
A Note on the Reduction of Two-Way Automata to

One-Way Automata∗

Moshe Y. Vardi†

IBM Almaden Research Center

Abstract

We describe a new elementary reduction of two-way automata to one-way automata. The
reduction is based on the subset construction rather than on crossing sequence analysis.

1 Introduction

Rabin and Scott [RS59] introduced two-way finite automata, which are allowed to move
in both directions along their input tape, and proved that they are equivalent to one-
way automata in their ability to define languages, i.e, they define precisely the regular
languages. Their proof is rather complicated and is based on crossing sequence analysis.
A simpler proof was given by Shepherdson [Sh59]; that proof is also indirectly based on
crossing sequence analysis.

We describe here a new elementary proof, which is based on Rabin and Scott’s subset

construction rather than crossing sequence analysis. Our approach is somewhat less
direct than the approaches in [RS59,Sh59]. Given a two-way automaton A, rather than
construct a one-way automaton that defines the same language as A, we construct a
one-way automaton that defines the complementary language. As we will show, it is the
indirectness of the approach that enables us to use the subset construction.

Interestingly, the new construction was motivated by a practical application related
to optimization of database logic program [CGKV88]. In that application we are given
a nondeterministic two-way automata and we have to construct a (possibly nondeter-
ministic) automaton that defines the complementary language. The constructions in
[RS59,Sh59] (properly generalized) yield nondeterministic automata when applied to
nondeterministic two-way automata, while at the same time they involve an exponential

∗Information Processing Letters 30(1989), pp. 261–264.
†Address: IBM Almaden Research K53-802, 650 Harry Rd., San Jose, CA 95120-6099.

1

blow-up in the number of automaton states. Since complementing a nondeterministic au-
tomaton also involves an exponential blow-up in the number of automaton states [RS59],
a straightforward approach to the optimization problem would involve a doubly expo-
nential blow-up. The new construction manages to accomplish the task with a single
exponential blow-up.

2 Basic Definitions

A two-way automaton A = (Σ, S, S0, ρ, F) consists of an alphabet Σ, a finite set of state
S, a set of initial states S0 ⊆ S, a transition function ρ : S × Σ → 2S×{−1,0,1}, and a set
of accepting states F ⊆ S. Intuitively, a transition indicates not only the new state of
the automaton, but also whether the head should move left, right, or stay in place. If
for all s ∈ S and a ∈ Σ we have that |ρ(s, a)| ≤ 1 and also |S0| = 1, then A is said to be
deterministic. If for all s ∈ S and a ∈ Σ we have that ρ(s, a) ⊆ S × {1}, then the head
always moves to the right, so the automaton is called a one-way automaton. It that case
it is convenient to view the transition function as a mapping ρ : S × Σ → 2S.

A configuration of A is a member of S × IN , i.e., a pair consisting of a state and a
“position”. A run is a sequence of configurations, i.e., an element in (S × IN)⋆. The run
(s0, j0), . . . , (sm, jm) is a run of A on a word w = a0, . . . , an in Σ⋆ if s0 ∈ S0, j0 = 0,
jm ≤ n + 1, and for all i, 0 ≤ i < m, we have that 0 ≤ ji ≤ n, and there is some
(t, k) ∈ ρ(si, aji

) such that si+1 = t and ji+1 = ji + k. This run is accepting if jm = n + 1
and sm ∈ F . A accepts w if it has an accepting run on w. The set of words accepted by
A is denoted L(A).

3 The New Construction

At the heart of our construction is a characterization of inacceptance by two-way au-
tomata.

Lemma 3.1: Let A = (Σ, S, S0, ρ, F) be a two-way automaton, and w = a0, . . . , an be

a word in Σ⋆. A does not accept w if and only if there exists a sequence T0, . . . , Tn+1 of

subsets of S such that the following conditions hold:

1. S0 ⊆ T0,

2. Tn+1 ∩ F = ∅, and

3. for 0 ≤ i ≤ n, if s ∈ Ti, (s′, k) ∈ ρ(s, a), and i + k > 0, then s′ ∈ Ti+k.

Proof: Suppose first that A does not accept w. Define Ti, 0 ≤ i ≤ n+1, to be the set of
all states s ∈ S such that (s, i) is a configuration in a run of A on w. We now verify that
the sequence T0, . . . , Tn+1 satisfies the conditions of the lemma. If s ∈ S0, then (s, 0) is
a run of A on w, so we have S0 ∈ T0. Also, since A does not accept w, if s ∈ F , then

2

(s, n + 1) does not occur in any run of A on w. Therefore, Tn+1 ∩ F = ∅. Finally, if
0 ≤ i ≤ n and s ∈ Ti, then there is a run (s0, j0), . . . , (sl, jl) of A on w, where sl = s, and
jl = i. If now (s′, k) ∈ ρ(s, a), and i + k > 0, then (s0, j0), . . . , (sl, jl), (s

′, i + k) is also a
run of A on w. It follows that s′ ∈ Ti+k.

