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Abstract

We consider a panel of experts asked to assign probabilities to events, both logi-
cally simple and complex. The events evaluated by different experts are based on
overlapping sets of variables but may otherwise be distinct. The union of all the
judgments will likely be probabilistic incoherent. We address the problem of revis-
ing the probability estimates of the panel so as to produce a coherent set that best
represents the group’s expertise.
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Introduction

Aggregating opinion

When deciding what to believe, it often makes sense to consult other peo-
ple’s opinions. To be useful, however, the opinions must be processed by some
method for converting them into your ultimate judgment. Let us call such
a method an aggregation principle. Formulating and justifying principles of
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aggregation pose unexpected challenges. Consider an example raised by Ko-
rnhauser & Sager (1986). 1 Three experts issue opinions about the four state-
ments symbolized at the top of the following table.

(1)

Expert p q r ↔ (p ∧ q) r

1 agree agree agree agree

2 agree disagree agree disagree

3 disagree agree agree disagree

Majority agree agree agree disagree

Each expert is logically consistent, and you would like to agree with a given
statement if and only if the majority of experts do. But this turns out to be
unadvisable, since the majority-opinion (shown at the bottom of the table) is
logically inconsistent. An alternative formulation of the puzzle distinguishes
the “premises” p, q, r from the “conclusion” r ↔ (p∧q) Voting on the premises
unexpectedly gives a different answer than voting on the conclusion. 2 The
difficulty does not stem from the absence of one’s own opinion when trying
to integrate those of the experts. You can imagine that you are one of the
experts, and even that your opinions are endowed with extra credibility. It is
easy to see that a weighted voting scheme will nonetheless come to grief in
certain cases.

A more promising response to Kornhauser & Sager’s puzzle is to distinguish
statements in terms of logical complexity. The experts can be polled just on
p, q, r, leaving the status of r ↔ (p∧q) to be deduced. Applied to the table, this
policy yields agreement with p, q and disagreement with r, r ↔ (p ∧ q), which
is a consistent point of view. To generalize this approach, a few definitions are
necessary.

By a polarity variant of a set {ϕ1 · · ·ϕm} of formulas we mean any set of form
{±ϕ1 · · · ±ϕm}, where ±ϕi is ϕi with one or zero occurrences of ¬ in front it.
For example, {p,¬(q ∨ r)} is a polarity variant of {p, (q ∨ r)}. By a basis of a
set A of formulas is meant a subset B of A that meets the following conditions.

(a) The members of B are logically independent, that is, every polarity variant
of B is consistent.

1 It is generalized in List & Pettit (2002). Other studies of aggregation within the
same framework have produced remarkable findings. See List (2003) and especially
Dietrich & List (2004). Discussion of the repercussions of such findings for political
theory is offered in Pettit (2001).
2 The alternative formulation was pointed out to us by a referee. Note that in this
example, it is equally natural to think of r ↔ (p∧q) as premise and r as conclusion.
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(b) For every polarity variant B′ of B and formula ψ ∈ A, either B′ logically
implies ψ or B′ logically implies ¬ψ.

Intuitively, a basis of A is a minimal subset of A whose truth values suffice to
pin down the truth values of the rest of A. For example, {p, q} is a basis for
{p, q, p∧ q}. In contrast, the set {p∧ q} is not a basis for {p, q, p∧ q} because
the polarity variant {¬(p ∧ q)} does not imply either p or ¬p (and similarly
for q). Thus, a promising strategy for aggregating multiple opinions about a
given set of statements is to apply majority rule to some basis for the set,
obtaining one of its polarity variants; the rest can be filled in via deduction.
The resulting judgments will be consistent.

The foregoing scheme has defects, however. For one thing, not every consistent
set of formulas has a basis. To illustrate, there is no basis for {p, p ∧ q}, as
easily verified. Worse yet is the possibility of a surfeit of bases with no grounds
for choosing among them. In particular:

Fact: (2) There is a consistent set A of formulas such that:

(a) A has at least three bases, and
(b) the bases of A have identical logical complexity.

Letting A = {p↔ q, q ↔ r, p↔ r} witnesses Fact (2). The bases of A are:

(3) {p↔ q, q ↔ r} {p↔ q, p↔ r} {q ↔ r, p↔ r}

Indeed, every polarity variant of each of these sets determines the truth values
of all three formulas in A. Plainly, the three bases have equivalent complexity
along every dimension.

What does Fact (2) mean for aggregating multiple opinions? In a situation
where there are a plurality of bases, a voting scheme can nonetheless be used
provided that everyone agrees about which basis to use. Voting about the
elements of the basis will then yield a convincing representation of group
opinion. If there is disagreement about the basis, we might hope to resort
to a syntactic criterion, notably, favoring the basis of least logical complexity
(perhaps believing that judgment is better about simpler cases). But in view of
Fact (2), syntax will not always decide the matter. The obvious strategy is then
to ask each expert to rank order the bases in terms of her preference for their
use in aggregation. But then the problem of aggregating belief reduces to the
problem of aggregating preference, and hence is not open to entirely satisfactory
solution. (For logical obstacles to aggregating preferences, see Kelly, 1978, and
Johnson, 1998 among many other sources.)

We can illustrate with the set {p ↔ q, q ↔ r, p ↔ r} again. Suppose that
three experts announce the following (consistent) opinions.
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(4)

Expert p↔ q q ↔ r p↔ r

1 disagree disagree agree

2 agree disagree disagree

3 disagree agree disagree

Majority-rule cannot be applied to all three formulas, since the result would
be inconsistent (the three biconditionals cannot all be false). But which basis
among the three distinguished in (3) should be used for voting? We see that
each gives a different result:

Impact under voting

Basis

used
p↔ q q ↔ r p↔ r

{p↔ q, q ↔ r} disagree disagree agree

{p↔ q, p↔ r} disagree agree disagree

{q ↔ r, p↔ r} agree disagree disagree

And the three experts might have cyclic preference-rankings for the three
bases. (For discussion of cyclic preferences and voting dilemmas, see Johnson,
1998.) The dilemma can be resolved by expanding the set {p↔ q, q ↔ r, p↔
r} to include the variables p, q, r, which would be a basis distinguished by
its simplicity. But the three experts may decline to pronounce themselves on
p, q, r, or no longer be around to do so.

Aggregating probabilities

These difficulties can be avoided if we are willing to embrace more nuanced
beliefs. Then the data in (4) suggest assigning one-third probability to each
of p ↔ q, q ↔ r, and p ↔ r. Such an assignment comes from interpreting an
expert’s opinion as probabilistic certitude (zero or unity), and averaging the
numbers. The resulting probabilities have the virtue of coherence in the sense
of consistency with the axioms of probability (it can be shown that averaging
a set of coherent probability estimates of formulas yields a coherent estimate).
But now the door is open to probabilistic opinions on the part of the experts
(not just us), and averaging does not always work in this case, when we allow
conditional probability estimates. Suppose, for example, that there were two
experts with the following opinions:
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(5)

Expert q p ∧ q p : q

1 .5 .1 .2

2 .25 .2 .8

(We use Prob (p : q) to denote the conditional probability of p given q.) The
two sets of opinions in (5) are each probabilistically coherent, but their average
— Prob (q) = .375, Prob (p∧q) = .15, and Prob (p : q) = .5 — is not coherent,
since the ratio of Prob (p ∧ q) to Prob (q) is .4 rather than the required .5.

Difficulties for aggregating probabilistic beliefs arise even in the absence of av-
eraging. Suppose that one expert opines Prob (p : q) = .6, another Prob (p) =
.2, and another Prob (q) = .4. Each expert has a distinct coherent opinion,
and no averaging is necessary to adopt them all. Such simple aggregation is
again unwise, however, since the union of the three judgments is incoherent. 3

A sensible aggregation policy must revise some of the opinions before adopting
them.

The needed revision might be obtained through a protocol that facilitates com-
munication and consensus among the three experts, convincing one or more
to change their view. This is the method offered by the “Delphi System” and
its variants (see Parenté & Anderson-Parenté, 1987; Cooke, 1991 for overviews
and evaluation). The present paper explores the opposite technique of consult-
ing each expert just once, and then minimally adjusting their probabilities “off
line” so as to achieve coherence. This approach is useful in situations where
experts are difficult to assemble. It is also convenient when they must estimate
the probabilities of many events, both logically simple (like p and q) and com-
plex (as in the conditional probability of p given q, or their conjunction, etc.).
Checking coherence of the estimates may involve long computations thereby
discouraging multiple cycles of revision and discussion.

