homomorphism fromA toB0. A �-structureA is acore if it is its own core. Altough
the study of cores originated in graph theory, the concept has found applications to
database theory, as cores play an important role in conjunctive-query processing and
optimization (see [CM77]). The following are some well known and easy to establish
facts about cores (see [HN92]): (1) Every finite�-structureA has a core; (2) IfB is a
core ofA, thenA is homomorphically equivalent toB; (3) If bothB andB0 are cores
of A, thenB is isomorphic toB0. In view of the last fact, we write
ore(A) for the
unique (up to isomorphism) core ofA.

Let us consider some examples that illustrate these concepts and facts. First, the
complete undirected graphK2 with two elements (i.e., the graph that consists of a single
edge) is a core. Moreover, an undirected non-empty graphG hasK2 as its core if and
only if G is 2-colorable. Note that, fork � 3, this equivalence does not immediately
extend tok-colorable graphs and toKk, because ak-colorable graph need not contain
the complete undirected graphKk as a subgraph. It is easy to see, however, that for
everyk � 3, an undirected graphG is k-colorable if and only ifKk is the core ofG�Kk, whereG�Kk is thedirect sumofG andKk. We are now ready to state and
prove the promised characterizations ofH(T k(�)).
Theorem 12. Let k be a positive integer,� a vocabulary, andA a �-structure. Then
the following statements are equivalent.

1. A 2 H(T k(�)).
2. 
ore(A) has treewidth less thank.
3. The canonical conjunctive queryQA is logically equivalent to anLk-formula.

Proof: (Sketch) We proceed in a round robin fashion. Assume thatA is homomorphi-
cally equivalent to a�-structureA0 of treewidth< k. SinceA andA0 are homomor-
phically equivalent, it is easy to see that
ore(A) is isomorphic to
ore(A0). At the
same time,
ore(A0) has treewidth less thank, since it is a substructure of a structure
having treewidth less thank. If 
ore(A) has treewidth less thank, then Lemma 4 im-
plies that the canonical queryQ
ore(A) is logically equivalent to anLk-formula. SinceA is homomorphically equivalent to
ore(A), Corollary 2 implies thatQA is logi-
cally equivalent toQ
ore(A). Finally, assume that the canonical queryQA is logically



equivalent to anLk-sentence . As pointed out in [KV00b, Remark 5.3], if is a anLk-sentence, then one can construct a�-structureB of treewidth less thank such that
the canonical queryQB is logically equivalent to . Consequently, Corollary 2 implies
thatA is homomorphically equivalent to such a structureB.

It is well known that, for each positive integerk, there is a polynomial-time algo-
rithm for determining whether a given structure has treewidth less thank [Bod93]. In
other words, for each fixedk, membership in the classT k(�) can be tested in polyno-
mial time. Our next result shows that, unfortunately, the state of affairs is dramatically
different for the classesH(T k(�)), k � 2.

Theorem 13. For everyk � 2 and every vocabulary� containing at least one binary
relation symbol, determining membership inH(T k(�)) is an NP-complete problem.

Proof: (Sketch) We first show that ifk � 3 andG is an undirected graph, then the
following are equivalent:

1. G is k-colorable.
2. 
ore(G�Kk) has treewidth less thank.
3. G�Kk 2 H(T k(�)).

Indeed, ifG is k-colorable, then
ore(G �Kk) = Kk, which has treewidthk � 1. If
ore(G �Kk) has treewidth less thank, thenG �Kk is certainly homomorphically
equivalent to a graph of treewidth less thank, since every graph is homomorphically
equivalent to its core. Finally, assume thatG is homomorphically equivalent to a graphH having treewidth less thank. It is known that if a graph has treewidth less thank,
then it isk-colorable (this is easy to see using the fact that a graph hastreewidth less
thank if and only if it is a partialk-tree - see [DF99]). Consequently,G is k-colorable,
because it is homomorphically equivalent to ak-colorable graph.