Suppose now that A accepts w and let (s0, j0), . . . , (sm, jm) be an accepting run of A

on w. In particular, jm = n + 1 and sm ∈ F . Assume that T0, . . . , Tn+1 is a sequence
that satisfies the conditions of the lemma. We show by induction on i that si ∈ Tji

for
0 ≤ i ≤ m. Clearly, s0 ∈ T0, since s0 ∈ S0 and S0 ⊆ T0. Assume we have shown that
si ∈ Tji

for 0 ≤ i < m. Then 0 ≤ ji ≤ n, and there is some (t, k) ∈ ρ(si, aji
) such that

si+1 = t and ji+1 = ji + k. Consequently, ji + k ≥ 0 and si+1 ∈ Tji+1
. It follows that

Tn+1 ∩ F 6= ∅ — a contradiction.

It may be tempting to think that it is easy to get a similar condition to acceptance
of w by A. It seems that all we have to do is to change the second clause in Lemma 3.1
to Tn+1 ∩ F 6= ∅. Unfortunately, this is not the case; to characterize acceptance we also
have to demand that the Ti’s be minimal. While the conditions in the lemma are local,
and therefore checkable by a finite-state automaton, minimality is a global condition.

To build an automaton that accepts the words not accepted by a two-way automaton
A, we construct an automaton that checks nondeterministically whether the conditions
of Lemma 3.1 are satisfied.

Theorem 3.2: Let A be a two-way automata with n states. Then there is a one-way

automaton B with O(exp n) states such that L(B) = Σ⋆ − L(A).

Proof: B is the automaton (Σ, Q, Q0, δ, G). The state set Q is 2S ∪ (2S)
2
, i.e., sets of

states and pairs of sets of states The starting state set Q0 is {T : S0 ⊆ T ⊆ S}, i.e,
the collection of state sets that contain S0. The accepting state set G is {T : T ∩ F =
∅} ∪ {(T, U) : U ∩ F = ∅}, i.e., the collection of sets that do not intersect F and pair of
sets where the second component do not intersect F .

It remains to define the transition function δ. We have (T, U) ∈ δ(T, a) if the following
holds:

• If s ∈ T and (t, 0) ∈ ρ(s, a), then t ∈ T , and

• if s ∈ T and (t, 1) ∈ ρ(s, a), then t ∈ U .

We have (U, V) ∈ δ((T, U), a) if the following holds:

• If s ∈ U and (t,−1) ∈ ρ(s, a), then t ∈ T ,

• If s ∈ U and (t, 0) ∈ ρ(s, a), then t ∈ U , and

• if s ∈ U and (t, 1) ∈ ρ(s, a), then t ∈ V .

3

It is easy to verify that B accepts a word w = a1, . . . , an if and only if there exists a
sequence T0, . . . , Tn+1 that satisfies the conditions of Lemma 3.1. Thus, by the lemma,
B accepts w if and only if A does not accept w.

Since regular language are closed under complement, Theorem 3.2 implies that two-
way automata defines regular languages. Of course, if you are given a two-way automa-
ton and you want a one-way automaton that defines the same language, then it is more
efficient to use the construction in [RS59,Sh59], since our construction yields a nondeter-
ministic automaton for the complementary language.

4 A Deterministic Construction

The construction described in the previous section yields a nondeterministic one-way
automaton. In this section we show that is possible to obtain a deterministic one-way
automaton without a doubly exponential blow-up, even when the two-way automaton is
nondeterministic. This construction is based on Shepherdson’s construction, which keep
in a finitary way all the information about “backwards” runs [Sh59].

Let A = (Σ, S, S0, ρ, F) be a two-way automaton. An A-label is a subset of S2, i.e, a
set pairs of states. Intuitively, a pair 〈s, t〉 denotes the fact that there is a backward run
starting at a state s and ending at a state t. Let w = a0, . . . , an be a word in Σ⋆. An
A-labeling m ∈ (2S2

)
⋆

for w consists of a sequence m0, . . . , mn of labels that satisfy the
following condition: there exists a sequence l0, . . . , ln of labels such that

• 〈s, t〉 ∈ li iff either (t, 0) ∈ ρ(s, ai) or i > 1 and there are states s′, t′ ∈ S such that
〈s′, t′〉 ∈ mi−1, (s′,−1) ∈ ρ(s, ai), and (t, 1) ∈ ρ(t′, ai−1).