Unifying disparate assessments of chance without further communication among
experts generalizes problem (1), above, raised by Kornhauser & Sager (1986).
The present paper offers one method for this kind of probabilistic aggregation.
We picture a panel of experts, each offering estimates of confidence conceived
as subjective probabilities. The matter is particularly challenging when differ-
ent experts assign probabilities to events defined over distinct but overlapping
sets of variables. In this case, we can distinguish three obstacles to unification.

(a) The set of probability estimates offered by a single expert may be in-
coherent, even apart from its juxtaposition with the estimates of other

3 Since Prob (p) = .2, Prob (p ∧ q) ≤ .2. Inasmuch as Prob (q) = .4, the ratio of
Prob (p ∧ q) to Prob (q) is at most .5, contradicting the opinion Prob (p : q) = .6.
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experts (incoherence within experts). 4

(b) Different experts evaluating the same event might assign it different prob-
abilities (inconsistency among experts).

(c) Different experts evaluating logically related events might assign proba-
bilities that cannot all be coherently accepted, as illustrated earlier (in-
coherence among experts).

Our approach responds at once to the three obstacles by collecting all the
judgments into one set, and then searching for minimal modifications that
render the entire set of estimates probabilistically coherent. For an application
of this technique, consider geopolitical forecasting (or intelligence assessment).
Agents in different parts of the world may offer probabilities for simple and
complex events over intersecting sets of variables (involving oil production,
political stability, armament, and so forth). Communication among agents
might be impractical for security reasons. A unified picture of the international
scene could nonetheless be constructed by pooling the judgments and then
adjusting them for coherence.

Observe that individual incoherence (a) has no counterpart in the literature
devoted to aggregating non-probabilistic beliefs; judges are usually there as-
sumed to be self-consistent. Inasmuch as probability subsumes logic (contra-
dictions have zero probability, etc.), our approach generalizes the aggregation
problem familiar in the non-probabilistic framework.

We describe below an efficient algorithm for probability aggregation and re-
port experiments on its use. Of particular interest is the impact on the sto-
chastic accuracy of group judgment before and after aggregation. Along the
way, theorems are presented that serve as partial justification for our aggre-
gation method. But in general, we eschew the axiomatic approach in favor of
experimentally documenting a method that works.

Comparison to earlier studies

Our perspective differs from others’ inasmuch as it allows different experts to
estimate the probabilities of distinct events over sets of variables that overlap

4 Incoherence is commonly observed when people are asked to estimate the proba-
bilities of complex or conditional events; experts are not immune. See Baron (2000),
Bonini, Tentori & Osherson (2004), Hastie & Dawes (2001), Sides, Osherson, Bonini
& Viale (2002), Tentori, Bonini & Osherson (2004), and Yates (1990) for an entry
to the literature on probabilistic incoherence. Classic papers in the field are col-
lected in Kahneman & Tversky (2000) and Gilovich, Griffin & Kahneman (2002).
For discussion of the coherence problem in the construction of Bayesian networks
based on expert judgment, see van der Gaag et al. (1999).
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only partially. Thus, one expert might estimate the chances of p ∧ q and of
q : r, another might estimate r and r ∨ ¬s, and so forth. In contrast, the
usual goal is to aggregate opinions about the same event (e.g., Rowe, 1992;
Ariely et al., 2000), or about the same partition of events. The major schemes
for aggregation in the latter contexts involve Bayesian models (Morris, 1974;
Clemen & Winkler, 1993; Clemen, Jones & Winkler, 1996) and linear averaging
(Wagner 1984; Wallsten, Budescu, Erev & Diederich, 1997; see also Pennock,
1999, for an approach based on an analogy to securities markets). Literature
reviews in this area include Clemen (1989; Clemen & Winkler, 1999), and
Genest & Zidek, (1986). These approaches seem not to apply straightforwardly
to the situation envisioned here, where events relate to each other in complex
ways, are evaluated by partially overlapping sets of experts, and are plagued
by intra- and inter-judge incoherence. 5

A special case of the aggregation problem is to restore coherence to the esti-
mates of a single individual. So far as we know, the first scheme for off-line
adjustment of a single person’s incoherent probabilities is due to de Finetti
(1974). It is discussed below, and used as a comparison to our own approach.
Another important scheme is offered in Lindley, Tversky & Brown (1979).
Incoherence is there conceived as arising via error from an underlying source
of coherent probabilities (not consciously accessible to the judge herself). The
observer must infer the underlying coherent probabilities on the basis of a prior
distribution over the potential coherent beliefs the judge might secretly har-
bor, along with another prior distribution that gives the probability of stated
beliefs given (coherent) underlying ones. Bayes’ theorem then allows calcula-
tion of the most likely underlying assessments of chance given the stated ones.
Various assumptions simplify the desired calculations, but they ultimately re-
quire nonlinear optimization. Since the required distributions are difficult to
evaluate empirically, and still require a complex optimization step, it strikes us
as simpler to forgo the former and proceed at once to the latter. Additionally,
the justification for Lindley et al.’s approach does not extend to aggregat-
ing the estimates of a panel of experts. This is because the incoherence of a
panel cannot be assumed to arise from underlying shared and coherent con-
victions (not everyone has the same opinions, even subconsciously). Our goal
is therefore to develop an efficient algorithm that brings coherence to a body
of probability estimates (due either to an individual or a panel) by modifying
them in a minimal way. If the modification were not minimal, we might lose
whatever insight exists in the original judgments; and the judge(s) may reject
our amendments. The general idea of minimally deforming a set of beliefs to
restore consistency is familiar from the copious literature on belief revision

5 In this context, see Howard’s (1989) discussion of incoherent probability estimates
appearing within influence diagrams; the method proposed there, however, seems
not to be general, and its outcome depends on the order in which sets of judgments
are renormalized.
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(see P. Gärdenfors, 1988; S. O. Hansson, 1999, and references cited there).

An alternative to fixing incoherent estimates by an individual judge is to “fix”
the judge beforehand. For attempts to instill statistically mature thinking in
naive judges, see Fong, Krantz & Nisbett (1986), Nisbett, Fong, Lehman &
Cheng (1987), and Schaller, Asp, Rosell & Heim (1996). A related approach
is to elicit probability estimates in a way that obviates incoherence, e.g, by
calculating the coherent response set prior to each judgment. For discussion of
elicitation techniques, see Alpert & Raiffa (1982), Holtzman & Breese (1986),
von Winterfeldt & Edwards (1986), Henrion (1987), Morgan & Henrion (1990),
and Klayman and Brown (1993). Druzdzel & van der Gaag (1995) describe
techniques for computing coherent response sets, even for judgments involving
independence and conditional independence. One drawback to constraining
the judge’s present estimate as a function of past estimates is that the final
set of (coherent) estimates may depend on the order in which they are elicited.

We now review elements of subjective probability (developed more fully in
Jeffrey, 1983, Nilsson, 1986, and Halpern, 2003, among other sources). After-
wards, the problem of restoring coherence to a corpus of judgments (drawn
either from a single expert or a panel) is formulated in terms of optimiza-
tion. Our algorithm for solving the optimization problem is then presented,
followed by its evaluation in an experimental study. The theory described be-
low bears exclusively on point estimates of probability rather than upper and
lower bounds. Probability manipulations involving bounds are studied in Wal-
ley (1991, 1996), Biazzo & Gilio (2000), and references cited there. We also
limit attention to the case of Boolean variables, i.e., taking no more than true
and false (or 1 and 0) as values. We stress that there is no difficulty extending
our framework and algorithm to random variables involving any finite set of
values (e.g., alternative percentages of oil price decline in the next quarter).
It simplifies the present discussion to stick with the Boolean case. Similarly,
we rely on the inessential assumption that all experts in a given panel have
equal credibility. As noted below, it is straightforward to allow different judges
to influence the approximation algorithm as a function of their reputation for
stochastic accuracy.

