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Abstract sharing) can be viewed as a special case of therglgoroblem of
The main focus of this paper is on using algorittiors design design pattern matching. The crux of our approachoimodel
pattern matching to address the challenges of oesig RT and designs and patterns as graphs, which lets us exgesign pattern
higher abstraction levels. The crux of our apphoscmodeling matching as subgraph-isomorphism.
designs and patterns as graphs, which lets us exgesign pattern Following [LV0O], we use the constraint-satisfaatiapproach
matching as subgraph isomorphism. We apply a ainstr to the subgraph-isomorphism problem. The input to@straint-
satisfaction approach and address the problem if éxact and satisfaction problem consists of a set of variabdeset of possible
generalized matching. Our experimental results igonfthe values for the variables, and a set of constramtveen the
applicability of our approach on industrial tesses. variables; the question is to determine whetherrethare

assignments of values to the variables that satiséy given
1 Introduction constraints, and to find such assignments. In itk generality,
constraint-satisfaction is an NP-complete problbaot,a wealth of

With the introduction and acceptance of higherdledesign heuristics enables efficient solutions in many picatcases.
entries, we witness several scenarios where diffeneodeling We demonstrate that using the constraint-satisfacpproach
levels need to co-exist. For example, with a dedail to solve the subgraph-isomorphism problem enabkésiest
implementation-level model as a starting point,esigner might detection of all the occurrences of an arbitranttgpa in a
create a more abstract model in order to increlasgdation speed. hierarchical design. A major advantage of the caimt
Bottom-up abstractions can simplify the logic andses the satisfaction approach is its flexibility. For exdmpwe can relax
comprehension of the functionality. On the othemchaop-down the exact matching requirement in a variety of wa@ne
transformationss transform specification-level eledto more relaxation that we found quite useful is not reigpgirexact match
concrete, implementable models. of node labels but allowing for more flexible matghpredicates.

In this paper, we introduce a generic search mésimarcalled This paper is organized as follows. Section 2 surizes
QUEST, of patterns at any level of design absiacte.g., high- related work. In Section 3, we present our techrag@roach on
level, RTL, gate-level, etc.). Based on our expemde such a pattern search in hierarchical high-level desigmd ilustrate the
generic mechanism can address several challengagabfife generality of our implementation and its potentishge in solving
micro-processor design and verification. We déscrsome architectural optimizations. Section 4 summarizbe tesults
concrete application examples. Formal verificaiogineers need providing walkthroughs using real-life test cadasSection 5, we
to raise their understanding of the design in otdetevelop proof present our conclusions.
strategies. Furthermore, interaction with the desigy be needed
to reduce the model size in order to meet the éydanitations of 2 Related Work
the downstream model checking tools. Exploratieduction and Graph pattern matching was first studied in a tekgy-
abstraction of the design can be achieved by sedrphtterns of independent setting by Ohrlich et al. [OEGS93], vieused on
interest and replacement of the areas of intergsteduced or graph pattern matching as a subgraph-isomorphisbigm. Their
abstracted logic. Another example of potential isséetection of algorithm, called SubGemini, is an extension of ftlerated
similarities and differences between two versiohs alesign in partitioning algorithm used by the Gemini algoritf@EGS93] for
order to adapt existing proofs on one versioniaodified version. graph-isomorphism. In spite of the NP-completerfssubgraph
In addition to verification problems, several desggoblems such isomorphism, a typical running time for SubGemins i
as early exploration and customized synthesis eanddressed by approximately linear in the number of matched saphs. For a
a generic interactive se_arch mechanlsm._ general discussion of graph pattern matching in prder-aided

