
Finite Model Theory and Its

Applications

Springer

Contents

1 A Logical Approach to Constraint Satisfaction 5
1.1 Introduction . 5
1.2 Preliminaries . 6
1.3 Computational Complexity of Constraint Satisfaction 10
1.4 Non-Uniform Constraint Satisfaction . 13
1.5 Monotone Monadic SNP and Non-Uniform Constraint

Satisfaction . 16
1.6 Datalog and Non-Uniform Constraint Satisfaction 18
1.7 Datalog, Games, and Constraint Satisfaction 21
1.8 Games and Consistency . 23
1.9 Uniform Constraint Satisfaction and Bounded Treewidth 28

References . 35

1

A Logical Approach to Constraint Satisfaction

Phokion G. Kolaitis and Moshe Y. Vardi

1.1 Introduction

Since the early 1970s, researchers in artificial intelligence (AI) have investi-
gated a class of combinatorial problems that became known as constraint-
satisfaction problems (CSP). The input to such a problem consists of a set of
variables, a set of possible values for the variables, and a set of constraints
between the variables; the question is to determine whether there is an as-
signment of values to the variables that satisfies the given constraints. The
study of constraint satisfaction occupies a prominent place in artificial in-
telligence, because many problems that arise in different areas can be mod-
elled as constraint-satisfaction problems in a natural way; these areas include
Boolean satisfiability, temporal reasoning, belief maintenance, machine vision,
and scheduling (cf. [20, 50, 56, 64]). In its full generality, constraint satisfac-
tion is an NP-complete problem. For this reason, researchers in artificial in-
telligence have pursued both heuristics for constraint-satisfaction problems
and tractable cases obtained by imposing various restrictions on the input
(cf. [20, 24, 34, 54, 58]).

Over the past decade, it has become clear that there is an intimate connec-
tion between constraint satisfaction and various problems in database theory
and finite-model theory. The goal of this chapter is to describe several such
connections. We start in Section 1.2 by defining the constraint-satisfaction
problem and showing how it can be phrased also as a homomorphism prob-
lem, conjunctive-query evaluation problem, or join-evaluation problem. In Sec-
tion 1.3, we discuss the computational complexity of constraint satisfaction
and show that it can be studied from two perspectives, a uniform perspec-
tive and a non-uniform perspective. We relate both perspectives to the study
of the computational complexity of query evaluation. In Section 1.4, we fo-
cus on the non-uniform case and describe a Dichotomy Conjecture, asserting
that every non-uniform constraint-satisfaction problem is either in PTIME
or NP-complete. In Section 1.5, we examine the complexity of non-uniform
constraint satisfaction from a logical perspective and show that it is related to

6 1 Constraint Satisfaction

the data complexity of a fragment of existential second-order logic. We then
go on in Section 1.6 and offer a logical approach, via definability in Datalog,
to establishing the tractability of non-uniform constraint-satisfaction prob-
lems. In Section 1.7, we leverage the connection between Datalog and certain
pebble games, and show how these pebble games offer an algorithmic ap-
proach to solving uniform constraint-satisfaction problems. In Section 1.8, we
relate these pebble games to consistency properties of constraint-satisfaction
instances, a well-known approach in constraint solving. Finally, in Section 1.9,
we show how the same pebble games can be used to identify large “islands
of tractability” in the constraint-satisfaction terrain that are based on the
concept of bounded treewidth.

Much of the logical machinery used in this chapter is described in detail
in Chapter ??. For a book-length treatment of constraint satisfaction from
the perspective of graph homomorphism, see [44]. Two books on constraint
programming and constraint processing are [3, 23].

1.2 Preliminaries

The standard terminology in AI formalizes an instance P of constraint satis-
faction as a triple (V,D, C), where

1. V is a set of variables;
2. D is a set of values, referred to as the domain;
3. C is a collection of constraints C1, . . . , Cq, where each constraint Ci is a

pair (t, R) with t a k-tuple over V , k ≥ 1, referred to as the scope of the
constraint, and R a k-relation on D.

A solution of such an instance is a mapping h : V → D such that, for each
constraint (t, R) in C, we have that h(t) ∈ R, where h is defined on tuples
component-wise, that is, if t = (a1, . . . , ak), then h(t) = (h(a1), . . . , h(ak)).
The constraint-satisfaction problem asks whether a given instance is
solvable, i.e., whether it has a solution. Note that, without loss of generality,
we may assume that all constraints (t, Ri) involving the same scope t have
been consolidated to a single constraint (t, R), where R is the intersection
of all relations Ri constraining t. Thus, we can assume that each tuple t of
variables occurs at most once in the collection C.

Consider the Boolean satisfiability problem 3-Sat: given a 3CNF-formula
ϕ with variables x1, . . . , xn and clauses c1, . . . , cm, is ϕ satisfiable? Such an
instance of 3-Sat can be thought of as the constraint-satisfaction instance in
which the set of variables is V = {x1, . . . , xn}, the domain is D = {0, 1}, and
the constraints are determined by the clauses of ϕ. For example, a clause of
the form (¬x∨¬y∨z) gives rise to the constraint ((x, y, z), {0, 1}3−{(1, 1, 0)}).
In an analogous manner, 3-Colorability can be modelled as a constraint-
satisfaction problem. Indeed, an instance G = (V,E) of 3-Colorability

can be thought of as the constraint-satisfaction instance in which the set

1.2 Preliminaries 7

of variables is the set V of the nodes of the graph G, the domain is the
set D = {r, b, g} of three colors, and the constraints are the pairs ((u, v), Q),
where (u, v) ∈ E and Q = {(r, b)(b, r), (r, g)(g, r), (b, g)(g, b)} is the disequality
relation on D.

Let A and B be two relational structures1 over the same vocabulary. A
homomorphism h from A to B is a mapping h : A→ B from the universe A of
A to the universe B of B such that, for every relation RA of A and every tuple
(a1, . . . , ak) ∈ RA, we have that (h(a1), . . . , h(ak)) ∈ RB. The existence of a
homomorphism from A to B is denoted by A → B, or by A →h B, when we
want to name the homomorphism h explicitly. An important observation made
in [29]2 is that every such constraint-satisfaction instance P = (V,D, C) can be
viewed as an instance of the homomorphism problem, asking whether there
is a homomorphism between two structures AP and BP that are obtained
from P in the following way:

1. the universe of AP is V and the universe of BP is D;
2. the relations of BP are the distinct relations R occurring in C;
3. the relations of AP are defined as follows: for each distinct relation R on
D occurring in C, we have the relation RA = {t : (t, R) ∈ C}. Thus, RA

consists of all scopes associated with R.