• 〈s, t〉 ∈ mi iff there is a sequence s0, ..., sk, k > 0, such that s0 = s, sk = t and
〈sj, sj+1〉 ∈ li for 0 ≥ j > k.

Intuitively, m keeps the information about backward runs. It is easy to see that every
word has a unique A-labeling.

We now consider words over the alphabet ΣA = Σ × 2S2

. Let u be the word
〈a0, m0〉, . . . , 〈an, mn〉 in Σ⋆

A. We say that the word is A-legal if m is an A-labeling
of w, where w = a0, . . . , an, and m = m0, . . . , mn. We abuse notation and denote u by
the pair 〈w, m〉.

The usefulness of A-labeling is that it supplies enough information to check in a
“one-way sweep” whether a word is accepted by the two-way automaton A.

Lemma 4.1: Let A be a two-way automaton with n states. There are one-way deter-

ministic automata A1 and A2 with O(exp n) states such that a given legal word 〈w, m〉 is

accepted by A1 if and only if w is accepted by A and a given legal word 〈w, m〉 is accepted

by A2 if and only if w is not accepted by A.

4

Proof: Essentially the automata A1 and A2 use the information supplied in the labelling
to avoid going backwards.

Let A = (Σ, S, S0, ρ, F). A1 is the one-way automaton (Σ, Q, Q0, δ, G). The state set
Q is 2S. The starting state set Q0 is {S0}. The accepting state set is G = {T : T∩F 6= ∅}.

It remains to define the transition function δ. We have U ∈ δ(T, 〈m, a〉) if U = {s :
∃s′, s′′ ∈ S such that 〈s′, s′′〉 ∈ m and s ∈ ρ(s′′, a)}.

It is easy to see that A1 is deterministic. We leave it to the reader to verify that a
given legal word 〈w, m〉 is accepted by A1 if and only if w is accepted by A.

The definition of A2 is almost identical to the definition of A1; the only difference is
that the accepting state set is {T : T ∩ F = ∅}.

To complete our construction we have to show that a legal labelling can be computed
by a finite-state deterministic automaton.

Theorem 4.2: Let A be a two-way automata with n states. Then there are one-way

deterministic automata B1 and B2 with O(exp(n2)) states such that L(B1) = L(A) and

L(B2) = Σ⋆ − L(A).

Proof: The automata B1 and B2 will have two part: one part generates the labelling,
and the other part emulate the automata A1 and A2 of Lemma 4.1. We focus first on
B1.

Let A = (Σ, S, S0, ρ, F). Let A1 = (Σ, Q, Q0, δ, G) described in Lemma 4.1. B1

is the one-way automaton (Σ, P, P0, θ, H). The state set P is Q × (2S2

)2, that is, a
state in P consists of a state of A1 and a pair of A-labels. The starting state set Q0 is
{S0} × {∅} × {∅}. The accepting state set is G = {〈T, p, m〉 : T ∩ F 6= ∅}.

It remains to define the transition function θ. We have 〈T ′, p′, m′〉 ∈ δ(〈T, p, m〉, a) if

1. T ′ ∈ δ(T, 〈a, m〉)

2. 〈s, t〉 ∈ p′ iff (t, 1) ∈ ρ(s, a), and

3. there exists a label l ⊆ S2 such that

• 〈s, t〉 ∈ l iff either (t, 0) ∈ ρ(s, a) or there are states s′, t′ ∈ S such that
〈s′, t′〉 ∈ m, (s′,−1) ∈ ρ(s, a), and (t′, t) ∈ p.

• 〈s, t〉 ∈ m′ iff there is a sequence s0, ..., sk, k > 0, such that s0 = s, sk = t and
〈sj , sj+1〉 ∈ l for 0 ≥ j > k.

The construction for A2 is almost identical; the only difference is that the accepting state
set is {〈T, p, m〉 : T ∩ F = ∅}.

Note that we could have used Theorem 4.2 to accomplish the task mentioned in the
introduction: given a two-way automaton, construct a one-way automaton that defines
the complementary language. The blow-up in Theorem 3.2 (O(exp n)) is, however, better
than the blow-up in Theorem 4.2 ((O(expn2)).

5

5 References

[CGKV88] Cosmadakis, S.S., Gaifman, H., Kanellakis, P.C., Vardi, M.Y.: Decidable
Optimization Problems for Database Logic Programs. Proc. 20th ACM Symp. on

Theory of Computing, May 1988.

[RS59] Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J.

Research and Development, 3(1959), pp. 114–125.

[Sh59] Shepherdson, J.C.: The reduction of two-way automata to one-way automata.
IBM J. Research and Development, 3(1959), pp. 199–201.

6