Design transformations and search in QUEST aréoipeed design, see [C95]. (We note that the focus in [LM@@ [C95], as
via rules, describing how a subdesign of a padicphattern (i.e., well as our focus here is on syntax-based matchiagause of its
from-side of the rule) should be replaced by a subdesigmother generality and flexibility. In certain applicatioitss appropriate to
pattern (i.e.to-side of the rule). In case no rule for replacement is consider also semantic matching, which requires I&wo
provided, QUEST reports all the patterns that métetfrom-side reasoning techniques, see [DWWC98].)
of the rule. The concept of transformations viasuk not new. It An earlier approach to subgraph isomorphism [U76]based
arose first in the context of technology mappin@7k and have on constraint-satisfaction techniques (cf, [DO3his approach
found many applications, e.g., in power optimizat[@KW96]. was pursued further by Larrosa and Valiente [LVOThey
Unlike these earlier works, QUEST facilitatesenatctive search evaluated several constraint-based algorithms fabgraph
and application of transformations. Therefore iddses the isomorphism, including one that is based on a lalo&ad
problem of design exploration rather than synthddreover, we technique, and demonstrated experimentally its ctiffeness
allow here general design patterns, rather tharigesl ones, such across a broad range of problem instances.
as bounded degree DAGs. Using such transformatémsres the From our perspective, we found the constraint-baggztoach
ability to search for general patterns in hierazahihigh-level better suited to our application domain. While spiéed
designs. The main focus of this paper is on uslggrishms for approaches, such as the one used in SubGemini, perdgrm
design pattern matching to address the challenj@esigns at RT better, the constraint-based approach offers gregteerality and
and higher abstraction levels. Furthermore, we dstrate how extensibility. For example, as we show later, wéemded the

early design exploration and synthesis problemg.,(@esource constraint-based algorithm to handle also approteinmaatching,



pruning predicates, pin equivalence and the like.we show,
these extensions can all be expressed naturallgeirconstraint-
satisfaction framework. Thus, we used Larrosa aaliewte's work
as the starting point for our implementation.

3 Hierarchical Pattern Search through QUEST

In this section, we explain in detaill how we redute
hierarchical pattern search problem to subgrapimasphism and
provide a solution based on constraint-satisfadgahniques.

For the sake of clarity, we demonstrate the patpatific
compilation and search stages of QUEST through >ample.
Consider the following CAD problem — “Detect alladhs of two
interesting boxes in a hierarchical design, at adeyel of
abstraction”. Perhaps such chains can be repladgthdavmore
efficient single box. In this case, the design deggl in Figure 1
will be given as input to QUEST, as well as theqratdepicted in
Figure 2. The expected output of QUEST will be tmatches of
such chains, spanning the boundary of the origimaldule
hierarchies.

3.1 Subgraph-lsomor phism For mulation of Pattern Search

Subgraph isomorphism decides if a given grapham@phic
to a subgraph of another given graph. Although =sajiy
isomorphism is known to be NP-complete [GJ79] amerdfore
intractable, practical CAD applications [OEGS93]nastrate
that designs have sufficient structure to allovicafht solutions. A
formal definition of subgraph-isomorphism is asddals:

Let Gl = {Vlv Elv Ll} and Gz = {Vz, Ez, L2} be two labeled gl’aphs
where V; is the set of vertices, E; is the set of edges, and Li is an
ass gnment of labels to vertices. We say that G, is isomorphic to a
subgraph of G, if thereis a mapping h:V,—V, such that
1. For every vertex vin V; we have that Ly(v)=L,(h(v)), and
2. For every pair u,v of verticesin V; we have that (u, v) is
in E; and only if (h(u), h(v)) isin E,.

The subgraph-isomorphism problem is to determinethdr a
given graph Gis isomorphic to a subgraph of a given graph G
= wl ma
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Figure 4: Reduced graph representation of the design

In QUEST, we identify the hierarchical pattern sbgproblem
with the subgraph-isomorphism problem for graph@egenting
the pattern and the design. The design and pagtayhs can be
viewed as a directed bipartite graphs, where tlsgdeslements

(which we callinstances) are represented by squares and the

interface signals (which we calins) are represented by circles as
shown in Figure 3.

The graph representations, @nd G for the pattern and the
design respectively are generated by executingptlmsving steps:

1. Definethe vertices representing the set of instancesin both
graphs when all the v /7V;in G, represent the top-level
instances of the pattern and v /7V, in G, represent only the
pattern instances (see discuss on below for details)

2. Ddfinethe vertices representing the set of pinsin both graphs.
First include only pins connected to generated instances, then
discard pinsthat are not on the same net (i.e. connection) as
any other selected pin

3. Createverticesfor all generated instances and pins and label
them accordingly (see Section 3.3 for details)

4. Connect pinsto their instances by edges

5. Connect pinsto each other if they are on the same net,
regardless of hierarchical boundaries

Step 2 ensures a minimal graph with no spurioug®adile
Step 5 enables finding patterns that span hiergathoundaries.

