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Abstract 

The main focus of this paper is on using algorithms for design 
pattern matching to address the challenges of designs at RT and 
higher abstraction levels.  The crux of our approach is modeling 
designs and patterns as graphs, which lets us express design pattern 
matching as subgraph isomorphism. We apply a constraint-
satisfaction approach and address the problem of both exact and 
generalized matching. Our experimental results confirm the 
applicability of our approach on industrial test cases. 

1 Introduction 

With the introduction and acceptance of higher-level design 
entries, we witness several scenarios where different modeling 
levels need to co-exist. For example, with a detailed 
implementation-level model as a starting point, a designer might 
create a more abstract model in order to increase simulation speed. 
Bottom-up abstractions can simplify the logic and ease the 
comprehension of the functionality. On the other hand, top-down 
transformationss  transform specification-level models to more 
concrete, implementable models.  

In this paper, we introduce a generic search mechanism, called 
QUEST, of patterns at any level of design abstraction (e.g., high-
level, RTL, gate-level, etc.). Based on our experience, such a 
generic mechanism can address several challenges of real-life 
micro-processor design and verification.  We describe some 
concrete application examples.  Formal verification engineers need 
to raise their understanding of the design in order to develop proof 
strategies. Furthermore, interaction with the design may be needed 
to reduce the model size in order to meet the capacity limitations of 
the downstream model checking tools. Exploration, reduction and 
abstraction of the design can be achieved by search of patterns of 
interest and replacement of the areas of interest by reduced or 
abstracted logic. Another example of potential use is detection of 
similarities and differences between two versions of a design in 
order to adapt existing proofs on one version to a modified version. 
In addition to verification problems, several design problems such 
as early exploration and customized synthesis can be addressed by 
a generic interactive search mechanism.  

 Design transformations and search in QUEST are performed 
via rules, describing how a subdesign of a particular pattern (i.e., 
from-side of the rule) should be replaced by a subdesign of another 
pattern (i.e., to-side of the rule). In case no rule for replacement is 
provided, QUEST reports all the patterns that match the from-side 
of the rule. The concept of transformations via rules is not new. It 
arose first in the context of technology mapping [K87], and have 
found many applications, e.g., in power optimization [RKW96]. 
Unlike these earlier works,   QUEST facilitates interactive search 
and application of transformations. Therefore it addresses the 
problem of design exploration rather than synthesis. Moreover, we 
allow here general design patterns, rather than restricted ones, such 
as bounded degree DAGs. Using such transformations requires the 
ability to search for general patterns in hierarchical high-level 
designs. The main focus of this paper is on using algorithms for 
design pattern matching to address the challenges of designs at RT 
and higher abstraction levels. Furthermore, we demonstrate how 
early design exploration and synthesis problems (e.g., resource 

sharing) can be viewed as a special case of the general problem of 
design pattern matching. The crux of our approach is to model 
designs and patterns as graphs, which lets us express design pattern 
matching as subgraph-isomorphism. 

Following [LV00], we use the constraint-satisfaction approach 
to the subgraph-isomorphism problem. The input to a constraint-
satisfaction problem consists of a set of variables, a set of possible 
values for the variables, and a set of constraints between the 
variables; the question is to determine whether there are 
assignments of values to the variables that satisfy the given 
constraints, and to find such assignments. In its full generality, 
constraint-satisfaction is an NP-complete problem, but a wealth of 
heuristics enables efficient solutions in many practical cases. 

We demonstrate that using the constraint-satisfaction approach 
to solve the subgraph-isomorphism problem enables efficient 
detection of all the occurrences of an arbitrary pattern in a 
hierarchical design. A major advantage of the constraint-
satisfaction approach is its flexibility. For example, we can relax 
the exact matching requirement in a variety of ways. One 
relaxation that we found quite useful is not requiring exact match 
of node labels but allowing for more flexible matching predicates. 

This paper is organized as follows. Section 2 summarizes 
related work. In Section 3, we present our technical approach on 
pattern search in hierarchical high-level designs and illustrate the 
generality of our implementation and its potential usage in solving 
architectural optimizations. Section 4 summarizes the results 
providing walkthroughs using real-life test cases. In Section 5, we 
present our conclusions. 
 
