

Pattern Search in Hierarchical High-Level Designs

Zvi Terem, Gila Kamhi, Moshe Y. Vardi*, Amitai Irron

Logic Validation Technology, Intel Corp., Haifa, Israel
Rice Universiy*, Houston,USA

Abstract

The main focus of this paper is on using algorithms for design
pattern matching to address the challenges of designs at RT and
higher abstraction levels. The crux of our approach is modeling
designs and patterns as graphs, which lets us express design pattern
matching as subgraph isomorphism. We apply a constraint-
satisfaction approach and address the problem of both exact and
generalized matching. Our experimental results confirm the
applicability of our approach on industrial test cases.

1 Introduction

With the introduction and acceptance of higher-level design
entries, we witness several scenarios where different modeling
levels need to co-exist. For example, with a detailed
implementation-level model as a starting point, a designer might
create a more abstract model in order to increase simulation speed.
Bottom-up abstractions can simplify the logic and ease the
comprehension of the functionality. On the other hand, top-down
transformationss transform specification-level models to more
concrete, implementable models.

In this paper, we introduce a generic search mechanism, called
QUEST, of patterns at any level of design abstraction (e.g., high-
level, RTL, gate-level, etc.). Based on our experience, such a
generic mechanism can address several challenges of real-life
micro-processor design and verification. We describe some
concrete application examples. Formal verification engineers need
to raise their understanding of the design in order to develop proof
strategies. Furthermore, interaction with the design may be needed
to reduce the model size in order to meet the capacity limitations of
the downstream model checking tools. Exploration, reduction and
abstraction of the design can be achieved by search of patterns of
interest and replacement of the areas of interest by reduced or
abstracted logic. Another example of potential use is detection of
similarities and differences between two versions of a design in
order to adapt existing proofs on one version to a modified version.
In addition to verification problems, several design problems such
as early exploration and customized synthesis can be addressed by
a generic interactive search mechanism.

 Design transformations and search in QUEST are performed
via rules, describing how a subdesign of a particular pattern (i.e.,
from-side of the rule) should be replaced by a subdesign of another
pattern (i.e., to-side of the rule). In case no rule for replacement is
provided, QUEST reports all the patterns that match the from-side
of the rule. The concept of transformations via rules is not new. It
arose first in the context of technology mapping [K87], and have
found many applications, e.g., in power optimization [RKW96].
Unlike these earlier works, QUEST facilitates interactive search
and application of transformations. Therefore it addresses the
problem of design exploration rather than synthesis. Moreover, we
allow here general design patterns, rather than restricted ones, such
as bounded degree DAGs. Using such transformations requires the
ability to search for general patterns in hierarchical high-level
designs. The main focus of this paper is on using algorithms for
design pattern matching to address the challenges of designs at RT
and higher abstraction levels. Furthermore, we demonstrate how
early design exploration and synthesis problems (e.g., resource

sharing) can be viewed as a special case of the general problem of
design pattern matching. The crux of our approach is to model
designs and patterns as graphs, which lets us express design pattern
matching as subgraph-isomorphism.

Following [LV00], we use the constraint-satisfaction approach
to the subgraph-isomorphism problem. The input to a constraint-
satisfaction problem consists of a set of variables, a set of possible
values for the variables, and a set of constraints between the
variables; the question is to determine whether there are
assignments of values to the variables that satisfy the given
constraints, and to find such assignments. In its full generality,
constraint-satisfaction is an NP-complete problem, but a wealth of
heuristics enables efficient solutions in many practical cases.

We demonstrate that using the constraint-satisfaction approach
to solve the subgraph-isomorphism problem enables efficient
detection of all the occurrences of an arbitrary pattern in a
hierarchical design. A major advantage of the constraint-
satisfaction approach is its flexibility. For example, we can relax
the exact matching requirement in a variety of ways. One
relaxation that we found quite useful is not requiring exact match
of node labels but allowing for more flexible matching predicates.