We call (AP ,BP) the homomorphism instance of P . Conversely, it is also
clear that every instance of the homomorphism problem between two struc-
tures A and B can be viewed as a constraint-satisfaction instance CSP(A,B)
by simply “breaking up” each relation RA on A as follows: we generate a con-
straint (t, RB) for each t ∈ RA. We call CSP(A,B) the constraint-satisfaction
instance of (A,B). Thus, as pointed out in [29], the constraint-satisfaction
problem can be identified with the homomorphism problem.

To illustrate the passage from the constraint-satisfaction problem to the
homomorphism problem, let us consider 3-Sat. A 3CNF-formula ϕ with vari-
ables x1, . . . , xn and clauses c1, . . . , cm gives rise to a homomorphism instance
(Aϕ,Bϕ) defined as follows:

• Aϕ = ({x1, . . . , xn}, R
ϕ
0 , R

ϕ
1 , R

ϕ
2 , R

ϕ
3), where R

ϕ
i is the ternary relation

consisting of all triples (x, y, z) of variables that occur in a clause of ϕ
with i negated literals, 0 ≤ i ≤ 3; for instance, Rϕ

2 consists of all triples
(x, y, z) of variables such that (¬x ∨ ¬y ∨ z) is a clause of ϕ (here, we
assume without loss of generality that the negated literals precede the
positive literals).

• Bϕ = ({0, 1}, R0, R1, R2, R3), where Ri consists of all triples that satisfy
a 3-clause in which the first i literals are negated; for instance, R2 =
{0, 1}3 − {1, 1, 0}.

Note that Bϕ does not depend on ϕ. It is clear that ϕ is satisfiable if and only
if there is a homomorphism from Aϕ to Bϕ (in symbols, Aϕ → Bϕ).

1 We consider only finite structures in this chapter.
2 An early version appeared in [30].

8 1 Constraint Satisfaction

As another example, 3-Colorability is equivalent to the problem of de-
ciding whether there is a homomorphism h from a given graph G to the com-
plete graph K3 = ({r, b, g}, {(r, b)(b, r), (r, g)(g, r), (b, g)(g, b)} with 3 nodes.
More generally, k-Colorability, k ≥ 2, amounts to the existence of a ho-
momorphism from a given graph G to the complete graph Kk with k nodes
(also known as the k-clique).

Numerous other important NP-complete problems can be viewed as special
cases of the Homomorphism Problem (and, hence, also of the Constraint-

Satisfaction Problem). For example, consider the Clique problem: given
a graph G and an integer k, does G contain a clique of size k? As a homo-
morphism instance this is equivalent to asking if there is a homomorphism
from the complete graph Kk to G. As a constraint-satisfaction instance, the
set of variables is {1, 2, . . . , k}, the domain is the set V of nodes of G, and
the constraints are the pairs ((i, j), E) such that i 6= j, 1 ≤ i, j ≤ k, and E

is the edge relation of G. For another example, consider the Hamiltonic-

ity Problem: given a graph G = (V,E) does it have a Hamiltonian cycle?
This is equivalent to asking if there is a homomorphism from the structure
(V,CV , 6=) to the structure (V,E, 6=), where CV is some cycle on the set V of
nodes of G and 6= is the disequality relation on V . NP-completeness of the
Homomorphism problem was pointed out explicitly in [53]. In this chapter,
we use both the traditional AI formulation of constraint satisfaction and the
formulation as the homomorphism problem, as each has its own advantages.

It turns out that in both formulations constraint satisfaction can be ex-
pressed as a database-theoretic problem. We start with the homomorphism
formulation, which is intimately related to conjunctive-query evaluation [48].
A conjunctive query Q of arity n is a query definable by a positive existential
first-order formula ϕ(X1, . . . , Xn) having conjunction as its only propositional
connective, that is, by a formula of the form

∃Z1 . . . ∃Zmψ(X1, . . . , Xn, Z1, . . . , Zm),

where ψ(X1, . . . , Xn, Z1, . . . , Zm) is a conjunction of (positive) atomic formu-
las. The free variablesX1, . . . , Xn of the defining formula are called the distin-
guished variables of Q. Such a conjunctive query is usually written as a rule,
whose head is Q(X1, . . . , Xn) and whose body is ψ(X1, . . . , Xn, Z1, . . . , Zm).
For example, the formula

∃Z1∃Z2(P (X1, Z1, Z2) ∧R(Z2, Z3) ∧R(Z3, X2))

defines a binary conjunctive query Q, which as a rule becomes

Q(X1, X2) :- P (X1, Z1, Z2), R(Z2, Z3), R(Z3, X2).

If the formula defining a conjunctive query Q has no free variables (i.e., if it is
a sentence), then Q is a Boolean conjunctive query. For example, the sentence

∃Z1∃Z2∃Z3(E(Z1, Z2) ∧ E(Z2, Z3) ∧ E(Z3, Z1))

1.2 Preliminaries 9

defines the Boolean conjunctive query “is there a cycle of length 3?”.
If D is a databaseand Q is a n-ary query, then Q(D) is the n-ary relation

on D obtained by evaluating the query Q on D, that is, the collection of all
n-tuples from D that satisfy the query (cf. Chapter ??). The conjunctive-

query evaluation problem asks: given a n-ary query Q, a database D,
and a n-tuple a from D, does a ∈ Q(D)? Let Q1 and Q2 be two n-ary
queries having the same tuple of distinguished variables. We say that Q1 is
contained in Q2, and write Q1 ⊆ Q2, if Q1(D) ⊆ Q2(D) for every database
D. The conjunctive-query containment problem asks: given two con-
junctive queries Q1 and Q2, is Q1 ⊆ Q2? These concepts can be defined for
Boolean conjunctive queries in an analogous manner. In particular, if Q is a
Boolean query and D is a database, then Q(D) = 1 if D satisfies Q; otherwise,
Q(D) = 0. Moreover, the containment problem for Boolean queries Q1 and
Q2 is equivalent to asking whether Q1 logically implies Q2.

It is well known that conjunctive-query containment can be reformu-
lated both as a conjunctive-query evaluation problem and as a homomor-
phism problem. What links these problems together is the canonical database
DQ associated with Q. This database is defined as follows. Each variable
occurring in Q is considered a distinct element in the universe of DQ. Ev-
ery predicate in the body of Q is a predicate of DQ as well; moreover,
for every distinguished variable Xi of Q, there is a distinct monadic pred-
icate Pi (not occurring in Q). Every subgoal in the body of Q gives rise to
a tuple in the corresponding predicate of DQ; moreover, if Xi is a distin-
guished variable of Q, then Pi(Xi) is also a (monadic) tuple of DQ. Thus,
returning to the preceding example, the canonical database of the conjunctive
query ∃Z1∃Z2(P (X1, Z1, Z2) ∧ R(Z2, Z3) ∧ R(Z3, X2)) consists of the facts
P (X1, Z1, Z2), R(Z2, Z3), R(Z3, X2), P1(X1), P2(X2). The relationship be-
tween conjunctive-query containment, conjunctive-query evaluation, and ho-
momorphisms is provided by the following classical result, due to Chandra
and Merlin.