2 Related  Work 

Graph pattern matching was first studied in a technology-
independent setting by Ohrlich et al. [OEGS93], who focused on 
graph pattern matching as a subgraph-isomorphism problem. Their 
algorithm, called SubGemini, is an extension of the iterated 
partitioning algorithm used by the Gemini algorithm [OEGS93] for 
graph-isomorphism. In spite of the NP-completeness of subgraph 
isomorphism, a typical running time for SubGemini is 
approximately linear in the number of matched subgraphs. For a 
general discussion of graph pattern matching in computer-aided 
design, see [C95]. (We note that the focus in [LV00] and [C95], as 
well as our focus here is on syntax-based matching, because of its 
generality and flexibility. In certain applications it is appropriate to 
consider also semantic matching, which requires Boolean 
reasoning techniques, see [DWWC98].) 

An earlier approach  to subgraph isomorphism [U76].  is based 
on constraint-satisfaction techniques (cf, [D03]). This approach 
was pursued further by Larrosa and Valiente [LV00]. They 
evaluated several constraint-based algorithms for subgraph 
isomorphism, including one that is based on a look-ahead 
technique, and demonstrated experimentally its effectiveness 
across a broad range of problem instances. 

From our perspective, we found the constraint-based approach 
better suited to our application domain. While specialized 
approaches, such as the one used in SubGemini, may perform 
better, the constraint-based approach offers greater generality and 
extensibility. For example, as we show later, we extended the 
constraint-based algorithm to handle also approximate matching, 



  

pruning predicates, pin equivalence and the like. As we show, 
these extensions can all be expressed naturally in the constraint-
satisfaction framework. Thus, we used Larrosa and Valiente's work  
as the starting point for our implementation. 

3 Hierarchical Pattern Search through QUEST 

In this section, we explain in detail how we reduce the 
hierarchical pattern search problem to subgraph isomorphism and 
provide a solution based on constraint-satisfaction techniques.  

For the sake of clarity, we demonstrate the pattern-specific 
compilation and search stages of QUEST through an example. 
Consider the following CAD problem – “Detect all chains of two 
interesting boxes in a hierarchical design, at any level of 
abstraction”. Perhaps such chains can be replaced with a more 
efficient single box. In this case, the design depicted in Figure 1 
will be given as input to QUEST, as well as the pattern depicted in 
Figure 2. The expected output of QUEST will be two matches of 
such chains, spanning the boundary of the original module 
hierarchies. 

3.1 Subgraph-Isomorphism Formulation of Pattern Search  

Subgraph isomorphism decides if a given graph is isomorphic 
to a subgraph of another given graph. Although subgraph 
isomorphism is known to be NP-complete [GJ79] and therefore 
intractable, practical CAD applications [OEGS93] demonstrate 
that designs have sufficient structure to allow efficient solutions. A 
formal definition of subgraph-isomorphism is as follows:  
Let G1 = {V1, E1, L1} and G2 = {V2, E2, L2} be two labeled graphs, 
where Vi is the set of vertices, Ei is the set of edges, and Li is an 
assignment of labels to vertices. We say that G1 is isomorphic to a 
subgraph of G2 if there is a mapping h:V1

�V2 such that 
1. For every vertex v in V1 we have that L1(v)=L2(h(v)), and 
2. For every pair u,v of vertices in V1 we have that (u, v) is 

in E1 and only if (h(u), h(v)) is in E2. 
The subgraph-isomorphism problem is to determine whether a 

given graph G1 is isomorphic to a subgraph of a given graph G2. 

Figure 1: Simple 3-module design 

 
Figure 2: Simple pattern  

     Figure 3: Graph representation of the pattern 

 
Figure 4: Reduced graph representation of the design 
In QUEST, we identify the hierarchical pattern search problem 

with the subgraph-isomorphism problem for graphs representing 
the pattern and the design. The design and pattern graphs can be 
viewed as a directed bipartite graphs, where the design elements 

(which we call instances) are represented by squares and the 
interface signals (which we call pins) are represented by circles as 
shown in Figure 3.  

The graph representations G1 and G2 for the pattern and the 
design respectively are generated by executing the following steps: 

 
1. Define the vertices representing the set of instances in both 

graphs when all the v ∈ V1 in G1 represent the top-level 
instances of the pattern and v ∈ V2 in G2 represent only the 
pattern instances (see discussion below for details) 

2. Define the vertices representing the set of pins in both graphs. 
First include only pins connected to generated instances, then 
discard pins that are not on the same net (i.e. connection) as 
any other selected pin 

3. Create vertices for all generated instances and pins and label 
them accordingly (see Section 3.3 for details) 

4. Connect pins to their instances by edges 
5. Connect pins to each other if they are on the same net, 

regardless of hierarchical boundaries 
Step 2 ensures a minimal graph with no spurious edges while 