This paper is organized as follows. Section 2 summarizes
related work. In Section 3, we present our technical approach on
pattern search in hierarchical high-level designs and illustrate the
generality of our implementation and its potential usage in solving
architectural optimizations. Section 4 summarizes the results
providing walkthroughs using real-life test cases. In Section 5, we
present our conclusions.

2 Related Work

Graph pattern matching was first studied in a technology-
independent setting by Ohrlich et al. [OEGS93], who focused on
graph pattern matching as a subgraph-isomorphism problem. Their
algorithm, called SubGemini, is an extension of the iterated
partitioning algorithm used by the Gemini algorithm [OEGS93] for
graph-isomorphism. In spite of the NP-completeness of subgraph
isomorphism, a typical running time for SubGemini is
approximately linear in the number of matched subgraphs. For a
general discussion of graph pattern matching in computer-aided
design, see [C95]. (We note that the focus in [LV00] and [C95], as
well as our focus here is on syntax-based matching, because of its
generality and flexibility. In certain applications it is appropriate to
consider also semantic matching, which requires Boolean
reasoning techniques, see [DWWC98].)

An earlier approach to subgraph isomorphism [U76]. is based
on constraint-satisfaction techniques (cf, [D03]). This approach
was pursued further by Larrosa and Valiente [LV00]. They
evaluated several constraint-based algorithms for subgraph
isomorphism, including one that is based on a look-ahead
technique, and demonstrated experimentally its effectiveness
across a broad range of problem instances.

From our perspective, we found the constraint-based approach
better suited to our application domain. While specialized
approaches, such as the one used in SubGemini, may perform
better, the constraint-based approach offers greater generality and
extensibility. For example, as we show later, we extended the
constraint-based algorithm to handle also approximate matching,

pruning predicates, pin equivalence and the like. As we show,
these extensions can all be expressed naturally in the constraint-
satisfaction framework. Thus, we used Larrosa and Valiente's work
as the starting point for our implementation.

3 Hierarchical Pattern Search through QUEST

In this section, we explain in detail how we reduce the
hierarchical pattern search problem to subgraph isomorphism and
provide a solution based on constraint-satisfaction techniques.

For the sake of clarity, we demonstrate the pattern-specific
compilation and search stages of QUEST through an example.
Consider the following CAD problem – “Detect all chains of two
interesting boxes in a hierarchical design, at any level of
abstraction”. Perhaps such chains can be replaced with a more
efficient single box. In this case, the design depicted in Figure 1
will be given as input to QUEST, as well as the pattern depicted in
Figure 2. The expected output of QUEST will be two matches of
such chains, spanning the boundary of the original module
hierarchies.

3.1 Subgraph-Isomorphism Formulation of Pattern Search

Subgraph isomorphism decides if a given graph is isomorphic
to a subgraph of another given graph. Although subgraph
isomorphism is known to be NP-complete [GJ79] and therefore
intractable, practical CAD applications [OEGS93] demonstrate
that designs have sufficient structure to allow efficient solutions. A
formal definition of subgraph-isomorphism is as follows:
Let G1 = {V1, E1, L1} and G2 = {V2, E2, L2} be two labeled graphs,
where Vi is the set of vertices, Ei is the set of edges, and Li is an
assignment of labels to vertices. We say that G1 is isomorphic to a
subgraph of G2 if there is a mapping h:V1

�V2 such that
1. For every vertex v in V1 we have that L1(v)=L2(h(v)), and
2. For every pair u,v of vertices in V1 we have that (u, v) is

in E1 and only if (h(u), h(v)) is in E2.
The subgraph-isomorphism problem is to determine whether a

given graph G1 is isomorphic to a subgraph of a given graph G2.

Figure 1: Simple 3-module design

Figure 2: Simple pattern

 Figure 3: Graph representation of the pattern

Figure 4: Reduced graph representation of the design
In QUEST, we identify the hierarchical pattern search problem

with the subgraph-isomorphism problem for graphs representing
the pattern and the design. The design and pattern graphs can be
viewed as a directed bipartite graphs, where the design elements

(which we call instances) are represented by squares and the
interface signals (which we call pins) are represented by circles as
shown in Figure 3.