The standard picture of subjective probability

We start with a set of n variables, coding sentences with determinate (if un-
known) truth-value (for example, The Saudi dynasty collapses next year). The
variables give rise to a larger set of formulas defined in the usual way from the
sentential connectives ¬ (negation), ∧ (conjunction), and ∨ (disjunction).

The language is interpreted via mappings called states. Each state has the set
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of n variables as domain, and truth and falsity as range. A state thus represents
a potential reality or “state-of-the-world.” A state α satisfies a formula ϕ if α
makes ϕ evaluate to true via standard truth-tables, denoted α |= ϕ.

Let A be the set of 2n states over the n variables. A (probability) distribution is
a mapping Prob : A→ [0, 1] such that Σα∈A Prob (α) = 1. Formulas inherit
their probabilities from the states that satisfy them. That is, given a distri-
bution Prob and a formula ϕ, Prob (ϕ) = Σα|=ϕ Prob (α). The probability
of a formula is thus the sum of the probabilities of the states that satisfy the
formula.

When probabilities are assigned to a formula (or the event it encodes), we
call the probability “absolute.” Probabilities assigned to one event assuming
the truth of another are called “conditional.” Conditional probabilities are
computed via the familiar ratio

Prob (ϕ : ψ) =
Σα|=ϕ and α|=ψ Prob (α)

Σα|=ψ Prob (α)
=

Prob (ϕ ∧ ψ)

Prob (ψ)
,

provided that the denominator is positive.

Optimization problem

Now we return to the problem of amending an incoherent corpus of probability
estimates. The estimates are conceived as arising from a panel of experts,
whose opinions are pooled to form a single set. As a special case (noted earlier),
the panel might consist of just a single expert. In this case, the problem reduces
to amending an individual’s judgment should it suffer from incoherence.

We represent the panel’s estimates by two lists, one for absolute probabilities,
the other for conditional. We put (ϕ, x) in the first list just in case some
expert estimated the probability of formula ϕ to be x. We put (χ, ψ, y) in the
second list just in case some judge estimated the conditional probability of χ
given ψ to be y. It is possible for (ϕ, x) to occur twice in the list if different
experts make this same estimate. Likewise, the list might include both (ϕ, x)
and (ϕ, y) for x 6= y. Similar remarks apply to conditional probabilities.

The lists are coherent if there is some probability distribution that implies
them; otherwise they are incoherent. Note that by this definition, the pair
of judgments (ψ, 0), (ϕ, ψ, .1) is incoherent because no conditional probability
can be based on a conditioning event of probability zero.

In the typical case, the overall list (ϕ1, x1) . . . (ϕk, xk), (χ1, ψ1, y1) . . . (χj, ψj, yj)
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is incoherent, and we seek to reconstruct it via a close distribution. The re-
sulting optimization problem can be stated as follows.

Optimization Problem: (6) Let lists (ϕ1, x1) . . . (ϕk, xk) and (χ1, ψ1, y1)
. . . (χj, ψj, yj) be given. Find a (coherent) distribution Prob such that:

∑
i≤k

| xi − Prob (ϕi) | +
∑
i≤j

| yi − Prob (χi : ψi) |

is minimized. We also require that Prob (ψi) > 0 for all conditioning events
ψi from the second list that also appear as one of the ϕ`’s of the first list.

The latter requirement rules out such anomalous solutions as Prob (q) =
0,Prob (p : q) = .5, involving division by zero. No other formulas are required
to have nonzero probability.

Absolute deviation is the proximity measure in (6), but it is easy to restate the
problem in terms of squared deviation (we return to this point later). In either
version, the optimization problem can be converted into a method for testing
the satisfiability of Boolean formulas. Specifically, a formula ϕ is satisfiable
if and only if the claim Prob (ϕ) = .5 is coherent. It is widely believed that
there is no polynomial-time test of satisfiability (see Homer & Selman, 2001,
§6.5). Hence both (6) and its squared deviation version are intractable in
the general case. Indeed, even structurally simple subproblems of coherence-
checking have been shown to be intractable (see Georgakopoulos, Kavvadias
& Papadimitriou, 1988). Worse yet, in some circumstances there may not even
be a minimum distance between the input lists and a coherent approximation
to them; the distance can approach a lower bound without hitting it.

Example: (7) The estimates (q, 0), (p, q, .5) are incoherent because no dis-
tribution Prob assigns a positive number to the ratio Prob (p∧q)/Prob (q) and
zero to Prob (q). These judgments are approximated to within ε by Prob (p : q) =
.5, Prob (q) = ε, for any ε > 0. But they can not be perfectly approximated,
since they are not coherent.

We must therefore interpret (6) in the sense of finding a coherent approxi-
mation that is as close as feasibly possible to the input. For simplicity here,
absolute and conditional events are given equal weight.

It is important to distinguish (6) from the problem of checking whether a
corpus of judgments is coherent, and also from the problem of computing lower
and upper bounds on the probabilities that can be coherently attributed to
a new formula outside the given corpus. For discussion of the optimization
routines used to solve the latter problems (variants of linear programming),
see Lad (1996), Biazzo, Gillio, Lukasiewicz & Sanfilippo (2001), and references
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cited there. In the present setting the typical corpus is incoherent and we seek
a new set of judgments to replace it.

For absolute deviation, an optimal distribution need not be unique. For ex-
ample, the incoherent judgments Prob (p) = .3, Prob (¬p) = .6 are equally
well approximated by either Prob (p) = .4, Prob (¬p) = .6 or Prob (p) =
.3, Prob (¬p) = .7. No other approximation gets closer. Such multiplicity can
be avoided by the use of squared rather than absolute deviation, since the
approximation Prob (p) = .35, Prob (¬p) = .65 is the unique best solution in
the sense of squared deviation. (This is easily shown by differential calculus.)

The optimization technique we shall describe can be used equally well for ei-
ther optimization problem (involving absolute or squared deviation). There
turns out to be little empirical difference, however, between optimizing in
terms of absolute versus squared deviation. Measuring deviation in these al-
ternative ways leads to corrected estimates of chance that are typically close
to each other, and that possess similar stochastic accuracy (measured by the
“quadratic score,” as explained later). Likewise, our results are affected only
slightly by use of other natural measures of proximity, for example, based on
relative entropy (Cover & Thomas, 1991). In the interest of economy, we shall
frame much of the ensuing discussion in terms of absolute deviation, present-
ing just one analysis with squared deviation for purposes of comparison. There
are two reasons for favoring absolute deviation. First, absolute deviation is the
more intuitive measure of accuracy, hence more likely to be understood and
accepted by people whose estimates are being altered. Second, if attention is
limited to absolute events, linear programming (lp) can be used to solve (6)
but not its squared version. Indeed, for absolute events, lp’s solution to (6)
is best possible. lp therefore provides a useful benchmark for evaluating the
accuracy of rival optimization techniques for (6). We note that lp has long
been a popular method for carrying out probability calculations (see Hailperin,
1996, Chapters 1 - 3). Comparison of lp to the approximation procedure we
propose below is thus facilitated by use of absolute deviation as common coin.

The use of lp to solve (6) is explained and illustrated in Batsell et al. (2002)
and need not be repeated here. Our lp method is close to a technique advanced
in Jaumard, Hansen and Poggi de Aragão (1991), where column generation
is employed to apply LP to large probability problems. Linear programming
does not embody a general solution to the problem of coherent approximation,
however, since it is not applicable to judgments involving ratios of probabili-
ties, notably, when estimates are given for conditional events (or when there
are claims of independence or conditional independence, which also involve
ratios). We therefore now present a more general approach to (6), and thus a
more general approach to off-line reconstruction of incoherent judgments.

11



Simulated annealing over probability arrays

To hunt for a probability distribution that closely approximates an input cor-
pus of estimates, we apply a well-known search technique to a novel class of
data-structures called probability arrays. Probability arrays are sufficient to
represent “sparse” probability distributions in a sense now made clear. We
rely on the following observation, demonstrated in Batsell et al. (2002). [The
observation is exploited in a similar way in Fagin et al. (1990). Its proof relies
on a familiar fact about linear programming (Chvátal, 1983, Thm. 9.3).]