Step 5 enables finding patterns that span hierarchical boundaries.  
When processing the pattern, we do not drill-down beyond the 

top-level instances. This is based on the assumption that the 
instance labeling algorithm ensures that all instances with the same 
label represent the same function. We also record the list of 
instances produced in this step (which we call ‘interesting’ 
instances). When processing the design, we read the list of 
‘interesting’ instances generated in the pattern graph. We process 
the entire design hierarchy down to ‘interesting’ instances, and 
produce a graph with only those instances and their net 
connections. Obviously, if generalized label matching predicates 
are used, the selection of ‘interesting’ instances in the design must 
accommodate them as well. This yields a graph with minimum size 
and complexity and greatly improves the search efficiency. 

Another important aspect of a usable search mechanism is to 
correctly model pin equivalence (or pin symmetry). Many 
instances represent commutative operators that are not sensitive to 
the order of the inputs (e.g. an AND gate, or a plus operator). In 
such cases we model all the equivalent pins as a single graph node 
and connect all the individual inputs to it. This modeling approach 
makes sure that the search algorithm considers all possible input 
orderings as acceptable matches. QUEST contains a built-in 
description of the pin-equivalence sets for the standard gates and 
cells used to model designs that are input to QUEST. In general, 
the user can provide additional specific information on the input 
design elements to enhance the quality of the search. 

QUEST translates the hierarchical representation of the design 
and the pattern, in Figure 1 and Figure 2, respectively, into a graph, 
with all the enhancements described above (i.e. graph reduction, 
generalized label matching and pin equivalence). The resulting 
reduced graph is illustrated in Figure 4. The reduced graph 
representation of the design considers only instances in the pattern 
(in our case – InterestingBox). In contrast, consider the full-graph 
representation. Note that in this case the reduction almost obviates 
the need for the search. In other cases, where the pattern covers 
more instance types, the reduction may be less dramatic.  

Based on our experience, we assert that it is more efficient to 
re-create the design graph before each pattern search (based on the 
pattern instances) than to create the full graph once and use it with 
many patterns. In the example above, a comparison of the size of 
the full-design graph versus the size of the reduced design graph   
justifies our claim. 

3.2 Constraint-Satisfaction Formulation of Subgraph-
Isomorphism 

An isomorphism of a graph G1 = (V1, E1) to a subgraph of a 



  

graph G2 = (V2, E2) is equivalent to the following constraint-
satisfaction problem. A variable I is associated with each vertex vi 
∈V1, and all variables take values on the domain V2.  Finding a 
subgraph isomorphism is then equivalent to finding a complete 
assignment satisfying the following structure constraint  on the 
possible values assigned to i,j:  

R i,j = {(va, vb) ∈ V2 x V2 | va ≠ vb ∧ edge(G1, i, j) 
� edge (G2, 

va, vb)} for i, j in V 1 with i ≠ j . 
Our subgraph-isomorphism implementation is an adaptation of 

the constraint-propagation solution of Valiente [LV00] when the 
above constraint-satisfaction formulation of subgraph-isomorphism 
has been enhanced with the neighborhood constraint, which 
expresses the fact that a vertex (variable) i ∈ V1 can only be 
mapped to another vertex (value) va ∈ V2 if all vertices in the 
neighborhood of i can be mapped to other vertices in the 
neighborhood of va. The essence of the algorithm consists of two 
steps: 

I. Given pattern graph G1 = (V1, E1, L1) and design graph G2 = 
(V2, E2, L2), for all vi ∈ V1 generate candidate list Di of 
matching vertices in G2,, 

II. SolveCSP(V1, D) (see [LV00]  for details) 
The CSP formulation of subgraph isomorphism provides a very 

natural solution to generalized pattern detection. In the first stage 
of the algorithm, the candidate list generation is constrained by the 
generalized pattern. All the candidates not satisfying the 
generalized pattern predicate are pruned out. The second stage of 
the algorithm (i.e., SolveCSP) is executed as usual without any 
changes. The easy adaptation of the solution to generalized 
patterns is one of the main advantages of the QUEST approach in 
comparison to previous work [OEGS93]. 

3.3 Pattern-based Design Graph Labeling  

The efficiency of the search algorithm is directly related to the 
ability to recognize that vertices representing instances in both 
design and pattern graphs match. Thus, the labeling of the 
instances is important to uniquely identify the vertices in the graph. 
In some applications (like searches in a transistor-level net-list) the 
problem is trivial, since the name of the elements (low-level 
electronic devices) uniquely identifies them. The instance name 
might not be enough to identify an instance in a higher-level 
description, and it can even lead to wrong results. For example, 
there can be two modules labeled “filter” that perform different 
functions. 