When processing the pattern, we do not drill-dowyomd the
top-level instances. This is based on the assumgtiat the
instance labeling algorithm ensures that all ircarwith the same
label represent the same function. We also recbed list of
instances produced in this step (which we call efiesting’
instances). When processing the design, we readlisheof
‘interesting’ instances generated in the patteaplgr We process
the entire design hierarchy down to ‘interestingstances, and
produce a graph with only those instances and thmeir
connections. Obviously, if generalized label maighpredicates
are used, the selection of ‘interesting’ instarioethe design must
accommodate them as well. This yields a graph mithmum size
and complexity and greatly improves the searcluieficy.

Another important aspect of a usable search mesimaig to
correctly model pin equivalence (or pin symmetrjlany
instances represent commutative operators thataireensitive to
the order of the inputs (e.g. an AND gate, or & mperator). In
such cases we model all the equivalent pins asgéesgraph node
and connect all the individual inputs to it. Thisaeling approach
makes sure that the search algorithm considergoabible input
orderings as acceptable matches. QUEST containgiilgirb
description of the pin-equivalence sets for thexddiad gates and
cells used to model designs that are input to QUESGeneral,
the user can provide additional specific informaten the input
design elements to enhance the quality of the Bearc

QUEST translates the hierarchical representatioth@fdesign
and the pattern, in Figure 1 and Figure 2, respalgtiinto a graph,
with all the enhancements described above (i.gohgraduction,
generalized label matching and pin equivalencek Tésulting
reduced graph is illustrated in Figure 4. The redugraph
representation of the design considers only ingsunt the pattern
(in our case — InterestingBox). In contrast, coesithe full-graph
representation. Note that in this case the reduetimost obviates
the need for the search. In other cases, whergdtiern covers
more instance types, the reduction may be lessaliam

Based on our experience, we assert that it is reffigent to
re-create the design graph before each patterots@zased on the
pattern instances) than to create the full grale @nd use it with
many patterns. In the example above, a comparigtimecsize of
the full-design graph versus the size of the redudesign graph
justifies our claim.

3.2 Constraint-Satisfaction  Formulation of  Subgraph-
I somor phism

An isomorphism of a graph,G= (V,, E) to a subgraph of a



graph G = (V,, E) is equivalent to the following constraint-
satisfaction problem. A variableis associated with each vertex v
OV,, and all variables take values on the domajn W¥inding a
subgraph isomorphism is then equivalent to findingomplete
assignment satisfying the followingructure constraint on the
possible values assigned to i,j:

Rij={(Va W) OV2Xx V2| Wz v, Oedge(G i, j) = edge (G
Va, )} fori, jinVowithi#j.

Our subgraph-isomorphism implementation is an adiot of
the constraint-propagation solution of Valiente 0 when the
above constraint-satisfaction formulation of supgresomorphism
has been enhanced with the neighborhood constraihich
expresses the fact that a vertex (variablé) V, can only be
mapped to another vertex (value) @ V, if all vertices in the
neighborhood of i can be mapped to other vertiaesthie

neighborhood of ¥ The essence of the algorithm consists of two

steps:

I.  Given pattern graph G, = (V4, Ej, L;) and design graph G, =
(Va, By, Ly), for all v; [7V; generate candidatelist D; of
matching verticesin G,

Il.  SolveCSP(V;, D) (see[LV0O] for details)

The CSP formulation of subgraph isomorphism praviderery
natural solution to generalized pattern detectinrthe first stage
of the algorithm, the candidate list generatioodsstrained by the
generalized pattern. All the candidates not satigfythe
generalized pattern predicate are pruned out. €hersl stage of
the algorithm (i.e.,.SolveCSP) is executed as usual without any
changes. The easy adaptation of the solution tcergéred
patterns is one of the main advantages of the QUipfoach in
comparison to previous work [OEGS93].

3.3 Pattern-based Design Graph Labeling

The efficiency of the search algorithm is directyated to the
ability to recognize that vertices representingtanses in both
design and pattern graphs match. Thus, the labadinghe
instances is important to uniquely identify thetiees in the graph.
In some applications (like searches in a transistml net-list) the
problem is trivial, since the name of the elemefitsv-level
electronic devices) uniquely identifies them. Thetance name
might not be enough to identify an instance in ghar-level
description, and it can even lead to wrong res#ts. example,
there can be two modules labeled “filter” that peri different
functions.