Fact: (8) Let formulas ϕ1 · · ·ϕk, and pairs (χ1, ψ1) · · · (χj, ψj) of formulas
be given. For every distribution Prob there is a distribution Prob∗ such that:

(a) Prob∗ assigns positive probability to at most k+ j+1 truth assignments;
(b) Prob∗ (ϕi) = Prob (ϕi) for every 1 ≤ i ≤ k;
(c) Prob∗ (χi : ψi) = Prob (χi : ψi) for every 1 ≤ i ≤ j with Prob (χi : ψi)

defined.

It follows immediately from (8) that no distribution approximates the lists
(ϕ1, x1) . . . (ϕk, xk) and (χ1, ψ1, y1) . . . (χj, ψj, yj) of (6) better than some dis-
tribution that assigns positive probability to at most k + j + 1 states. This is
true regardless of the measure that defines goodness of approximation [e.g.,
absolute deviation, as in (6), or squared deviation].

If we interview experts in a situation involving many variables, the number
of states will dwarf the number of probability estimates. If there are 30 vari-
ables, for example, there are more than a billion states. So (8) tells us that
an optimal coherent approximation may be found among the sparse distri-
butions — those assigning positive probability to few states. The advantage
to searching through the subspace of sparse distributions is that they can be
compactly represented. We have experimented with several representations,
including algebraic decision diagrams (Bahar et al., 1997; see Batsell et al.,
2002). A simple structure turns out to work best. It is described next.

By a probability array let us mean a matrix of the following kind.

p 1 0 ∗ 0

q 0 ∗ ∗ 0

r 1 0 1 0

.2 .1 .4 .3

Each row except the last represents a variable. The entries in the main part
of the matrix represent truth, falsity, and “unspecified” — via 1, 0, and ∗. In
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this example, the first column in the main part stands for the state that makes
p and r true, and q false. The second column represents both the state that
makes all three variables false, and the state that makes just p and r false,
q true. The third column stands for the set of four states in which r is true.
The last row shows the probability mass shared by the set of states designated
in a given column. The four states in the third column (**1) are thus each
assigned .1. If a state shows up in more than one column, it receives the sum
of the weights accruing to each. If a state shows up in no column, it receives
zero weight. It is easy to see that probability arrays suffice to represent all
sparse distributions in the sense of the fact shown next.

Fact: (9) Every distribution over n variables that assigns positive probability
to no more than m states is represented by some probability array of dimension
(n+ 1)×m.

In conjunction with (8), Fact (9) implies that the search for a coherent ap-
proximation to m probability estimates can be limited to probability arrays
with m+ 1 columns and n+ 1 rows (where n is the number of variables). The
estimates produced by the array are the closest possible coherent reconstruc-
tion of the original judgments. Indeed, with m columns for m positive states,
we can even avoid the use of the “unspecified” symbol ∗ in probability arrays.
Use of ∗’s, however, enriches the class of representable distributions and turns
out to be helpful in our search procedure.

To search through probability arrays we have tried genetic algorithms (Mich-
alewicz, 1992) but have had more success with simulated annealing (van
Laarhoven, 1988). 6 Simulated annealing is an optimization procedure of wide
application (Press, Teukolsky, Vettering & Flannery, 1992, §10.9). Here it is
used to locate a probability array whose probabilities for a fixed, input corpus
of (typically incoherent) estimates is minimized in the sense of (6). Details
and variants of our approach are presented in Batsell et al. (2002). It suffices
for the present discussion to indicate how random neighbors to a given proba-

6 Genetic algorithms conceptualize the search space as a set of formal genomes.
Their “fitness” as solutions to an optimization problem determine the probabilities
that given genomes will be preserved in the next “generation” of genomes to be eval-
uated, as well as the probability that they will participate in “crossover” with other
genomes to generate new potential solutions. (Another source of new genomes is
“mutation.”) Mitchell (1996) provides an introduction to genetic algorithms, which
have proven effective in a wide variety of optimization contexts. Their mathemati-
cal analysis is considered in Vose (1999). Simulated annealing is a gradient descent
technique that incorporates stochastic movements uphill (more in early stages) to
escape local minima (Kirkpatrick, Gelatt & Vecchi, 1983). After extensive use of
genetic algorithms to search for a probability array that approximates a target set
of judgments, we discovered that simulated annealing works faster by orders of
magnitude, and finds probability arrays that are closer to the target.
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bility array are generated in the annealing algorithm. With small probability
(around .1%), each non-bottom entry is replaced with a random choice among
{0, 1, ∗}. Also with small probability, bottom entries are multiplied by a
random choice between .9 and 1.1. The bottom row is then renormalized to
sum to unity. The foregoing numbers were chosen empirically, after they were
shown to yield rapid convergence to close approximations of input judgments.

Search in simulated annealing has a local character (only nearest neighbors
are examined). To reach one probability array from another it is therefore
necessary to find small steps that connect them. The presence of ∗ increases
the chance of finding such a path by augmenting the number of distinct dis-
tributions accessible from any given probability array. To summarize:

In what follows we use the term sapa to denote the use of simulated annealing
to search for a sparse probability distribution that approximates an input
corpus of estimates, in the sense of (6). Sparse distributions are represented
by probability arrays whose “neighbors” are defined by small perturbations
of the matrix that composes the array. [More discussion of sapa is available
in Batsell et al. (2002).]

A principal virtue of sapa is its computational feasibility on large problems.
One test of the method involved sets of 200 simulated estimates of chance
for complex events (both conditional and absolute) over 50 variables (more
than a quadrillion states). sapa reached close coherent approximations to
these artificial judgments in little more than two hours on a Pentium III
processor. Details of the test are available in Batsell et al. (2002). Note that
linear programming cannot be easily applied to problems of this size, even if
all events are absolute.

Because the optimization landscape might have infinitely deep holes [See Ex-
ample (7), above], simulated annealing is not guaranteed to reach satisfactory
solutions in every case. In practice, however, running the algorithm on the
same problem from different random starting points reliably produced solu-
tions in our computational experiments. The obtained solutions were similar
but not identical, indicating the presence of local minima. It will be seen below
that the approximations actually achieved are close to “best possible” when
the latter criterion can be feasibly computed.

We summarize our strategy for aggregating the probability estimates of a panel
of judges.

Aggregation Technique: (10) Pool the estimates to form a single corpus
of probability estimates, then apply sapa to create a coherent set of probabili-
ties that approximate all the original judgments at once. The latter probabilities
are taken to be the group opinion.

14



Note that (10) allows each estimate to have equal influence on the output set
of coherent probabilities. There is no difficulty in biasing sapa to more closely
approximate credible experts compared to others (credibility might be estab-
lished, for example, by the accuracy of past predictions). It suffices to assign
multiplicative coefficients to the judgments (ϕi, xi), (χ`, ψ`, y`) appearing in
the optimization problem (6), with higher coefficients attached to judgments
issuing from experts of greater authority. For simplicity, we here give every
voice equal weight. 7

Let us acknowledge the possibility that aggregating opinion via (10) may result
in judgments that are congenial to nobody on the panel. In the simplest case,
one expert might issue Prob (p) = .9, and another Prob (p) = .1. If aggrega-
tion yields Prob (p) = .5 then both may feel that their respective convictions
have been misrepresented by an expression of ignorance. This risk is the con-
sequence of aggregating without communication among experts. We defended
such a strategy above, but here add that communication between two experts
is not guaranteed to budge either of them. Indeed, social psychologists have
provided ample documentation for opinion polarization after discussion of the
same evidence presented to both parties! (See Lord, Ross & Lepper, 1979;
Vallone, Ross & Lepper, 1985.)

Turning to other issues, let us note a plausible alternative to (10). It consists
in first applying sapa to each expert separately, thereby enforcing individual
coherence before pooling the judgments of different experts. The resulting pool
would once again be incoherent, and sapa would be applied a second time. In
contrast, (10) applies sapa just once, to the pool of “raw” judgments without
prior correction. We prefer (10) to the two-stage alternative because it allows
the experts’ opinions to interact with less interference from us. Moreover,
experimental comparison of the two methods favors the one-stage (10); the
stochastic accuracy of group judgment is better after applying (10) compared
to the two-stage alternative. For brevity, we do not pursue the comparison in
what follows.