When the simple names of instances are not sufficient to 
uniquely identify them, we create a label by applying a hashing 
formula to the instance name, the names of the interface 
connections, and the labels of all sub-elements, recursively. This 
method is expensive, and care should be taken to perform the 
minimum calculation that gives satisfactory differentiation. Also, 
labeling of the entire design should be done in a single bottom-up 
sequence to prevent recalculation of labels of lower-level 
instances. However, in most practical cases, instance labels 
themselves are sufficient to identify candidate matches between 
pattern and design vertices, advocating the general use of a more 
straight-forward and efficient labeling mechanism. Since there is 
no automated way to recognize the need for calculating recursive 
labels (which we call signatures), it is the responsibility of the user 
to initiate this process. 

In more complex cases as generalized patterns, a candidate 
match can be defined by applying a Boolean predicate between the 
labels of the pattern and the design nodes. In principle, there is no 
restriction on what that predicate can be. In practice, QUEST 
contains a library of built-in predicates taking some parameters, or 
hints, from the pattern and the design when the user can select 
which predicates to activate. For example, one of the built-in 
predicates is treating pattern instance labels as regular expressions 

(e.g., if a pattern instance is labeled “m\d+”, it will match any 
design instance label starting with ‘m’ followed by any number of 
decimal digits (“m1”, “m432”, etc.)).  

Constraints can be applied to edges to further direct the search 
algorithm. For example, a common resource-sharing rule replaces 
the logic “out = condition ? (a + b) : (c + d)” with the more area-
efficient logic “out = (condition ? a : c) + (condition ? b : d)”. 
Clearly, this rule can be applied to any pair of arithmetic operators 
(e.g., multiplication, subtraction, etc.). The application of this rule 
through QUEST requires first the search for the pattern “out = 
condition ? (a op b) : (c op d)” where op can be any arithmetic 
operator like an adder, a subtractor or a multiplier, as long as both 
operators are the same. A search using generalized label matching 
finds all the places where any two arithmetic operations are 
preceded with a multiplexer or “if”. The edge constraint can limit 
the search to cases where the instances on both ends of the edge 
have the same label. 

QUEST allows the user to filter/constrain its output (i.e., 
matches for the exact or generalized input patterns) by specifying 
constraints through predicates. For example, in the two-interesting-
box pattern search, an output filter removes cases where the net 
connecting the boxes is fanned out to other devices (so, for 
example, two inverters cannot be reduced to a wire). 

In the constraint-satisfaction algorithm for finding subgraph-
isomorphism, the vertex labels are used only at the start of the 
algorithm to generate candidate design vertices for each pattern 
vertex. This is particularly useful in the context of the previous 
paragraph – instance labels are compared once in the preprocessing 
stage. In contrast, labeling algorithms such as the one employed by 
SubGemini are less amenable to such manipulations of the instance 
names in the preprocessing stage. 
4 Experimental Results 

4.1 Exact Matching  

The highly interconnected complex structure of multipliers 
challenges state-of-the-art synthesis and verification solutions. 
Thus we have chosen first as our design an implementation of an 
integer multiplier. Table 1 below presents the results of QUEST in 
search for a simple gate pattern in the hierarchically synthesized 
version of the integer multiplier, which is scaled to different 
operand widths. Note the drastic reduction in graph size (2-3X) 
and the direct effect of graph size and number of matches on CPU 
time.   

In order to demonstrate the usage of QUEST in the application 
of bottom-up transforms, we have chosen the problem of searching 
for a basic 1-bit  ripple-carry adder pattern in a synthesized, 
flattened 256 bit ripple-carry adder implementation. The design at 
hand is an implementation of an N-bit ripple-carry adder that 
consists of N replications of the basic 1-bit adder pattern. QUEST 
successfully facilitated abstract representation of the adder when 
the ripple carry adder logic has been identified and abstracted out 
to separate logic blocks. The reduced graphs for 32-256 bit adder 
varied from 1053 to 8445 edges. 