Theorem 1.1. [11] Let Q1 and Q2 be two conjunctive queries having the
same tuple (X1, . . . , Xn) of distinguished variables. Then the following state-
ments are equivalent.

• Q1 ⊆ Q2.
• (X1, . . . , Xn) ∈ Q2(D

Q1).
• There is a homomorphism h : DQ2 → DQ1 .

It follows that the homomorphism problem can be viewed as a conjunctive-
query evaluation problem or as a conjunctive-query containment problem. For
this, with every structure A, we view the universe A = {X1, . . . , Xn} of A as a
set of individual variables and associate with A the Boolean conjunctive query
∃X1 . . . ∃Xn ∧t∈RA R(t); we call this query the canonical conjunctive query
of A and denote it by QA. It is clear that A is isomorphic to the canonical
database associated with QA.

10 1 Constraint Satisfaction

Corollary 1.2. Let A and B be two structures over the same vocabulary.
Then the following statements are equivalent.

• A → B.
• B |= QA.
• QB ⊆ QA.

As an illustration, we have that a graph G is 3-colorable iff K3 |= QG iff
QK3

⊆ QG.
A relational join, denoted by the symbol ✶, is a conjunctive query with no

existentially quantified variables. Thus, relational-join evaluation is a special
case of conjunctive-query evaluation. For example, E(Z1, Z2) ∧ E(Z2, Z3) ∧
E(Z3, Z1) is a relational join that, when evaluated on a graph G = (V,E),
returns all triples of nodes forming a 3-cycle. There is a well known connec-
tion between the traditional AI formulation of constraint satisfaction and
relational-join evaluation that we describe next. Suppose we are given a
constraint-satisfaction instance (V,D, C). We can assume without loss of gen-
erality that in every constraint (t, R) ∈ C the elements in t are distinct.
(Suppose to the contrary that ti = tj . Then we can delete from R every tu-
ple in which the ith and jth entries disagree, and then project out that j-th
column from t and R.) We can thus view every element of V as a relational
attribute, every tuple of distinct elements of V as a relational schema, and
every constraint (t, R) as a relation R over the schema t (cf. [1]). It now fol-
lows from the definition of constraint satisfaction that CSP can be viewed as
a relational-join evaluation problem.

Proposition 1.3. [6, 42] A constraint-satisfaction instance (V,D, C) is solv-
able if and only if ✶(t,R)∈C R is nonempty.

Note that Proposition 1.3 is essentially the same as Corollary 1.2. Indeed,
the condition B |= QA amounts to the non-emptiness of the relational join
obtained from QA by dropping all existential quantifiers and using the rela-
tions from B as interpretations of the relational symbols in QA. Moreover,
the homomorphisms from A to B are precisely the tuples in the relational
join associated with the constraint-satisfaction instance CSP(A,B).

1.3 Computational Complexity of Constraint

Satisfaction

The Constraint-Satisfaction Problem is NP-complete, because it is
clearly in NP and also contains NP-hard problems as special cases, including
3-Sat, 3-Colorability, and Clique. As explained in Garey and Johnson’s
classic monograph [36], one of the main ways to cope with NP-completeness
is to identify polynomial-time solvable cases of the problem at hand that
are obtained by imposing restrictions on the possible inputs. For instance,

1.3 Computational Complexity of Constraint Satisfaction 11

Horn 3-Sat, the restriction of 3-Sat to Horn 3CNF-formulas, is solvable
in polynomial-time using a unit-propagation algorithm. Similarly, it is known
that 3-Colorability restricted to graphs of bounded treewidth is solvable in
polynomial time (see [26]). In the case of constraint satisfaction, the pursuit of
tractable cases has evolved over the years from the discovery of isolated cases
to the discovery of large “islands of tractability” of constraint satisfaction. In
what follows, we will give an account of some of the progress made in this
area. Using the fact that the Constraint-Satisfaction Problem can be
identified with the Homomorphism Problem, we begin by introducing some
terminology and notation that will enable us to formalize the concept of an
“island of tractability” of constraint satisfaction.

In general, an instance of the Homomorphism Problem consists of two
relational structures A and B. Thus, all restricted cases of this problem can
be obtained by imposing restrictions on the input structures A and B.

Definition 1.4. Let A, B be two classes of relational structures. We write
CSP(A,B) to denote the restriction of the Homomorphism Problem to in-
put structures from A and B. In other words,

CSP(A,B) = {(A,B) : A ∈ A, B ∈ B and A → B}.

An island of tractability of constraint satisfaction is a pair (A,B) of classes
of relational structures such that CSP(A,B) is in the complexity class PTIME
of all decision problems solvable in polynomial time.

(A more general definition of islands of tractability of constraint satisfaction
would consider classes of pairs (A,B) of structures, cf. [28]; we do not pursue
this more general definition here.)

The ultimate goal in the pursuit of islands of tractability of constraint sat-
isfaction is to identify or characterize classes A and B of relational structures
such that CSP(A,B) is in PTIME. The basic starting point in this investiga-
tion is to consider the cases in which one of the two classes A, B is as small as
possible, while the other is as large as possible. This amounts to considering
the cases in which one of A, B is the class All of all relational structures over
some arbitrary, but fixed, relational vocabulary, while the other is a single-
ton, consisting of some fixed structure over that vocabulary. Thus, the start-
ing points of the investigation is to determine, for fixed relational structures
A,B, the computational complexity of the decision problems CSP({A}, All)
and CSP(All, {B}).

Clearly, for each fixed A, the decision problem CSP({A}, All) can be
solved in polynomial time, because, given a structure B, the existence of
a homomorphism from A to B can be checked by testing all functions h from
the universe A of A to the universe B of B (the total number of such functions
is |B||A|, which is a polynomial number in the size of the structure B when A

is fixed). Thus, having a singleton structure “on the left’ is of little interest.
At the other extreme, however, the situation is quite different, since the

computational complexity of CSP(All, {B}) may very well depend on the

12 1 Constraint Satisfaction

particular structure B. Indeed, CSP(All, {K3}) is NP-complete, because it is
the 3-Colorability problem; in contrast, CSP(All, {K2}) is in P, because
it is the 2-Colorability problem. For simplicity, in what follows, for every
fixed structure B, we define CSP(B) = CSP(All, {B}) and call this the non-
uniform constraint-satisfaction problem associated with B. For such problems,
we refer to B as the template. Thus, the first major goal in the study of
the computational complexity of constraint satisfaction is to identify those
templates B for which CSP(B) is in PTIME. This goals gives rise to an
important open decision problem.