Finally, to avoid misunderstanding, let us observe that (10) requires no com-
mitment to the specific sparse distribution that provides close approximation
to the input estimates of chance. The latter distribution is “thrown away” at

7 Alternative schemes for weighting judges are reviewed in Ferrell (1985). Applica-
tion of sapa to real decision-making should also be sensitive to correlation in the
opinions of different judges (Hogarth, 1978). The practical consequences of ignoring
both past reliability and inter-judge correlation remain unclear, however. Empirical
results (e.g., Ashton & Ashton, 1985) as well as simulation studies (Johnson, D.
Budescu & T. Wallsten, 2001) suggest that simple averaging is a robust strategy
in the sense that the accuracy of the average probability is not extremely sensi-
tive to violations of conditional pairwise independence of the judges (under certain
reasonable conditions).
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the end of the process; only the corrected estimates are retained. Indeed, the
input estimates will usually be approximated equally well by other distribu-
tions, including dense ones. We correct the input judgments using a probability
array because Fact (9) guarantees that no other distribution gets closer to the
original estimates. But we do not go on to accept the distribution as a model
of uncertainty in the environment.

An experiment designed to test sapa on predictions of economic indicators is
now reported. All computation were carried out on Pentium 4 processors.

Experiment

Stimuli

We created 30 variables bearing on the United States’ economic situation in
the fourth quarter of 2001. Some concerned the performance of individual
stocks; others concerned leading indicators. All 30 are listed in Appendix 1.
In the last two weeks of September 2001, we asked people to estimate the
probability of events based on these variables. Each participant was assigned
10 variables drawn randomly from the larger set of 30. Participants then esti-
mated the probabilities of these 10 events plus the probabilities of 36 complex
events built from them.

——- Insert Table 1 about here ——-

The 36 complex events included an individually randomized selection of 6
events drawn from each of the categories shown in Table 1. The top row of
the table represents the 10 variables chosen individually randomly for the
judge. The second row represents the 6 conditional events constructed indi-
vidually randomly from the 10 variables. Likewise, there were 6 conditionals
with negated conditioning event, 6 conjunctions, 6 conjunctions with negated
second conjunct, 6 disjunctions, and 6 disjunctions with negated second dis-
junct.

Participants and procedure

As judges, we recruited 21 graduate students in business, math, or statistics at
Rice University. There were also 26 undergraduates taking statistics courses,
for a total of 47 judges altogether.

Prior to collecting their estimates, participants received a short lecture on in-
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terpreting stock prices, the meaning of the economic indices used in the study,
the inclusive meaning of or, and the conditional reading of the expression
assuming that. It was made clear that all events were relative to the fourth
quarter of 2001. Prizes were offered for stochastic accuracy as measured by
the quadratic penalty, which was explained to participants (see below for the
definition of this penalty).

Subsequent to these explanations, participants entered their 46 estimates of
chance via a website that carried out all individual randomizations. Proba-
bilities were represented numerically with the aid of a slider. 8 At the end of
the fourth quarter of 2001, everyone’s quadratic penalties were computed, and
$500 in gift certificates were distributed to participants with lowest penalties.

Average estimates and incoherent responses

For each participant we calculated the average probability assigned to the 7
kinds of events they evaluated. The means of these averages are shown in Table
2. Correlated t-tests reveal that the mean estimate for variables (p) is reliably
greater than for conjunctions (p ∧ q), and less than for disjunctions (p ∨ q)
[t(46) = 7.26, 6.30]. These differences are reasonable, since a conjunction tends
to have smaller probability than its conjuncts, and disjunctions tend to have
greater probabilities than their disjuncts. But it will now be seen that such
global tendencies mask profoundly incoherent judgment.

——- Insert Table 2 about here ——-

We assessed the coherence of each participant’s estimates in terms of the four
probability laws displayed in Table 3. For example, we considered law (a)
to be violated whenever a given participant’s probability for a conjunction
p ∧ q exceeded the probabilities of p or q, or fell short of the sum of the
latter probabilities minus one. [Constraint (a) in Table 3 is stated in Suppes
(1966). The other laws are easy corollaries of probability theory.] Since each
participant estimated six conjunctive events along with all the variables that
compose them, there were six opportunities to violate law (a). The other laws
similarly yield six potential violations per participant.

——- Insert Table 3 about here ——-

8 The judge positioned a slider with endpoints labeled by 0 and 1. The position
of the bar was expressed numerically in a field above the slider, thus providing the
estimated probability. This method was chosen as a compromise between direct
estimation of point probabilities and indirect estimation using spinners or other
chance set-ups to create equivalent bets. The two methods do not always yield
identical estimates of chance for the same events (Winkler, 1967).
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The first two columns of Table 4 show the average number of violations of
each law. The 26 undergraduates in the sample averaged 15.46 violations of
all four laws, out of a total of 24 possible violations (S.D. = 4.98). The 21
graduate students averaged 10.24 total violations (S.D. = 6.06), significantly
less than the undergraduates (one way ANOVA, F (1, 45) > 10.53, p < .002).
The relevant feature of the graduate student judgment is nonetheless the mas-
sive violation of probability laws. Only two of the 47 participants succeeded
in avoiding any violation of the four laws in Table 4 (and even these two
participants were incoherent by other measures). 9

——- Insert Table 4 about here ——-

The incoherence is numerically quite robust. The last columns in Table 4 show
the average number of violations of the four probability laws that result from
tolerating inconsistencies that can be erased by relaxing the laws in Table 3
by .05 or .10. For example, relaxing law (a) by .05 yields:

Prob (p ∧ q) ≤ min{Prob (p),Prob (q)}+ .05

Prob (p ∧ q) ≥ Prob (p) + Prob (q)− 1.05

Bar-Hillel (1973) argues that conjunctive events have a tendency towards over-
estimation in human judgment, whereas disjunctive events have a tendency
towards underestimation. This predicts that most violations of (a) in Table 3
will be of the first inequality rather than the second, and similarly for con-
straints (b) - (d). Consistent with Bar-Hillel’s prediction, the numbers of par-
ticipants (out of 47) who violated the first inequalities in (a) - (d) more often
than the second were 32, 35, 31, and 32, respectively (p < .02 by a binomial
test).

9 Specifically, each violated the constraint Prob (p : q) = Prob (p ∧ q)/Prob (q) at
least once. Overall, the judges violated the latter constraint more than half the time
that it could be assessed. It could only be assessed when a given participant esti-
mated the chance of p∧ q and the conditional probability of p given q. (She always
estimated the chance of q.) Winkler (1971, p. 677) also reports surprisingly elemen-
tary violations of probability laws by naive judges asked to estimate the chances
of point-spreads in upcoming football games. See also Wright & Ayton (1987, p.
91) for other violations of elementary laws concerning conjunction. In more general
terms, a variety of unperceived influences on judgment have been experimentally
demonstrated in recent years, e.g., noninformative numerical “anchors” enountered
prior to estimation of a quantity (see Hastie & Dawes, 2001, Ch. 5).
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Coherent approximation via SAPA

To render the estimates coherent, we applied sapa separately to each par-
ticipant’s data set of 46 judgments (aggregation of opinion was not yet at-
tempted). There were thus 47 optimizations, each involving 10 variables (namely,
the 10 variables chosen randomly out of 30 for a given judge). For each par-
ticipant we calculated the mean absolute deviation, or MAD, between her 46
probability estimates and those offered by the best approximating distribution
discovered for her. Across the 47 participants, the average MAD was .09, as
shown in the first line of Table 5. Each optimization took less than 20 seconds.

——- Insert Table 5 about here ——-

Perfect approximation — a MAD of zero — is ruled out because of the inco-
herence that characterizes the estimates. For just the 34 estimates of absolute
events, the closest possible approximation can be calculated using lp. When
we applied it to the absolute judgments of each participant, the average MAD
obtained was .079, as shown in the second line of the table. For comparison,
we again applied sapa to each participant, retaining only the 34 estimates
of absolute probability. As shown in the third line, the average MAD this
time was .085. Thus, for absolute events, sapa comes within 8% of producing
optimal coherent approximations.

Stochastic accuracy before and after coherent approximation

Two measures of accuracy

There is more to useful judgment than coherence. If the modifications imposed
by sapa rob the original estimates of their accuracy, the judge might prefer
that we left her estimates in their original state. To find out whether our
procedure degrades the knowledge inherent in a corpus of judgment, we need
first to define the accuracy of a probability estimate. A standard measure of
stochastic accuracy is the quadratic penalty (Brier, 1950; von Winterfield and
Edwards, 1986) defined as follows.