Next, we consider the casek = 2. Let T be a directed tree. We will exhibit a
polynomial-time reduction ofCSP(T) toH(T 2(�)). For every�-structureG, we de-
fineG� to be(G�T), if the Duplicator wins the existential2-pebble game onG andT, andK3, otherwise. Clearly,G� can be constructed fromG in polynomial time. We
claim that, for everyG, G 2 CSP(T) if and only ifG� 2 H(T 2(�)). Assume first
thatG is inCSP(T), which means that there is a homomorphism fromG toT. Conse-
quently, the Duplicator wins the existential2-pebble game onG andT. It follows thatG� = (G�T) and thatG� is homomorphically equivalent toT, which has treewidth
less than2. Conversely, assume thatG� 2 H(T 2(�)). It follows thatG� = G � T
is homomorphically equivalent to a�-structureH of treewidth less than 2, and that the
Duplicator wins the existential2-pebble game onG andT. Therefore, the Duplicator
also wins the existential2-pebble game onG � T andT. In turn and sinceG � T
is homomorphically equivalent toH, it follows that the Duplicator wins the existential2-pebble game onH andT. SinceH has treewidth less thank, Corollary 6 implies that
there is a homomorphism fromH to T; in turn, this implies that there is a homomor-
phism fromG�T toT. By restricting this homomorphism toG, we obtain the desired
homomorphism fromG toT. The NP-hardness follows from the existence of particular
directed treesT such thatCSP(T) is an NP-complete problem [GWW92,HNZ96].



Theorem 13 suggests that the logical characterization given in Theorem 12 for the
classH(T k(�)) is not feasibly effective. It is natural therefore to ask whether the prop-
erty “A has treewidth less thank” possesses a logical characterization that might also
explain the complexity-theoretic difference between thisproperty and the property “A
is homomorphically equivalent to a structure of treewidth less thank”. Clearly, any such
characterization should involve a refinement of the property “the canonical queryQA
is logically equivalent to anLk-formula”. We now introduce such a refinement.

Let A be a�-structure, letQA be the canonical query associated withA. Here,
we identifyQA with its defining formula, i.e., we viewQA as an existential first-order
formula of the form(9z1) � � � (9zn)'(z1; : : : ; zn), where'(z1; : : : ; zn) is a conjunction
of atomic formulas over� with variables amongz1; : : : ; zn. We say that a first-order
sentence is a rewriting of QA if there is a finite sequence of formulas 1; : : : ;  m
such that 1 isQA,  m is , and each i+1 is obtained from i by applying one of the
following rewrite rules:

A-Rule: Associativityof conjunction is applied to subformulas of .
C-Rule: Commutatitivityof conjunction is applied to subformulas of .9-Rule: A subformula of i of the form (9x(�1 ^ �2)) is replaced by the formula((9x�1) ^ �2), provided the variablex is not free in�2.
R-Rule: A subformula of of the form(9x�) is replaced by the fomula(9y)�[x=y℄),

wherey does not occur free in� and�[x=y℄ is obtained from� by replacing all free
occurrences ofx in � by y.

These four rewrite rules are routinely used in database query processing and optimiza-
tion in order to transform queries to equivalent, but less-costly-to-evaluate, queries
[Ull89]. The final result of this paper asserts that these rules can also be used to ob-
tain a logical characterization of bounded treewidth.

Theorem 14. Let k be a positive integer,� a vocabulary, andA a �-structure. Then
the following statements are equivalent.

1. A has treewidth less thank.
2. There is anLk-sentence that is a rewriting ofQA.

Moreover, ifA has treewidth less thank, then such a rewriting can be constructed in
time polynomial in the size ofA.

Proof: (Hint) If A has treewidth less thank, then one can construct in polynomial time a
linear order of the universeA ofA of induced width less thank, which means that every
element ofA has fewer thank smaller neighbors in the traingulation of the constraint
graph ofA (see [Fre90]). Using this linear order, it is possible to evaluate the canonical
conjunctive queryQA on every�-structureB using intermediate conjunctive queries
each of which has at mostk variables. Specifically, this evaluation can be carried out
by simulating the steps of the “bucket elimination algorithm” for constraint satisfaction
in [Dec99]. In turn, each step of this simulation can be translated to rewriting steps
that transform the canonical conjunctive queryQA to anLk-sentence. For the other
direction, one can use the rewriting to build a tree decomposition of width less thank
of a�-structure isomorphic toA.
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