The Tractability Classification Problem: Given a relational structure
B, decide if CSP(B) is in PTIME.

In addition to the family of non-uniform constraint-satisfaction problems
CSP(B), where B is a relational structure, we also study decision problems
of the form CSP(A, All), where A is a class of structures. We refer to such
problems as uniform constraint-satisfaction problems.

It is illuminating to consider the complexity of uniform and non-uniform
constraint satisfaction from the perspective of query evaluation. As argued
in [67] (see Chapter ??), there are three ways to measure the complexity of
evaluating queries (we focus here on Boolean queries) expressible in a query
language L:

• The combined complexity of L is the complexity of the following decision
problem: given an L-query Q and a structure A, does A |= Q? In symbols,

{〈Q,A〉 : Q ∈ L and A |= Q}.

• The expression complexity of L is the complexity of the following decision
problems, one for each fixed structure A:

{Q : Q ∈ L and A |= Q}.

• The data complexity of L is the complexity of the following decision prob-
lems, one for each fixed query Q ∈ L:

{A : A |= Q}.

As discussed in Chapter ??, the data complexity of first-order logic is in
LOGSPACE, which means that, for each first-order query Q, the problem
{A : A |= Q} is in LOGSPACE. In contrast, the combined complexity for
first-order logic is PSPACE-complete. Furthermore, the expression complex-
ity for first-order logic is also PSPACE-complete. In fact, for all but trivial
structures A, the problem {Q : Q ∈ FO and A |= Q} is PSPACE-complete.
This exponential gap between data complexity, on one hand, and combined
and expression complexity, on the other hand, is typical [67]. For conjunc-
tive queries, on the other hand, both combined and expression complexity are
NP-complete.

1.4 Non-Uniform Constraint Satisfaction 13

Consider now the uniform constraint-satisfaction problem CSP(A, All) =
{(A,B) : A ∈ A, and A → B}, where A is a class of structures. By Corol-
lary 1.2, we have that

CSP(A, All) = {(A,B) : A ∈ A, B is a structure and B |= QA}.

Thus, studying the complexity of uniform constraint satisfaction amounts
to studying the combined complexity for a class of conjunctive queries, as,
for example, in [12, 39, 62]. In contrast, consider the non-uniform constraint-
satisfaction problem CSP(B) = {A : A → B}. By Corollary 1.2 we have
that CSP(B) = {A : B |= QA}. Thus, studying the complexity of non-
uniform constraint satisfaction amounts to studying the expression complexity
of conjunctive queries with respect to different structures. This is a problem
that has not been studied in the context of database theory.

1.4 Non-Uniform Constraint Satisfaction

The first major result in the study of non-uniform constraint-satisfaction
problems was obtained by Schaefer [63], who, in effect, classified the compu-
tational complexity of all Boolean non-uniform constraint-satisfaction prob-
lems. A Boolean structure is simply a relational structure with a 2-element
universe, that is, a structure of the form B = ({0, 1}, RB

1 , . . . , R
B
m). A

Boolean non-uniform constraint-satisfaction problem is a problem of the form
CSP(B) with a Boolean template B. These problems are also known as
Generalized-Satisfiability Problems, because they can be viewed as
variants of Boolean-satisfiability problems in which the formulas are conjunc-
tions of generalized connectives [36]. In particular, they contain the well known
problems k-Sat, k ≥ 2, 1-in-3-Sat, Positive 1-in-3-Sat, Not-All-Equal

3-Sat, and Monotone 3-Sat as special cases. For example, as seen ear-
lier, 3-Sat is CSP(B), where B = ({0, 1}, R0, R1, R2, R3) and Ri is the set
of all triples that satisfy a 3-clause in which the first i-literals are negated,
i = 0, 1, 2, 3 (thus, R0 = {0, 1}3 − {(0, 0, 0)}). Similarly, Monotone 3-SAT

is CSP(B), where B = ({0, 1}, R0, R3).
Ladner [51] showed that if PTIME 6= NP, then there are decision problems

in NP that are neither NP-complete, nor belong to PTIME. Such problems
are called intermediate problems. Consequently, it is conceivable that a given
family of NP-problems contains intermediate problems. Schaefer [63], how-
ever, showed that the family of all Boolean non-uniform constraint-satisfaction
problems contains no intermediate problems.

Theorem 1.5. (Schaefer’s Dichotomy Theorem [63])

• If B = ({0, 1}, RB
1 , . . . , R

B
m) is Boolean structure, then either CSP(B) is

in PTIME or CSP(B) is NP-complete.

14 1 Constraint Satisfaction

• The Tractability Classification Problem for Boolean structures is
decidable; in fact, there is a polynomial-time algorithm to decide, given a
Boolean structure B, whether CSP(B) is in PTIME or is NP-complete.

Schaefer’s Dichotomy Theorem can be described pictorially as follows:

ր NP-complete

CSP(B) NP − PTIME, not NP-complete

ց P

Schaefer [63] actually showed that there are exactly six types of Boolean
structures such that CSP(B) is in PTIME, and provided explicit descriptions
of them. Specifically, he showed that CSP(B) is in PTIME precisely when at
least one of the following six conditions is satisfied:

• Every relation RB
i , 1 ≤ i ≤ m, of B is 0-valid, that is, RB

i contains the
all-zeroes tuple (0, . . . , 0).

• Every relation RB
i , 1 ≤ i ≤ m, of B is 1-valid, that is, RB

i contains the
all-ones tuple (1, . . . , 1).

• Every relation RB
i , 1 ≤ i ≤ m, of B is bijunctive, that is, RB

i is the set of
truth assignments satisfying some 2-CNF formula.

• Every relation RB
i , 1 ≤ i ≤ m, of B is Horn, that is, RB

i is the set of truth
assignments satisfying some Horn formula.

• Every relation RB
i , 1 ≤ i ≤ m, of B is dual Horn, that is, RB

i is the set of
truth assignments satisfying some dual Horn formula.

• Every relation RB
i , 1 ≤ i ≤ m, of B is affine, that is, RB

i is the set of
solutions to a system of linear equations over the two-element field.

Schaefer’s Dichotomy Theorem established a dichotomy and a decidable
classification of the complexity of CSP(B) for Boolean templates B. After this,
Hell and Nešetřil [43] established a dichotomy theorem for CSP(B) problems
in which the template B is an undirected graph: if B is bipartite, then CSP(B)
is solvable in polynomial time; otherwise, CSP(B) is NP-complete. To illus-
trate this dichotomy theorem, let Cn, n ≥ 3, be a cycle with n elements. Then
CSP(Cn) is in PTIME if n is even, and is NP-complete if n is odd.