Definition: (11) (a) Suppose that p is the estimated probability of an (ab-
solute) event E. The quadratic penalty for the estimate is (1− p)2 if E
is true. It is p2 if E is false.

(b) Suppose that p is the estimated probability of the conditional event “E
assuming that F .” The quadratic penalty for the estimate is (1 − p)2 if
both F and E are true. It is p2 if F is true but E is false. The quadratic
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penalty is undefined if F is false.
(c) Given a corpus of estimates for absolute and conditional events, the quadratic

penalty for the corpus is the average of the quadratic penalties that are
defined for events in the corpus.

Accurate judgment corresponds to low quadratic penalties. (Expected quadratic
penalties are minimized by truthful reporting of subjective probability; see von
Winterfield and Edwards, 1986). A contrasting measure of stochastic accuracy
— for which accuracy is reflected in high scores — was also employed. Fol-
lowing Yates (1990, Ch. 3), we define the slope of a corpus of judgments to
be the average probability assigned to events that come true minus the aver-
age probability assigned to events that do not come true. In this definition, a
conditional event (A : B) is considered to be undefined if B does not occur.
Otherwise, it is considered to occur if and only if A occurs.

Quadratic penalties before and after coherent approximation

In this subsection and the next, we consider stochastic accuracy of individual
subjects before and after rendering their estimates coherent via sapa. The
accuracy of aggregation is discussed in the next section.

At the end of the fourth quarter of 2001 we determined the truth values
of all the events in the study, calculated everyone’s quadratic penalty and
handed out prizes accordingly. In the experiment, 19 of the 30 variables came
true; 11 turned out to be false. The truth-values of all complex events in the
experiment follow from the truth-values of the variables. As shown in line (a)
at the top of Table 6, the average quadratic penalty achieved by the 46 judges
in Experiment 1 was .314 (S.D. = .077). This penalty does not suggest much
accuracy in judgment, a point to which we return below.

——- Insert Table 6 about here ——-

We next calculated the quadratic penalty for each judge’s estimates after
transformation by sapa. As shown in line (b) of Table 6, the average quadratic
penalty drops to .285 (S.D. = 076). The improvement between the penalties for
raw and transformed estimates is significant by correlated t-test [t(46) = 7.6,
p < .001]. Forty of the 47 participants had lower quadratic penalty after
application of sapa compared to before (p < .001 by a binomial test assuming
equal probability of improved versus worse penalties).

As discussed earlier, sapa can be adapted to the squared-deviation version of
the optimization problem (6). In line (c) of Table 6 we see that application
of the squared-deviation version of sapa to the judge’s raw estimates lowers
the average quadratic penalty even further, to .277 (not significantly lower
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than the penalty associated with the absolute-deviation version of sapa). We
prefer the use of absolute to squared deviation in formulating (6) because (a)
absolute deviation is more easily interpreted by the experts whose opinions
are transformed by sapa, and (b) it facilitates comparison of our approxi-
mation results to linear programming (see above). There would seem to be
nothing inappropriate about using absolute deviation as a measure of prox-
imity to judgments while using quadratic penalty as a measure of proximity
to truth; different things are compared. Moreover, we are equally interested
in slope as a measure of stochastic accuracy, and this measure is linear rather
than quadratic. Line (c) of Table 6 is nonetheless useful for suggesting the
robustness of sapa.

We now seek a benchmark in order to evaluate the improvements in quadratic
penalty just discussed. Optimal improvement is not an interesting concept,
since the quadratic penalty can be reduced to zero by setting each estimate
to its truth-value (0 for false, 1 for true). If attention is restricted to absolute
judgments, however, the following theorem of de Finetti (1974) provides an
interesting comparison with our results.

Theorem: (12) For every incoherent set I of probability estimates over ab-
solute events (no conditional probabilities) there is a coherent set C of esti-
mates over the same events such that the quadratic penalty for C is lower than
the penalty for I no matter which state is true.

In other words, de Finetti showed that incoherent estimates over a set of
absolute events can always be replaced by coherent estimates that have lower
penalties in every state.

Theorem (12) can be extended to some sets of estimates involving conditional
events; see, for example, Bernardo and Smith (1994, p. 89). The theorem
cannot be extended, however, to every corpus of estimates because of examples
like {(p, q, .5, ), (q, 0)}. An easy argument shows that no coherent correction
in this case lowers the quadratic score in all states. 10

Returning to absolute events, de Finetti’s (1974) proof of Theorem (12) de-
scribes a method for constructing coherent approximations to incoherent es-
timates of absolute events that lowers the quadratic penalty in all states. (It
leaves coherent estimates untouched.) Following the discussion in Joyce (1998),
we can describe de Finetti’s coherent approximation as follows. Let (ϕi, xi) be
a sequence of n pairs consisting of an (absolute) event ϕi and an estimate xi
of its probability. Let a length n vector −→v of 0’s and 1’s be called “achievable”
if there is some state A over the variables appearing in the ϕi’s such that the

10 Coherence requires Prob (q) = ε > 0, since otherwise Prob (p : q) is undefined.
Every state in which q is false yields lower quadratic penalty for the incoherent
{(p, q, .5), (q, 0)} compared to the coherent {(p, q, x), (q, ε)}, for all x ∈ [0, 1].
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ith coordinate of −→v is the truth-value of ϕi according to A. De Finetti showed
that the estimates xi are coherent if and only if the vector −→x = (x1 · · ·xn) is
a weighted sum of all achievable vectors, where the weights are nonnegative
and sum to unity. If the vector −→x is not coherent, de Finetti replaces it with
the closest coherent vector −→y in the Euclidean sense, and shows that −→y has
lower quadratic penalty than −→x in every state. The de Finetti point can be
calculated via quadratic programming (Luenberger, 1984) using routines in
the MATLAB environment. In what follows, we use the symbol finetti to
denote the method consisting of constructing such a −→y for incoherent −→x .

Note that even for absolute events, finetti is not guaranteed to deliver lower
quadratic penalties than a rival method like sapa. Theorem (12) only guar-
antees lower quadratic penalties than the incoherent target.

For each of our participants, we applied finetti to her subset of 34 absolute
estimates (the 12 conditional events appearing in Table 2 are excluded from
the present analysis). As shown in line (d) of Table 6, the average quadratic
penalty for absolute events over all participants was .309 (S.D. = .079). Ap-
plying finetti to the absolute estimates lowers the average quadratic penalty
to .272 (S.D. = .074); see line (e) of Table 6. All 47 participants have lower
quadratic penalty after approximation by finetti [this is guaranteed by The-
orem (12) and the fact that all subjects were incoherent]. For comparison to
sapa, for each participant, we calculated the quadratic penalty for sapa’s co-
herent approximations of just the 34 absolute estimates [line (f) of Table 6].
The average quadratic penalty of the coherent approximations was .276 (S.D.
= 081), thus only slightly higher than with finetti. The quadratic penalty
for absolute events was better using sapa compared to finetti for 24 of the
47 participants. sapa is thus comparable to finetti for absolute events. Of
course, sapa can also be applied to conditional events, which is not the case for
finetti. Additionally, sapa can be applied in the context of many variables
whereas the quadratic programming required for finetti limits it to small
problems (each participant in our study confronts a set of just 10 variables).

Slope before and after coherent approximation

One noteworthy feature of our data is that participants showed little insight
into the upcoming fourth quarter of 2001. Had they answered with probability
one half to every question, they would have been incoherent but their penalty
would have been .25, lower than what they typically achieved. Perhaps we
can forgive them for not being able to predict events in the turbulent autumn
of 2001, right after the events of September 11, and right before the collapse
of Enron. Note that one of the 30 variables stated that the stock price of
Enron corporation would increase by more than 10% in the fourth quarter
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(see Appendix 1). This seemed plausible at the time.