The graph representations G1 and G2 for the pattern and the
design respectively are generated by executing the following steps:

1. Define the vertices representing the set of instances in both

graphs when all the v ∈ V1 in G1 represent the top-level
instances of the pattern and v ∈ V2 in G2 represent only the
pattern instances (see discussion below for details)

2. Define the vertices representing the set of pins in both graphs.
First include only pins connected to generated instances, then
discard pins that are not on the same net (i.e. connection) as
any other selected pin

3. Create vertices for all generated instances and pins and label
them accordingly (see Section 3.3 for details)

4. Connect pins to their instances by edges
5. Connect pins to each other if they are on the same net,

regardless of hierarchical boundaries
Step 2 ensures a minimal graph with no spurious edges while

Step 5 enables finding patterns that span hierarchical boundaries.
When processing the pattern, we do not drill-down beyond the

top-level instances. This is based on the assumption that the
instance labeling algorithm ensures that all instances with the same
label represent the same function. We also record the list of
instances produced in this step (which we call ‘interesting’
instances). When processing the design, we read the list of
‘interesting’ instances generated in the pattern graph. We process
the entire design hierarchy down to ‘interesting’ instances, and
produce a graph with only those instances and their net
connections. Obviously, if generalized label matching predicates
are used, the selection of ‘interesting’ instances in the design must
accommodate them as well. This yields a graph with minimum size
and complexity and greatly improves the search efficiency.

Another important aspect of a usable search mechanism is to
correctly model pin equivalence (or pin symmetry). Many
instances represent commutative operators that are not sensitive to
the order of the inputs (e.g. an AND gate, or a plus operator). In
such cases we model all the equivalent pins as a single graph node
and connect all the individual inputs to it. This modeling approach
makes sure that the search algorithm considers all possible input
orderings as acceptable matches. QUEST contains a built-in
description of the pin-equivalence sets for the standard gates and
cells used to model designs that are input to QUEST. In general,
the user can provide additional specific information on the input
design elements to enhance the quality of the search.

QUEST translates the hierarchical representation of the design
and the pattern, in Figure 1 and Figure 2, respectively, into a graph,
with all the enhancements described above (i.e. graph reduction,
generalized label matching and pin equivalence). The resulting
reduced graph is illustrated in Figure 4. The reduced graph
representation of the design considers only instances in the pattern
(in our case – InterestingBox). In contrast, consider the full-graph
representation. Note that in this case the reduction almost obviates
the need for the search. In other cases, where the pattern covers
more instance types, the reduction may be less dramatic.

Based on our experience, we assert that it is more efficient to
re-create the design graph before each pattern search (based on the
pattern instances) than to create the full graph once and use it with
many patterns. In the example above, a comparison of the size of
the full-design graph versus the size of the reduced design graph
justifies our claim.

3.2 Constraint-Satisfaction Formulation of Subgraph-
Isomorphism

An isomorphism of a graph G1 = (V1, E1) to a subgraph of a

graph G2 = (V2, E2) is equivalent to the following constraint-
satisfaction problem. A variable I is associated with each vertex vi
∈V1, and all variables take values on the domain V2. Finding a
subgraph isomorphism is then equivalent to finding a complete
assignment satisfying the following structure constraint on the
possible values assigned to i,j:

R i,j = {(va, vb) ∈ V2 x V2 | va ≠ vb ∧ edge(G1, i, j)
� edge (G2,

va, vb)} for i, j in V 1 with i ≠ j .
Our subgraph-isomorphism implementation is an adaptation of

the constraint-propagation solution of Valiente [LV00] when the
above constraint-satisfaction formulation of subgraph-isomorphism
has been enhanced with the neighborhood constraint, which
expresses the fact that a vertex (variable) i ∈ V1 can only be
mapped to another vertex (value) va ∈ V2 if all vertices in the
neighborhood of i can be mapped to other vertices in the
neighborhood of va. The essence of the algorithm consists of two
steps:

I. Given pattern graph G1 = (V1, E1, L1) and design graph G2 =
(V2, E2, L2), for all vi ∈ V1 generate candidate list Di of
matching vertices in G2,,

II. SolveCSP(V1, D) (see [LV00] for details)
The CSP formulation of subgraph isomorphism provides a very

natural solution to generalized pattern detection. In the first stage
of the algorithm, the candidate list generation is constrained by the
generalized pattern. All the candidates not satisfying the
generalized pattern predicate are pruned out. The second stage of
the algorithm (i.e., SolveCSP) is executed as usual without any
changes. The easy adaptation of the solution to generalized
patterns is one of the main advantages of the QUEST approach in
comparison to previous work [OEGS93].

3.3 Pattern-based Design Graph Labeling

The efficiency of the search algorithm is directly related to the
ability to recognize that vertices representing instances in both
design and pattern graphs match. Thus, the labeling of the
instances is important to uniquely identify the vertices in the graph.
In some applications (like searches in a transistor-level net-list) the
problem is trivial, since the name of the elements (low-level
electronic devices) uniquely identifies them. The instance name
might not be enough to identify an instance in a higher-level
description, and it can even lead to wrong results. For example,
there can be two modules labeled “filter” that perform different
functions.

When the simple names of instances are not sufficient to
uniquely identify them, we create a label by applying a hashing
formula to the instance name, the names of the interface
connections, and the labels of all sub-elements, recursively. This
method is expensive, and care should be taken to perform the
minimum calculation that gives satisfactory differentiation. Also,
labeling of the entire design should be done in a single bottom-up
sequence to prevent recalculation of labels of lower-level
instances. However, in most practical cases, instance labels
themselves are sufficient to identify candidate matches between
pattern and design vertices, advocating the general use of a more
straight-forward and efficient labeling mechanism. Since there is
no automated way to recognize the need for calculating recursive
labels (which we call signatures), it is the responsibility of the user
to initiate this process.

In more complex cases as generalized patterns, a candidate
match can be defined by applying a Boolean predicate between the
labels of the pattern and the design nodes. In principle, there is no
restriction on what that predicate can be. In practice, QUEST
contains a library of built-in predicates taking some parameters, or
hints, from the pattern and the design when the user can select
which predicates to activate. For example, one of the built-in
predicates is treating pattern instance labels as regular expressions

(e.g., if a pattern instance is labeled “m\d+”, it will match any
design instance label starting with ‘m’ followed by any number of
decimal digits (“m1”, “m432”, etc.)).

Constraints can be applied to edges to further direct the search
algorithm. For example, a common resource-sharing rule replaces
the logic “out = condition ? (a + b) : (c + d)” with the more area-
efficient logic “out = (condition ? a : c) + (condition ? b : d)”.
Clearly, this rule can be applied to any pair of arithmetic operators
(e.g., multiplication, subtraction, etc.). The application of this rule
through QUEST requires first the search for the pattern “out =
condition ? (a op b) : (c op d)” where op can be any arithmetic
operator like an adder, a subtractor or a multiplier, as long as both
operators are the same. A search using generalized label matching
finds all the places where any two arithmetic operations are
preceded with a multiplexer or “if”. The edge constraint can limit
the search to cases where the instances on both ends of the edge
have the same label.

QUEST allows the user to filter/constrain its output (i.e.,
matches for the exact or generalized input patterns) by specifying
constraints through predicates. For example, in the two-interesting-
box pattern search, an output filter removes cases where the net
connecting the boxes is fanned out to other devices (so, for
example, two inverters cannot be reduced to a wire).