The preceding two dichotomy results raise the challenge of classifying the
computational complexity of CSP(B) for arbitrary relational templates B.
Addressing this question, Feder and Vardi [29] formulated the following con-
jecture.

Conjecture 1.6. (Dichotomy Conjecture) [29]
If B = (B,RB

1 , . . . , R
B
m) is an arbitrary relational structure, then either

CSP(B) is in PTIME or CSP(B) is NP-complete.

1.4 Non-Uniform Constraint Satisfaction 15

In other words, the Dichotomy Conjecture says that the picture above de-
scribes the complexity of non-uniform constraint-satisfaction problems CSP(B)
for arbitrary structures B. The basis for the conjecture is not only the evi-
dence from Boolean constraint satisfaction and undirected constraint satis-
faction, but also from the seeming inability to carry out the diagonalization
argument of [51] using the constraint-satisfaction machinery [27].

The Dichotomy Conjecture inspired intensive research efforts that signif-
icantly advanced our understanding of the complexity of non-uniform con-
straint satisfaction. In particular, Bulatov confirmed two important cases of
this conjecture. We say that a structure B = (B,RB

1 , . . . , R
B
m) is a 3-element

structure if B contains at most three element. We say that B is conserva-
tive if all possible monadic relations on the universe included, that is, every
non-empty subset of B is one of the relations RB

i of B.

Theorem 1.7. [8, 9] If B a 3-element structure or a conservative structure,
then either CSP(B) is in PTIME or CSP(B) is NP-complete. Moreover, in
both cases the Tractability Classification Problem is decidable in poly-
nomial time.

In spite of the progress made, the Dichotomy Conjecture remains unre-
solved in general. The research efforts towards this conjecture, however, have
also resulted into the discovery of broad sufficient conditions for tractabil-
ity and intractability of non-uniform constraint satisfaction that have pro-
vided unifying explanations for numerous seemingly disparate tractability
and intractability results and have also led to the discovery of new islands
of tractability of CSP(B). These broad sufficient conditions are based on con-
cepts and techniques from two different areas: universal algebra and logic.

The approach via universal algebra yields sufficient conditions for tractabil-
ity of CSP(B) in terms of closure properties of the relations in B under cer-
tain functions on its universe B. Let R be a n-ary relation on a set B and
f : Bk → B a k-ary function. We say that R is closed under f , if whenever
t1 = (t11, t

2
1, . . . , t

n
1), . . . , tk = (t1k, t

2
k, . . . , t

n
k) are k (not necessarily distinct)

tuples in R, then the tuple

(f(t11, . . . , t
1
k), f(t21, . . . , t

2
k), . . . , f(tn1 , . . . , t

n
k))

is also in R. We say that f : Bk → B is a polymorphism of a structure
B = (B,R1, . . . , Rm) if each of the relations Rj , 1 ≤ j ≤ m, is closed under
f . It is easy to see that f is a polymorphism of B if and only if f is a
homomorphism from Bk to B, where Bk is the k-th power of B. By definition,
the k-th power Bk is the structure (Bk, R′

1 . . . , R
′
m) over the same vocabulary

as B with universe Bk and relations R′
j , 1 ≤ j ≤ m, defined as follows: if

Rj is of arity n, then R′
j(s1, . . . , sn) holds in Bk if and only if Rj(s

i
1, . . . , s

i
n)

holds in B for 1 ≤ i ≤ n.
We write Pol(B) for the set of all polymorphisms of B. As it turns out,

the complexity of CSP(B) is intimately connected to the kinds of functions

16 1 Constraint Satisfaction

that Pol(B) contains. This connection was first unveiled in [29], and explored
in depth by Jeavons and his collaborators; for a recent survey see [10]. In
particular, they showed that if Pol(B1) = Pol(B2) for two structures B1 and
B2 (over finite vocabularies), then CSP(B1) and CSP(B2) are polynomially
reducible to each other. Thus, the polymorphisms of a template B characterize
the complexity of CSP(B). The above mentioned dichotomy results for 3-
element and conservative constraint satisfaction are based on a rather deep
analysis of the appropriate sets of polymorphisms.

1.5 Monotone Monadic SNP and Non-Uniform

Constraint Satisfaction

We discussed earlier how non-uniform constraint satisfaction is related to the
study of the expression complexity of conjunctive queries. We now show that
it can also be viewed as the study of the data complexity of second-order logic.
This will suggest a way to identify islands of tractability via logic.

As described in Chapters ?? and ??, existential second-order logic ESO
defines, by Fagin’s Theorem, precisely the complexity class NP. The class
SNP (for strict NP) [46,57] is a fragment of ESO, consisting of all existential
second-order sentences with a universal first-order part, namely, sentences of
the form (∃S′)(∀x)Φ(x, S, S′), where Φ is a first-order quantifier-free formula.
We refer to the relations over the input vocabulary S as input relations, while
the relations over the quantified vocabulary S′ are referred to as existential re-
lations. 3-Sat is an example of an SNP problem. The input structure consists
of four ternary relations C0, C1, C2, C3, on the universe {0, 1}, where Ci cor-
responds to a clause on three variables with the first i of them negated. There
is a single existential monadic relation T describing a truth assignment. The
condition that must be satisfied states that for all x1, x2, x3, if C0(x1, x2, x3)
then T (x1) or T (x2) or T (x3), and similarly for the remaining Ci by negating
T (xj) if j ≤ i. Formally, we can express 3-Sat with the SNP sentence:

(∃T)(∀x1, x2, x3) ((C0(x1, x2, x3) → T (x1) ∨ T (x2) ∨ T (x3))∧
(C1(x1, x2, x3) → ¬T (x1) ∨ T (x2) ∨ T (x3))∧
(C2(x1, x2, x3) → ¬T (x1) ∨ ¬T (x2) ∨ T (x3))∧
(C3(x1, x2, x3) → ¬T (x1) ∨ ¬T (x2) ∨ ¬T (x3))).