In any event, the participants’ judgment looks better if we change the criterion
of accuracy to slope, whose natural threshold of ignorance is zero. (Recall that
higher slopes signify greater accuracy, the reverse of quadratic penalty.) As
seen in line (a) of Table 7, the average slope for the participants’ raw estimates
is .053 (S.D. = .130) which is reliably greater than zero [t(46) = 2.81, p < .01].
So by this measure, our judges seemed to have some inkling about the fourth
quarter of 2001. As seen in line (b) of Table 7, greater insight comes from
sapa’s coherent approximation of their estimates. The average slope of the
reconstructed estimates is .115 (S.D. = .129). The difference between the two
sets of slopes is reliable by correlated t test [t(46) = 8.46, p < 001]. Greater
slopes for reconstructed compared to raw estimates appear for 40 of the 47
judges (p < .01 by binomial test).

Unfortunately, we cannot adapt finetti to a method that provides uniform
improvement in slope for absolute judgments. That is, there is no analogue to
Theorem (12) for slope. Like quadratic penalty, the slope of a set of estimates
depends on which state describes the world; we say that slope is “relative
to” states. The impossibility of uniform improvement in slope thus signifies
the existence of an incoherent corpus of absolute judgments such that every
coherent alternative has lower slope relative to some state. The matter is
summarized in the following proposition, proved in Appendix 2.

Proposition: (13) There are sets of incoherent estimates of probability for
absolute events with the following property. For every coherent set of estimates
for these events there is a state such that the slope of the incoherent estimates
exceeds the slope of the coherent estimates relative to that state.

The present section has documented improvement in stochastic accuracy when
incoherent estimates of chance are replaced by the coherent approximation
provided by sapa. The same phenomenon appears in three additional exper-
iments of similar design (involving sports and stock prediction), discussed in
Batsell et al. (2002) and in Deines et al. (2003). Overall, the four studies leave
little doubt that coherent approximation has a tendency to improve stochas-
tic accuracy. This phenomenon is similar to “bootstrapping” when predicting
college grades or other quantitative variables: a linear model of the judge’s
estimates often predicts the variable better than the judge herself (Dawes,
1979; Dawes & Corrigan, 1974; Camerer, 1981). Rectifying probabilities has
a feature not present in the context of linear models, however. Whereas there
are no normative grounds for using a linear equation to predict college grades
from SATs, high school grades, etc., there are persuasive reasons to prefer
one’s probabilities to be coherent. For example, incoherent judgments lead to
systematic losses (“Dutch Books”) when spotted by an adversary, provided
the judge is willing to accept bets s/he deems fair. For discussion, see Resnik
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(1987), Coletti, Gilio & Scozzafava (1993), Gustason (1994), and Osherson
(1995).

Aggregation of estimates

We now evaluate Strategy (10), discussed above, to aggregate the estimates of
the 47 judges. Our focus is again stochastic accuracy. Does aggregation lead
to superior estimates?

We pooled all estimates of chance offered by any of the 47 participants in our
study of the fourth quarter of 2001. The resulting set of judgments may be
called the aggregate judge. Recall that each participant made estimates for
events defined from 10 variables, randomly chosen for him or her from a stock
of 30. The aggregate judge therefore works in a probability space built from
30 variables. sapa was used to find a close approximation in this space to all
2162 judgments at once. The computation required about an hour.

The mean absolute deviation of the computed approximation to the raw esti-
mates was .193. This is double the deviation seen when coherent approxima-
tions were computed for one subject at a time (which averaged .09). Coherent
approximation of numerous raw estimates seems destined to be looser than
approximation of just a few judgments, since there are more conflicting de-
mands on the approximation. 11 For these data, we could not compare our
performance to lp (on absolute judgments) because there are more than a
billion states. (For the same reason, finetti could not be applied.)

For each of the 47 judges, we compared the quadratic penalties arising from:

(i) the judge’s original estimates;
(ii) the judge’s estimates after revision by individual application of sapa; and
(iii) the judge’s estimates after revision in the aggregate, as in (10).

For (iii), the judge’s estimate of the probability of an event ϕ was replaced
by the estimate of ϕ obtained by applying sapa to the aggregate judge (and
similarly for conditional events).

11 Example: If the corpus of judgment is limited to {Prob (p) = .3,Prob (q) = .3}
then coherent “correction” modifies neither. If Prob (p ∧ q) = .5 is added, however,
the three opinions cannot be accepted without change to some of them. More dra-
matic average change is necessary if Prob (p ∨ q) = .1 is also added. Incompatible
opinions of this character seem more likely when pooling across experts rather than
approximating just one. It is not easy to generalize the present example, however,
since much depends on the logical forms of the judgments aggregated, and the
correlation of belief across experts.
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The average quadratic penalty for sapa applied to the aggregate judge is .254,
as seen in line (g) of Table 6. This is lower than the average penalties for raw
estimates and sapa applied individually; see lines (a), and (b) of Table 6. The
differences are reliable by correlated t test [t(46) = 5.84, 3.15, respectively].
For 32 out of the 47 subjects, the penalty is lower if their estimates were
corrected as part of the group compared to correcting them individually (p <
.01 by a binomial test). So it seems that coherent approximation squeezes
more information out of human judgment if opinion is pooled rather than left
atomized.

Fifteen pooled judges seem to be enough to get all the benefit of aggregation, at
least in these data. When random subsets of 15 are drawn from our pool of 47
participants, we observe lower quadratic penalties for the aggregate compared
to the 15 individuals. Beyond 15, further improvement for the aggregate judge
is not detectable. This finding is consistent with other experimental studies
on quantitative estimates; small panels suffice to obtain most of the benefit of
aggregated judgment (see Ashton & Ashton, 1985, and references cited there).

The foregoing results concern quadratic penalty. When slope is used as a mea-
sure of accuracy there is only small benefit of aggregation. As shown in Table
8, line (c), the average slope after application of sapa to the aggregate judge is
.123. This is superior to slopes from raw estimates and sapa applied individ-
ually, but the difference is reliable by correlated t-test only in the comparison
to raw estimates [t(46) = 4.37]. Thirty-six of the 47 participants have higher
slopes after sapa applied in the aggregate compared to their raw estimates
(p < .001 by binomial test). Only 26 of 47 have higher slopes in the aggregate
compared to individual application of sapa (not significant).

Even stronger affects of aggregation are seen in the three additional studies
reported in Batsell et al. (2002).

Discussion

What explains the improvement in stochastic accuracy following coherent ap-
proximation by sapa? Regarding quadratic penalty, suppose that the judge
offers (p, .6) and (p ∧ q, .8). A closest coherent approximation revises both
estimates to .7, which lies between the two original estimates. Since quadratic
penalty is a convex function, the penalty is guaranteed to be lower for the two
copies of .7 compared to .6 and .8. The foregoing explanation does not extend
to improvements seen in slope. First, Proposition (13) shows that Theorem
(12) has no analogue for slope. Moreover, slope is not a convex function of
estimates.
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Improvement in stochastic accuracy when opinion is aggregated presumably
results from reduction of error variance through averaging. A rigorous formu-
lation of this phenomenon (which we do not attempt here) is complicated by
(a) the presence of incoherence within and between judges and (b) variability
in the events evaluated by different judges. It might also be possible to under-
stand the improvement in terms of some variant of Condorcet’s Jury Theorem
(Grofman, Owen & Feld, 1983). The “jurors” in our context, however, are
not voting in a binary way but rather offering probabilities. Moreover, their
opinions are likely to be correlated via reliance on information of the same
provenance; such a situation is known to compromise the uniform tendency of
well-informed group opinion to converge to the truth (Ladha, 1995; see Berend
& Paroush, 1998, and List, 2005, for alternative analyses of Condorcet-like
phenomena).

It is worth observing that aggregation via Strategy (10) potentially allows
every judge to influence the coherent probabilities constructed for every other
judge. To illustrate, consider three judges, the first of whom faces events over
the variables p, q, the second over q, r, and the third over r, s. Suppose that
they offer the following estimates.

(14)

Judge 1: Prob (p ∧ q) ≈ 1

Judge 2: Prob (r : q) ≈ 1

Judge 3: Prob (s : r) ≈ 1

Suppose also that Judge 3 offers an estimate of the probability of the variable
s. Then, if the estimates (14) are retained in the aggregate, coherence requires
that Prob (s) ≈ 1. There is no such constraint on the probability of s in
the absence of the estimate offered by Judge 1. Thus, in the aggregate, the
estimates offered by Judge 1 influence the approximation of the estimates of
Judge 3 even though the two judges face events over disjoint sets of variables.
The improvement due to aggregation might result partially from such long-
range influences, since without them aggregation reduces to correcting experts
taken singly or in small groups (and it was seen that aggregation produced
lower quadratic penalties than individual correction of estimates).