When the simple names of instances are not sufficie
uniquely identify them, we create a label by apmlya hashing
formula to the instance name, the names of therfaue
connections, and the labels of all sub-elementsyrsévely. This
method is expensive, and care should be taken torpe the
minimum calculation that gives satisfactory diffieiation. Also,
labeling of the entire design should be done imgle bottom-up
sequence to prevent recalculation of labels of feenel
instances. However, in most practical cases, iostaiabels
themselves are sufficient to identify candidate anes between
pattern and design vertices, advocating the genselof a more
straight-forward and efficient labeling mechanis®mce there is
no automated way to recognize the need for caloglaecursive
labels (which we callignatures), it is the responsibility of the user
to initiate this process.

In more complex cases as generalized patterns,ndidede
match can be defined by applying a Boolean preglibatween the
labels of the pattern and the design nodes. Ircipta) there is no
restriction on what that predicate can be. In pcactQUEST
contains a library of built-in predicates takingr@parameters, or
hints, from the pattern and the design when the oae select
which predicates to activate. For example, one h&f built-in
predicates is treating pattern instance label&gslar expressions

(e.g., if a pattern instance is labeled “m\d+"will match any
design instance label starting with ‘m’ followed &gy number of
decimal digits (“m1”, “m432”, etc.)).

Constraints can be applied to edges to furthectiire search
algorithm. For example, a common resource-shatiig neplaces
the logic “out = condition ? (a + b) : (c + d)” Withe more area-
efficient logic “out = (condition ? a : c) + (cotidin ? b : d)".
Clearly, this rule can be applied to any pair afhanetic operators
(e.g., multiplication, subtraction, etc.). The apgtion of this rule
through QUEST requires first the search for theepat“out =
condition ? (aop b) : (cop d)” whereop can be any arithmetic
operator like an adder, a subtractor or a multipks long as both
operators are the same. A search using genera¢ibetimatching
finds all the places where any two arithmetic opens are
preceded with a multiplexer or “if". The edge caastt can limit
the search to cases where the instances on boshoéritie edge
have the same label.

QUEST allows the user to filter/constrain its outpue.,
matches for the exact or generalized input paftdmymspecifying
constraints through predicates. For example, invleinteresting-
box pattern search, an output filter removes cadese the net
connecting the boxes is fanned out to other devises for
example, two inverters cannot be reduced to a wire)

In the constraint-satisfaction algorithm for fingisubgraph-
isomorphism, the vertex labels are used only atsthet of the
algorithm to generate candidate design verticesebmh pattern
vertex. This is particularly useful in the conteftthe previous
paragraph — instance labels are compared once préprocessing
stage. In contrast, labeling algorithms such a®tieeemployed by
SubGemini are less amenable to such manipulatioth&onstance
names in the preprocessing stage.

4 Experimental Results

4.1 Exact Matching

The highly interconnected complex structure of pliirs
challenges state-of-the-art synthesis and verifinasolutions.
Thus we have chosen first as our design an implt&tien of an
integer multiplier. Table 1 below presents the ltssof QUEST in
search for a simple gate pattern in the hierardiisynthesized
version of the integer multiplier, which is scaléd different
operand widths. Note the drastic reduction in graje (2-3X)
and the direct effect of graph size and number atfchres on CPU
time.

In order to demonstrate the usage of QUEST in fpdication
of bottom-up transforms, we have chosen the proliesearching
for a basic 1-bit ripple-carry adder pattern insynthesized,
flattened 256 bit ripple-carry adder implementatidhe design at
hand is an implementation of an N-bit ripple-caagider that
consists of N replications of the basic 1-bit adp&itern. QUEST
successfully facilitated abstract representationhef adder when
the ripple carry adder logic has been identified ahstracted out
to separate logic blocks. The reduced graphs fe25&bit adder
varied from 1053 to 8445 edges.