It is easy to see that CSP(B) is in SNP for each structure B. For each ele-
ment a in the universe of B, we introduce an existentially quantified monadic
relation Ta; intuitively, Ta(x) indicates that a variable x has been assigned
value a by the homomorphism. The sentence ϕB says that the sets Ta cover
all elements in the universe3, and that the tuples in the input relations satisfy
the constraints imposed by the structure B. Thus, if R(a1, . . . , an) does not
hold in B, then ϕB contains the conjunct ¬(R(x1, . . . , xn)∧

∧n
i=1 Tai

(xi)). For

3 It is not necessary to require disjointness.

1.5 Monotone Monadic SNP and Non-Uniform Constraint Satisfaction 17

example, 3-Colorability over a binary input relation E can be expressed
by the following sentence:

(∃C1, C2, C3)(∀x, y) ((C1(x) ∨ C2(x) ∨ C3(x))∧
¬(E(x, y) ∧C1(x) ∧ C1(y))∧
¬(E(x, y) ∧C2(x) ∧ C2(y))∧
¬(E(x, y) ∧C3(x) ∧ C3(y))).

It follows that CSP(B) = {A : A |= ϕB}. Thus, the study of the complexity
of non-uniform constraint satisfaction can be viewed as the study of the data
complexity of certain SNP sentences.

A close examination of ϕB above shows that it actually resides in a syn-
tactic fragment of SNP. For monotone SNP, we require that all occurrences
of an input relation Ci in Φ have the same polarity (the polarity of a relation
is positive if it is contained in an even number of subformulas with a nega-
tion applied to it, and it is negative otherwise); by convention, we assume
that this polarity is negative, so that the Ci can be interpreted as constraints,
in the sense that imposing Ci on more elements of the input structure can
only make the instance “less satisfiable”. For monadic SNP we require that
the existential structure S′ consist of monadic relations only. Normally we
assume that the language contains also the equality relation, so both equali-
ties and inequalities are allowed in Φ, unless we say without inequality, which
means that the 6= relation cannot be used (note that equalities can always
be eliminated here). We refer to the class when all restrictions hold, that is,
monotone monadic SNP without inequality, as MMSNP. It is clear then that
non-uniform constraint satisfaction can be expressed in MMSNP.

What is the precise relationship between non-uniform constraint satisfac-
tion and MMSNP? It is easy to see that MMSNP is more expressive than
non-uniform constraint satisfaction. The property asserting that the input
graph is triangle-free is clearly in MMSNP (in fact, it can be expressed by
a universal first-order sentence), but it can be easily shown that there is no
graph G such that CSP(G) consists of all triangle-free graphs [29]. From a
computational point of view, however, MMSNP and non-uniform constraint
satisfaction turn out to be equivalent.

Theorem 1.8. [29] Every problem in MMSNP is polynomially equivalent to
CSP(B) for some template B. The equivalence is by a randomized Turing
reduction4 from CSP to MMSNP and by a deterministic Karp reduction from
MMSNP to CSP.

An immediate corollary is that the Dichotomy Conjecture holds for CSP
if and only if it holds for MMSNP. At the same time, MMSNP seems to be a
maximal class with this property. Specifically, any attempt to relax the syn-
tactical restrictions of MMSNP yields a class that is polynomially equivalent
to NP, and, consequently, a class for which dichotomy fails.

4 G. Kun recently announced a derandomization of this reduction.

18 1 Constraint Satisfaction

Theorem 1.9. [29]

• Every problem in NP has a polynomially equivalent problem in monotone
monadic SNP with inequality.

• Every problem in NP has a polynomially equivalent problem in monadic
SNP without inequality.

• Every problem in NP has a polynomially equivalent problem in monotone
SNP without inequality.

By Ladner’s Theorem it follows that if PTIME 6= NP, then there are
intermediate problems, which are neither in PTIME nor NP-complete, in each
of monotone monadic SNP with inequality, monadic SNP without inequality,
and monotone SNP without inequality. This is the sense in which MMSNP is
a maximal class for which we would expect a dichotomy theorem to hold.

The fact that each constraint-satisfaction problem CSP(B) can be ex-
pressed by the MMSNP sentence ϕB suggests a way to identify templates B

for which CSP(B) is tractable: characterize those templates B for which ϕB

is equivalent to a sentence in a logic whose data complexity is in PTIME. We
discuss this approach in the next section.

1.6 Datalog and Non-Uniform Constraint Satisfaction

Consider all tractable problems of the form CSP(B). In principle, it is con-
ceivable that every such problem requires a completely different algorithm. In
practice, however, there seem to be two basic algorithmic approaches for solv-
ing tractable constraint-satisfaction problems: one based on a logical frame-
work and one based on an algebraic framework.5 Feder and Vardi [29] con-
jectured that these two algorithmic approaches cover all tractable constraint-
satisfaction problems. Their group-theoretic approach, which extended the
algorithm used to solve affine Boolean constraint-satisfaction problems [63],
has more recently been subsumed by a universal-algebraic approach [8,9]. We
discuss here the logical approach.

As described in Chapter ??, a Datalog program is a finite set of rules of
the form t0 :- t1, . . . , tm, where each ti is an atomic formula R(x1, . . . , xn).
The relational predicates that occur in the heads of the rules are the inten-
sional database predicates (IDBs), while all others are the extensional database
predicates (EDBs). One of the IDBs is designated as the goal of the program.
Note that IDBs may occur in the bodies of rules and, thus, a Datalog pro-
gram is a recursive specification of the IDBs with semantics obtained via least
fixed-points of monotone operators. Each Datalog program defines a query
which, given a set of EDB predicates, returns the value of the goal predicate.
Moreover, this query is computable in polynomial time, since the bottom-up

5 The two approaches, however, are not alwasy cleanly separated; in fact, they can
be fruitfully combined to yield new tractable classes, cf. [17].

1.6 Datalog and Non-Uniform Constraint Satisfaction 19

evaluation of the least fixed-point of the program terminates within a polyno-
mial number of steps (in the size of the given EDBs). It follows that Datalog
has data complexity in PTIME. Thus, expressibility in Datalog is a sufficient
condition for tractability of a query. This suggests trying to identify those
templates B for which the MMSNP sentence ϕB is equivalent to a Boolean
Datalog query.

It should be noted, however, that Datalog queries are preserved under
homomorphisms. This means that if A →h A′ and t ∈ P (A) for a Datalog
programM , with goal predicate P , then h(t) ∈ P (A′). In contrast, constraint-
satisfaction problems are not preserved under homomorphism; however, their
complements are. If B is a relational structure, then we write CSP(B) for the
complement of CSP(B), that is, the class of all structures A such that there is
no homomorphism h : A → B. If A →h A′ and A ∈ CSP(B), then it does not
follow that A′ ∈ CSP(B). On the other hand, if A →h A′ and A ∈ CSP(B),
then A′ ∈ CSP(B), since homomorphisms compose. Thus, rather then try to
identify those templates B for which ϕB is equivalent to a Boolean Datalog
query, we try to identify those templates B for which the negated sentence
¬ϕB is equivalent to a Boolean Datalog query.