A potential alternative to the aggregation strategy (10) is to average the prob-
ability distributions that emerge from use of sapa on individual participants.
Such “linear pooling” of distributions has been analyzed in several axiomatic
studies (see Wagner, 1984; Genest & Zidek, 1986). Observe, however, that
linear pooling cannot be applied to the data of our experiment, since different
participants evaluated events over distinct sets of variables (each was ran-
domly assigned 10 variables from a starting set of 30). This obstacle to linear
pooling would be typical in the kind of application discussed above (involving
judges with overlapping expertise).
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Finally, we note that practical problems of aggregation often involve “hard”
constraints in the form of (coherent) probability estimates considered reliable,
e.g., originating actuarially or in scientific models. Similarly, the causal struc-
ture of the environment may impose conditional independence among subsets
of variables. (For background, see Castillo, Gutiérrez & Hadi, 1997.) Finding
the best coherent approximation to expert judgment then becomes a problem
of constrained optimization, and is more difficult to solve (Fletcher, 1986). A
variant of sapa can be adapted for this purpose (see Predd, Kulkarni, Poor
& Osherson, 2006).
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Appendix 1: The 30 variables used in the Finance experiment

1. The Standard & Poor’s 500 Index increases.

2. The Standard & Poor’s 500 Index outperforms the NASDAQ Composite Index.

3. The NASDAQ Composite Index increases.

4. General Electric’s stock price increases.

5. Reliant Energy’s stock price increases.

6. Exxon Mobil’s stock price increases.

7. Enron’s stock price outperforms Reliant Energy’s stock price.

8. El Paso Corp’s stock price increases.

9. Enron’s stock price increases by greater than 10%.

10. Wal-Mart’s stock price increases.

11. Amazon.com’s stock price increases.

12. Sears Roebuck’s stock price increases.

13. Wal-Mart’s stock price outperforms Amazon.com’s stock price.

14. The U.S. prime lending rate increases.

15. The price of crude oil decreases by more than 10%.

16. U.S. 30-year fixed mortgage rates decrease.

17. The U.S. retail sales rate increases.

18. The U.S. Consumer Confidence Index increases.

19. The annualized U.S. Consumer Price Index inflation rate increases.

20. The U.S. unemployment rate increases.

21. Continental Airlines’ stock price increases.

22. United Parcel Service (UPS)’s stock price increases.

23. Exxon Mobil’s stock price outperforms United Parcel Service (UPS)’s stock price.

24. General Motors’ stock price increases.

25. IBM’s stock price increases.

26. Dell’s stock price outperforms Sun Microsystems’ stock price.

27. Intel’s stock price increases.

28. Microsoft’s stock price increases by more than 10%.

29. Dell’s stock price outperforms IBM’s stock price.

30. Dell’s stock price outperforms Apple Computer’s stock price.35



Appendix 2: Proof of Proposition (13)

Consider the following incoherent estimates for three absolute events.

(p ∨ q, .1) (¬q, .1) (¬p, .9)

Let x, y, and z be the coherent replacements for .1, .1, and .9, respectively.
Let state a assign truth to p ∨ q and ¬p, and falsity to ¬q. Let state b assign
truth to ¬q and ¬p, and falsity to p ∨ q. Both of these states induce slopes
of .4 for the original (incoherent) estimates. The situation is summarized as
follows.

coherent probabilities x y z
formulas p ∨ q ¬q ¬p
original estimates .1 .1 .9
state a t f t .4
state b f t t .4

For the coherent replacements x, y, z to obtain slopes as large as those in states
a and b, coherent estimates must satisfy:

x+ z

2
− y ≥ .4 and

y + z

2
− x ≥ .4, hence

x+ z − 2y ≥ .8 and y + z − 2x ≥ .8, so by subtraction

x− y − 2y + 2x ≥ 0, hence x ≥ y.

But also x ≥ 1− y by coherence, which implies that x ≥ .5. For slope as high
as achieved in b, we must thus have y+z

2
≥ .9. Hence y, z ≥ .8 and x ≥ .5; and

the latter values are incoherent. Q.E.D.
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Table 1

Form of the events judged in the experiment

# form example

10 p the U.S. retail sales rate increases

6 p : q

the NASDAQ Composite Index increases

assuming that Microsoft’s stock price

increases by more than 10%

6 p : ¬q
the U.S. unemployment rate increases

assuming that the U.S. Consumer

Confidence Index does not increase

6 p ∧ q
U.S. 30-year fixed mortgage rates decrease

and the NASDAQ Composite Index increases

6 p ∧ ¬q
the U.S. prime lending rate increases and the

Standard & Poor’s 500 Index does not increase

6 p ∨ q
Reliant Energy’s stock price increases

or Exxon Mobil’s stock price increases

6 p ∨ ¬q
Wal-Mart’s stock price increases or the

U.S. retail sales rate does not increase

46 = Total number of judgments
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Table 2

Probabilities attributed to simple and complex events

Mean (and S.D.) for judgments types

p p : q p : ¬q p ∧ q p ∧ ¬q p ∨ q p ∨ ¬q

.453 (.102) .457 (.158) .409 (.140) .320 (.153) .353 (.137) .584 (.185) .632 (.141)

Note. The mean and standard deviation are shown for the average probabilities
participants assigned to events of each logical form. For example, the top left cell is
the mean of the average probabilities assigned by the 47 subjects to their 10 variables.
This is identical to the grand mean for all 470 estimates.
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Table 3

Four coherence laws

(a)
Prob (p ∧ q) ≤ min{Prob (p),Prob (q)}

Prob (p ∧ q) ≥ Prob (p) + Prob (q)− 1

(b)
Prob (p ∧ ¬q) ≤ min{Prob (p), 1− Prob (q)}

Prob (p ∧ ¬q) ≥ Prob (p)− Prob (q)

(c)
Prob (p ∨ q) ≥ max{Prob (p),Prob (q)}

Prob (p ∨ q) ≤ Prob (p) + Prob (q)

(d)
Prob (p ∨ ¬q) ≥ max{Prob (p), 1− Prob (q)}

Prob (p ∨ ¬q) ≤ Prob (p)− Prob (q) + 1

Note. For example, law (a) states that the probability of a conjunction cannot exceed
the probability of its conjuncts, and can not be less than one minus their sum.
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Table 4

Average number of violations of coherence

Tolerance

Law 0% 5% 10%

(a) 2.96 2.49 1.94

(b) 3.47 2.87 2.06

(c) 3.13 2.51 2.09

(d) 3.57 2.79 2.21

Note. Laws (a) - (d) are stated in Table 3. In each case, the number of possible
violations is 6. Tolerance of x% counts a violation only if cannot be avoided by
adjusting estimates by x% or less.
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Table 5

Average MAD for coherent approximations (N = 47)

application av. MAD (S.D.)

sapa to all 46 judgments .090 (.038)

lp to the 34 absolute judgments .079 (.044)

sapa to the 34 absolute judgments .085 (.043)

Note. lp is linear programming. sapa is simulated annealing applied to probability
arrays.
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Table 6

Mean quadratic penalty before and after coherent approximation (N = 47)

Quadratic penalty computed for: Mean (S.D.)
(a) raw estimates .314 .077

(b)
after individual approximation
by sapa using absolute difference .285 .076

(c)
after individual approximation
by sapa using squared deviation .277 071

(d) raw absolute estimates .309 .079

(e)
absolute estimates after individual
approximation by finetti .272 .074

(f)
absolute estimates after individual
approximation by sapa (absolute difference) .276 .081

(g)
after aggregate approximation
by sapa (using absolute difference) .254 .042

Note. sapa is simulated annealing applied to probability arrays using either absolute
or quadratic distance as the proximity metric. finetti is de Finetti’s method.
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Table 7

Mean slope before and after coherent approximation (N = 47)

Slope computed for: Mean (S.D.)

(a) raw estimates .053 .130

(b) after individual approximation by sapa .115 .129

(c) after aggregate approximation by sapa .123 .092

Note. sapa is simulated annealing applied to probability arrays. High slopes corre-

spond to greater accuracy.
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