In contrast, consider searching for a much simpler pattern 
consisting of a 3-way OR connected by one pin to a 3-way XOR 
(represented by a graph consisting of 4 vertices). This pattern 
spans the boundary of the basic cells and thus occurs (width – 1) 
times. Note the drastic reduction in the graph size, and QUEST 
time in the results reported in the Table 2 below where the reduced 
graph size varies between. 
4.2 Generalized Matching 

In order to demonstrate the ability of QUEST to find generalized 
patterns, let us consider the “resource sharing” transformation 
explained in Section 3.3. The application of this rule through 
QUEST requires first the search for the pattern “out = condition ? 
(a op b) : (c op d)” where op is constrained to be any binary 



  

arithmetic operator (e.g., adder, subtractor or multiplier) as long as 
both operators are the same. All the locations in the design that 
satisfy this pattern can then be replaced by an adder saving pattern 
“out = (condition ? a : c) + (condition ? b : d)”.  
  Full Graph Reduced Number Quest 
Width Nodes Edges Nodes Edges Matches Time 

32 30,646 87,697 13,383 18,253 900 1:30:00.0 
28 23,162 64,177 10,049 13,648 678 34:20.0 
24 16,838 45,288 7,217 9,822 486 11:13.0 
20 11,592 30,419 4,872 6,649 326 03:17.0 
16 7,196 18,219 2,957 4,008 196 00:43.0 
8 1,610 3,909 585 805 36 00:00.4 

Table 1: Presents search results of a simple gate pattern in an 
integer multiplier. 

Without pin equivalence  
Reduced Graph 

With pin equivalence 
Reduced Graph  

WidthNodes Edges Time(s) Nodes Edges      Time (s) 

32 128         94       0.1 161        
127 

             0.1 

64 256       382       0.2 321        
255 

             0.2 

128 512        511       0.7 641        
511 

             0.8 

256 1,024       766       5.2 1,281     
1,023 

             5.0 

Table 2: Presents the results of QUEST in search of a simple gate 
pattern in a 32, 64, 128, 256 bit adder implementation. 

We have generated a scalable design to measure the 
performance of QUEST in interactive detection of the resource 
sharing opportunities in a high-level RTL design (consisting of 
multiplexers, ALUs, etc.) as can be seen in Figure 5. 

The basic block depicted below in Figure 5 contains the from-
side of the resource-sharing transformation. Clearly, in every block 
there are 3 matches (i.e., two matches with adder operator in the 
sub-block 'incr' and one with subtractor operator in the sub-block 
'absdiff'). Therefore, the number of matches is 3 times the number 
of blocks. Table 3 presents the reduced graph size and CPU time 
spent by QUEST in the detection of all the resource sharing 
opportunities in the designs consisting of (8-64) replications of the 
basic block which consists of (72-576) architectural components.  

4.3 Real-life Test Cases 

We have applied QUEST on two industrial designs at hybrid 
abstraction levels.  QUEST successfully finds 82 matches of the 
pattern “nand (not a) (not b)” in a hierarchical real-life design (i.e., 
D1) that consists of 1,482 instances. 40% of the matches span 
hierarchy boundaries. 

Furthermore, we have given QUEST the problem of finding 
two adder chains making use of a version of D1 which has been 
flattened by one level. The partial flattening accounts for the 
reduction in the number of instances 1334 versus 1482.  QUEST 
finds 16 matches in less than 1 second. In a significantly larger test 
case D2, QUEST searches for all multiplexers with latched 
outputs. In a partially synthesized version of D2 (thus larger: 3781 
versus 3184 vertices), QUEST finds 36 matches for a specific 
instance with two inverted inputs in 0.76 seconds. 

5 Conclusions 

We have introduced a generic exact and generalized pattern 
matching mechanism, QUEST, and demonstrated its applicability 
to solve practical CAD problems that deal with bottom-up and top-
down transformations of designs at hybrid abstraction levels. To 
the best of our knowledge, QUEST pioneers in the application of 
constraint-satisfaction techniques to the problem of search of sub-
design of interest in real-life CMOS test cases. Moreover, the 
usage of constraint-satisfaction techniques facilitates easy 

extension of QUEST to deal with generalized patterns, which is 
difficult to apply to prior related work [OEGS93].  Another 
important contribution of this paper is pattern-based reduction of 
the design, which at times obviates the needs for the search. 
Moreover, the generality of QUEST architecture facilitates its 
suitability to various CAD frameworks.   

 

Figure 5: Basic block consisting of 9 architectural components 

Blocks Nodes 
 
Edges 

Time 
(s) Blocks 

 
Nodes Edges 

Time  
(s) 

8 498 
1,00

9 0.3 32 
1,98

6
        
4,033 

       
21.0 

16 994 
2,01

7 1.7 64 
3,970    

8,065 
      
312.4 

Table 3 :Results  for resource-sharing example 
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