Along this line of investigation, Feder and Vardi [29] provided a unify-
ing explanation for the tractability of many non-uniform CSP(B) problems
by showing that the complement of each of these problems is expressible in
Datalog. It should be pointed out, however, that Datalog does not cover all
tractable constraint-satisfaction problems. For example, it is shown in [29]
that Datalog cannot express the complement of affine Boolean constraint-
satisfaction problems; see also [5]. Affine Boolean constraint-satisfaction prob-
lems and their generalizations require algebraic techniques to establish their
tractability [8, 29]).

For every positive integer k, let k-Datalog be the collection of all Datalog
programs in which the body of every rule has at most k distinct variables
and also the head of every rule has at most k variables (the variables of the
body may be different from the variables of the head). For example, the query
Non-2-Colorability is expressible in 3-Datalog, since it is definable by the
goal predicate Q of the following Datalog program, which asserts that a cycle
of odd length exists:

P1(X,Y) : − E(X,Y)

P0(X,Y) : − P1(X,Z), E(Z, Y)

P1(X,Y) : − P0(X,Z), E(Z, Y)

Q : − P1(X,X).

The fact that expressibility in Datalog, and, more specifically, expressibil-
ity in k-Datalog provide sufficient conditions for tractability, gives rise to two
classification problems:

• The k-Datalog Classification Problem: Given a relational structure
B and k > 1, decide if CSP(B) is expressible in k-Datalog?

20 1 Constraint Satisfaction

• The Datalog Classification Problem: Given a relational structure
B, decide if CSP(B) is expressible in k-Datalog for some k > 1.

The universal-algebraic approach does offer some sufficient conditions for
CSP(B) to be expressible in Datalog. We mention here two examples. A
k-ary function f : Bk → B with k ≥ 3 is a near-unanimity function if
f(a1, . . . , ak) = b, for every k-tuple (a1, . . . , ak) such that at least k − 1 of
the ai’s are equal to b. Note that the ternary majority function from {0, 1}3

to {0, 1} is a near-unanimity function.

Theorem 1.10. [29] Let B be relational structure, and k ≥ 3. If Pol(B)
contains a k-ary near-unanimity function, then CSP(B) is expressible in k-
Datalog.

Since the number of k-ary functions over the universe B of B is finite,
checking the condition of the preceding theorem for a given k is clearly decid-
able. It is not known, however, whether it is decidable to check, given B, if
Pol(B) contains a k-ary near-unanimity function for some k.

A special class of Datalog consists of those programs whose IDB predi-
cates are all monadic. We refer to such Datalog programs as monadic Datalog
programs. It can easily be seen that the Horn case of Boolean constraint sat-
isfaction can be dealt with by monadic programs. Consider, for example, a
Boolean template with three relations:H1 is a monadic relation corresponding
to positive Horn clauses (“facts”), H2 is a ternary relation corresponding to
Horn clauses of the form p∧q → r, and H3 is a ternary relation corresponding
to negative Horn clause of the form ¬p∨¬q∨¬r. Then, unsatisfiability of Horn
formulas with at most three literals per clause is expressed by the following
monadic Datalog program:

H(X) : − H1(X)

H(X) : − H(X), H2(Y, Z,X)

Q : − H(X), H(Y), H(Z), H2(X,Y, Z)

It turns out that we can fully characterize expressibility in monadic Dat-
alog. A k-ary function f is a set function if f(a1, . . . , ak) = f(b1, . . . , bk)
whenever {a1, . . . , ak} = {b1, . . . , bk}. In other words, a set function depends
only the set of its arguments. As a concrete example, the binary Boolean
functions ∧ and ∨ are set functions.

Theorem 1.11. [29] Let B be relational structure with universe B. Then the
following two statements are equivalent.

• CSP(B) is expressible in monadic Datalog.
• Pol(B) contains a |B|-ary set function.

Since the number of |B|-ary functions over the universe B of B is finite,
checking the condition of the theorem is clearly decidable; in fact, it is in

1.7 Datalog, Games, and Constraint Satisfaction 21

NEXPTIME. Thus, the classification problem for monadic Datalog is decid-
able.

The main reason for the focus on Datalog as a language to solve constraint-
satisfaction problems is that its data complexity is in PTIME. Datalog, how-
ever, is not the only logic with this property. We know, for example, that
the data complexity of first-order logic is in LOGSPACE. Thus, it would be
interesting to characterize the templates B such that CSP(B) is expressible
in first-order logic. This turns out to have an intimate connection to express-
ibility in (non-recursive) Datalog.

Theorem 1.12. [5, 60] Let B be a relational structure. The following are
equivalent:

• CSP(B) is expressible in first-order logic.
• CSP(B) is expressible by a finite union of conjunctive queries.

It is known that a Datalog program is always equivalent to a (possibly infinite)
union of conjunctive queries. A Datalog program is bounded if it is equivalent
to a finite union of conjunctive queries [35]. It is known that a Datalog pro-
gram is bounded if and only if it is equivalent to a first-order formula [2, 61].
Thus, expressibility of non-uniform CSP in first-order logic is a special case
of expressibility in Datalog. Concerning the classification problem, Larose,
Loten, and Tardif [52] have shown that there is an algorithm to decide, given
a structure B, whether CSP(B) is expressible in first-order logic; actually, this
problem turns out to be NP-complete.

In another direction, we may ask if there are constraint-satisfaction prob-
lems that cannot be expressed by Datalog, but can be expressed in least
fixed-point logic LFP, whose data complexity is also in PTIME. This is an
open question. It is conjectured in [29] that if CSP(B) is expressible in LFP,
then it is also expressible in Datalog.

1.7 Datalog, Games, and Constraint Satisfaction

So far, we focused on using Datalog to obtain tractability for non-uniform con-
straint satisfaction. Kolaitis and Vardi [48] showed how the logical framework
also provides a unifying explanation for the uniform tractability of constraint-
satisfaction problems. Note that, in general, non-uniform tractability results
do not uniformize. Thus, tractability results for each problem in a collection of
non-uniform CSP(B) problems do not necessarily yield a tractable case of the
uniform constraint-satisfaction problem. The reason is that both structures
A and B are part of the input to the constraint-satisfaction problem, and
the running times of the polynomial-time algorithms for CSP(B) may very
well be exponential in the size of B. We now leverage the intimate connec-
tion between Datalog and pebble games to shed new light on expressibility in
Datalog, and show how tractability via k-Datalog does uniformize.