In the constraint-satisfaction algorithm for finding subgraph-
isomorphism, the vertex labels are used only at the start of the
algorithm to generate candidate design vertices for each pattern
vertex. This is particularly useful in the context of the previous
paragraph – instance labels are compared once in the preprocessing
stage. In contrast, labeling algorithms such as the one employed by
SubGemini are less amenable to such manipulations of the instance
names in the preprocessing stage.
4 Experimental Results

4.1 Exact Matching

The highly interconnected complex structure of multipliers
challenges state-of-the-art synthesis and verification solutions.
Thus we have chosen first as our design an implementation of an
integer multiplier. Table 1 below presents the results of QUEST in
search for a simple gate pattern in the hierarchically synthesized
version of the integer multiplier, which is scaled to different
operand widths. Note the drastic reduction in graph size (2-3X)
and the direct effect of graph size and number of matches on CPU
time.

In order to demonstrate the usage of QUEST in the application
of bottom-up transforms, we have chosen the problem of searching
for a basic 1-bit ripple-carry adder pattern in a synthesized,
flattened 256 bit ripple-carry adder implementation. The design at
hand is an implementation of an N-bit ripple-carry adder that
consists of N replications of the basic 1-bit adder pattern. QUEST
successfully facilitated abstract representation of the adder when
the ripple carry adder logic has been identified and abstracted out
to separate logic blocks. The reduced graphs for 32-256 bit adder
varied from 1053 to 8445 edges.

In contrast, consider searching for a much simpler pattern
consisting of a 3-way OR connected by one pin to a 3-way XOR
(represented by a graph consisting of 4 vertices). This pattern
spans the boundary of the basic cells and thus occurs (width – 1)
times. Note the drastic reduction in the graph size, and QUEST
time in the results reported in the Table 2 below where the reduced
graph size varies between.
4.2 Generalized Matching

In order to demonstrate the ability of QUEST to find generalized
patterns, let us consider the “resource sharing” transformation
explained in Section 3.3. The application of this rule through
QUEST requires first the search for the pattern “out = condition ?
(a op b) : (c op d)” where op is constrained to be any binary

arithmetic operator (e.g., adder, subtractor or multiplier) as long as
both operators are the same. All the locations in the design that
satisfy this pattern can then be replaced by an adder saving pattern
“out = (condition ? a : c) + (condition ? b : d)”.
 Full Graph Reduced Number Quest
Width Nodes Edges Nodes Edges Matches Time

32 30,646 87,697 13,383 18,253 900 1:30:00.0
28 23,162 64,177 10,049 13,648 678 34:20.0
24 16,838 45,288 7,217 9,822 486 11:13.0
20 11,592 30,419 4,872 6,649 326 03:17.0
16 7,196 18,219 2,957 4,008 196 00:43.0
8 1,610 3,909 585 805 36 00:00.4

Table 1: Presents search results of a simple gate pattern in an
integer multiplier.

Without pin equivalence
Reduced Graph

With pin equivalence
Reduced Graph

WidthNodes Edges Time(s) Nodes Edges Time (s)

32 128 94 0.1 161
127

 0.1

64 256 382 0.2 321
255

 0.2

128 512 511 0.7 641
511

 0.8

256 1,024 766 5.2 1,281
1,023

 5.0

Table 2: Presents the results of QUEST in search of a simple gate
pattern in a 32, 64, 128, 256 bit adder implementation.

We have generated a scalable design to measure the
performance of QUEST in interactive detection of the resource
sharing opportunities in a high-level RTL design (consisting of
multiplexers, ALUs, etc.) as can be seen in Figure 5.

The basic block depicted below in Figure 5 contains the from-
side of the resource-sharing transformation. Clearly, in every block
there are 3 matches (i.e., two matches with adder operator in the
sub-block 'incr' and one with subtractor operator in the sub-block
'absdiff'). Therefore, the number of matches is 3 times the number
of blocks. Table 3 presents the reduced graph size and CPU time
spent by QUEST in the detection of all the resource sharing
opportunities in the designs consisting of (8-64) replications of the
basic block which consists of (72-576) architectural components.

4.3 Real-life Test Cases

We have applied QUEST on two industrial designs at hybrid
abstraction levels. QUEST successfully finds 82 matches of the
pattern “nand (not a) (not b)” in a hierarchical real-life design (i.e.,
D1) that consists of 1,482 instances. 40% of the matches span
hierarchy boundaries.