In contrast, consider searching for a much simplattern
consisting of a 3-way OR connected by one pin &veaay XOR
(represented by a graph consisting of 4 verticéh)s pattern
spans the boundary of the basic cells and thusredoudth — 1)
times. Note the drastic reduction in the graph,s@el QUEST
time in the results reported in the Table 2 belovere the reduced
graph size varies between
4.2 Generalized Matching

In order to demonstrate the ability of QUEST tafigeneralized
patterns, let us consider the ‘“resource sharinghsfiormation
explained in Section 3.3. The application of thigerthrough
QUEST requires first the search for the patterrt “ogondition ?
(@aop b) : (cop d)” whereop is constrained to be any binary



arithmetic operator (e.g., adder, subtractor ottiplidr) as long as
both operators are the same. All the locationshan design that
satisfy this pattern can then be replaced by aersving pattern
“out = (condition ? a : c) + (condition ? b : d)”.

Full Graph Reduced Numbe Ques
Width Node: Edge: Node: Edge: Matche: Time
32 30,646 87,6907 13,383 18,253 900 1:30:00.0
28 23,162 64,177 10,049 13,648 678 34:20.0
24 16,838 45,288 7,217 9,822 486 11:13.0
20 11,592 30,419 4,872 6,649 326 03:17.0
16 7,196 18,219 2,957 4,008 196 00:43.0
8 1,610 3,909 585 805 36 00:00.4

Table 1: Presents search results of a simple gate patteemin
integer multiplier.

Without pin equivalencWith pin equivalence
Reduced Graph Reduced Graph

WidthNodes EdgejTime(s) Nodes Edges Time (s)
32 128 9 0.1 161 __ 0.1
64 256 38 0.2 321 __ 0.2
128 512 51 0.7 641_ . 0.8
256 1,024 76 52 1,281 ___ 5.0

Table 2: Presents the results of QUEST in search of a siggtie
pattern in a 32, 64, 128, 256 bit adder impleméntat

We have generated a scalable design to measure the

performance of QUEST in interactive detection of tlesource
sharing opportunities in a high-level RTL desigmrgsting of
multiplexers, ALUs, etc.) as can be seen in Figure

The basic block depicted below in Figure 5 contalvesfrom-
side of the resource-sharing transformation. Clearlygvery block
there are 3 matches (i.e., two matches with adderator in the
sub-block ‘incr' and one with subtractor operatothie sub-block
‘absdiff). Therefore, the number of matches isr@$ the number
of blocks. Table 3 presents the reduced graphasideCPU time
spent by QUEST in the detection of all the resousbaring
opportunities in the designs consisting of (8-&flications of the
basic block which consists of (72-576) architedtacanponents.

4.3 Real-life Test Cases

We have applied QUEST on two industrial design&yddrid
abstraction levels. QUEST successfully finds 8Zcmes of the
pattern “nand (not a) (not b)” in a hierarchicallrife design (i.e.,
D1) that consists of 1,482 instances. 40% of thécines span
hierarchy boundaries.

Furthermore, we have given QUEST the problem oflifig
two adder chains making use of a version of D1 tvliias been
flattened by one level. The partial flattening aous for the
reduction in the number of instances 1334 vers@2.14QUEST
finds 16 matches in less than 1 second. In a signifly larger test
case D2, QUEST searches for all multiplexers wittcHed
outputs. In a partially synthesized version of B¢ larger: 3781
versus 3184 vertices), QUEST finds 36 matches fapecific
instance with two inverted inputs in 0.76 seconds.

5 Conclusions

We have introduced a generic exact and generalizdirn
matching mechanism, QUEST, and demonstrated itBcapflity
to solve practical CAD problems that deal with bottup and top-
down transformations of designs at hybrid abswactevels. To
the best of our knowledge, QUEST pioneers in thgiegtion of
constraint-satisfaction techniques to the problérsearch of sub-
design of interest in real-life CMOS test cases.rédoer, the
usage of constraint-satisfaction techniques fatdg easy

extension of QUEST to deal with generalized pastewhich is
difficult to apply to prior related work [OEGS93]. Another
important contribution of this paper is patterndsseduction of
the design, which at times obviates the needs Her gearch.
Moreover, the generality of QUEST architecture lfi@tes its
suitability to various CAD frameworks.
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Figure 5: Basic block consisting of 9 architectural composent

Time Time
Blocks Nodes Edges (s) Blocks Nodes Edges (s)

1,0C 1,9¢
8 498 9 0.2 32 64,033 21.0
2,01 3,970
1€ 994 7 17 64 8,065 312.4

Table 3 :Results for resource-sharing example
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