Furthermore, we have given QUEST the problem of finding
two adder chains making use of a version of D1 which has been
flattened by one level. The partial flattening accounts for the
reduction in the number of instances 1334 versus 1482. QUEST
finds 16 matches in less than 1 second. In a significantly larger test
case D2, QUEST searches for all multiplexers with latched
outputs. In a partially synthesized version of D2 (thus larger: 3781
versus 3184 vertices), QUEST finds 36 matches for a specific
instance with two inverted inputs in 0.76 seconds.

5 Conclusions

We have introduced a generic exact and generalized pattern
matching mechanism, QUEST, and demonstrated its applicability
to solve practical CAD problems that deal with bottom-up and top-
down transformations of designs at hybrid abstraction levels. To
the best of our knowledge, QUEST pioneers in the application of
constraint-satisfaction techniques to the problem of search of sub-
design of interest in real-life CMOS test cases. Moreover, the
usage of constraint-satisfaction techniques facilitates easy

extension of QUEST to deal with generalized patterns, which is
difficult to apply to prior related work [OEGS93]. Another
important contribution of this paper is pattern-based reduction of
the design, which at times obviates the needs for the search.
Moreover, the generality of QUEST architecture facilitates its
suitability to various CAD frameworks.

Figure 5: Basic block consisting of 9 architectural components

Blocks Nodes

Edges

Time
(s) Blocks

Nodes Edges

Time
(s)

8 498
1,00

9 0.3 32
1,98

6

4,033

21.0

16 994
2,01

7 1.7 64
3,970

8,065

312.4

Table 3 :Results for resource-sharing example

6 References
[B88] Michael Boehner. “LOGEX – An Automatic Logic Extraction from

Transistor to Gate Level for CMOS Technology”, In Proceedings of the
25th Design Automation Conference, pages 517-522, June 1988.

[C95] T.S. Chanak. “Netlist Processing for Custom VLSI via Pattern

Matching”, Technical report CSL-TR-95-681, Stanford, 1995.

[CB95] S.Chandrakasan, R.W. Brodersen, “Minimizing Power
Consumption in Digital CMOS Circuits”, In Proceedings of the IEEE, Vol.
83, No.4, pp. 498-523, April 1995.

[D03] R. Dechter, “Constraint Processing”, Morgan Kaufmann, 2003.

[DWWC98] T. Doom, J. White, A. Wojcik, G. Chisholm. “Identifying
High-Level Components in Combinational Circuits.”, In GLS-VLSI’98

[EZ83] C. Ebeling and O. Zajicek. “Validating VLSI Circuit Layout by
Wirelist Comparison”, Proc. of ICCAD-83

[GJ79] M. Garey and D.~S. Johnson, “Computers and Intractability: A

Guide to the Theory of NP-completeness”, W.Freeman&Co.,
Francisco, 1979.

[GDWL93] Gajski, Dutt, Wu, Lin, “High-Level Synthesis”, KAP

[K87] K.Keutzer, “DAGON: Technology Binding and Local Optimization
by DAG Matching”, Proc. ACM/IEEE DAC, 1987, pp. 341- 347.

[LV00] Javier Larrosa and Gabriel Valiente. “Graph Pattern Matching
using Constraint Satisfaction”, In Proc. Joint APPLIGRAPH and
GETGRATS Workshop on Graph Systems Transformation, 2000.

 [OEGS93] M. Ohlrich, C. Ebeling, E.Ginting and L.Sather, “SubGemini:
Identifying Sub-Circuits Using a Fast Subgraph Isomorphism Algorithm”,
In Proceedings of ACM/IEEE Design Automation Conference, 1993.
[RKW96] B.Rohfleisch, A. Kolbl, B. Wurth. “Reducing Power Dissipation
by Structural Transformations”, In Proc. 33rd DAC, 1996.
[U76] J.R. Ullman, An algorithm for sub-graph isomorphism, J. ACM
23(1), 31-42, 1976.