22 1 Constraint Satisfaction

As discussed in Chapter ??, Datalog can be viewed as a fragment of least
fixed-point logic LFP; furthermore, on the class All of all finite structures,
LFP is subsumed by the finite-variable infinitary logic Lω

∞ω =
⋃

k>0 L
k
∞ω

(see Chapter ??). Here we are interested in the existential positive fragments
of ∃Lk

∞ω, k a positive integer, which are tailored for the study of Datalog

Theorem 1.13. [48] Let k be a positive integer. Every k-Datalog query over
finite structures is expressible in ∃Lk

∞ω. Thus, k-Datalog ⊆ ∃Lk
∞ω on finite

structures.

We make use here of the (∃, k)-pebble games discussed in Chapter ??. We
saw there that if k is a positive integer and Q a Boolean query on a class C
of finite structures, then Q is expressible in ∃Lk

∞ω on C iff for all A,B ∈ C
such that A |= Q and the Duplicator wins the (∃, k)-pebble game on A and
B, we have that B |= Q. The next theorem establishes a connection between
expressibility in k-Datalog and (∃, k)-pebble games. (A closely related, but
somewhat less precise, such connection was established in [29]). In what fol-
lows, if A is a class of structures and B is a structure, we write CSP(A,B) to
denote the class of structures A such that A ∈ A and A → B.

Theorem 1.14. [48] Let k be a positive integer, B a relational structure,
and A a class of relational structures such that B ∈ A. Then the following
statements are equivalent.

1. CSP(A,B) is expressible in k-Datalog on A.
2. CSP(A,B) is expressible in ∃Lk

∞ω on A.
3. CSP(A,B) is equal to the class

{A ∈ A : The Spoiler wins the (∃, k)-pebble game on Aand B}.

Recall also from Chapter ?? that the query “Given two structures A and B,
does the Spoiler win the (∃, k)-pebble on A and B?” is definable in LFP; as a
result, there is a polynomial-time (in fact, O(n2k)) algorithm that, given two
structures A and B, determines whether the Spoiler wins the (∃, k)-pebble
game on A and B.

By combining Theorem 1.14 with the results of Chapter ??, we obtain
the following uniform tractability result for classes of constraint-satisfaction
problems expressible in Datalog.

Theorem 1.15. [48] Let k be a positive integer, A a class of relational struc-
tures, and B = {B ∈ A : ¬CSP(A,B) is expressible in k-Datalog}. Then the
uniform constraint-satisfaction problem CSP(A,B) is solvable in polynomial
time. Moreover, the running time of the algorithm is O(n2k), where n is the
maximum of the sizes of the input structures A and B.

Intuitively, if we consider the class of all templates B for which k-Datalog
solves CSP(B), then computing the winner in the existential k-pebble game

1.8 Games and Consistency 23

offers a uniform polynomial-time algorithm. That is, the algorithm determin-
ing the winner in the existential k-pebble game is a uniform algorithm for
all (non-uniform) constraint-satisfaction problems that can be expressed in
k-Datalog.

The characterization in terms of pebble games turns also sheds light on
non-uniform constraint satisfaction. As described in Chapter ??, for every re-
lational structure B and every positive integer k, there is a k-Datalog program
ρk
B

that expresses the query “Given a structure A, does the Spoiler win the
(∃, k) pebble game on A and B?”. As an immediate consequence of this fact,
we get that CSP(B) is expressible in k-Datalog if and only if it is expressible
by a specific k-Datalog program.

Theorem 1.16. [29, 48] CSP(B) is expressible in k-Datalog if and only if it
is expressible by ρk

B
.

It follows that CSP(B) is expressible in k-Datalog if and only if ¬ϕB is logi-
cally equivalent to ρk

B
, where ϕB is the MMSNP sentence expressing CSP(B).

Unfortunately, it is not known if equivalence of complemented MMSNP to
Datalog is decidable.

1.8 Games and Consistency

One of the most fruitful approaches to coping with the intractability of con-
straint satisfaction has been the introduction and use of various consistency
concepts that make explicit additional constraints implied by the original con-
straints. The connection between consistency properties and tractability was
first described in [31,32]. In a similar vein, the relationship between local con-
sistency and global consistency is investigated in [21, 65, 66]. Intuitively, local
consistency means that any partial solution on a set of variables can be ex-
tended to a partial solution containing an additional variable, whereas global
consistency means that any partial solution can be extended to a global so-
lution. Note that if the inputs are such that local consistency implies global
consistency, then there is a polynomial-time algorithm for constraint satisfac-
tion; moreover, in this case a solution can be constructed via a backtrack-free
search. We now describe this approach from the Datalog perspective. The
crucial insight is that the key concept of strong k-consistency [21] is equiva-
lent to a property of winning strategies for the Duplicator in the (∃, k)-pebble
game. Specifically, an instance of a constraint-satisfaction problem is strongly
k-consistent if and only if the family of all k-partial homomorphisms f is
a winning strategy for the Duplicator in the (∃, k)-pebble game on the two
relational structures that represent the given instance.

The connection between pebble games and consistency properties, how-
ever, is deeper than just a mere reformulation of the concept of strong k-
consistency. Indeed, as mentioned earlier, consistency properties underly the

24 1 Constraint Satisfaction

process of making explicit new constraints that are implied by the original
constraints. A key technical step in this approach is the procedure known as
“establishing strong k-consistency”, which propagates the original constraints,
adds implied constraints, and transforms a given instance of a constraint-
satisfaction problem to a strongly k-consistent instance with the same solu-
tion space [15,21]. In fact, strong k-consistency can be established if and only
if the Duplicator wins the (∃, k)-pebble game. Moreover, whenever strong k-
consistency can be established, one method for doing this is to first compute
the largest winning strategy for the Duplicator in the (∃, k)-pebble game and
then modify the original problem by augmenting it with the constraints ex-
pressed by the largest winning strategy; this method gives rise to the least
constrained instance that establishes strong k-consistency and, in addition,
satisfies a natural coherence property. By combining this result with known
results concerning the definability of the largest winning strategy, it follows
that the algorithm for establishing strong k-consistency in this way (with k

fixed) is actually expressible in least fixed-point logic; this strengthens the
fact that strong k-consistency can be established in polynomial time, when
k is fixed. If we consider non-uniform constraint satisfaction, it follows that
for every relational structure B, the complement of CSP(B) is expressible
by a Datalog program with k variables if and only if CSP(B) coincides with
the collection of all relational structures A such that establishing strong k-
consistency on A and B implies that there is a homomorphism from A to
B.

We start the formal treatment by returning first to (∃, k)-pebble games.
Recall from Chapter ?? that a winning strategy for the Duplicator in the
(∃, k)-pebble game on A and B is a nonempty family of k-partial homomor-
phisms (that is, partial homomorphisms defined on at most k elements) from
A to B that is closed under subfunctions and has the forth property up to k. A
configuration for the (∃, k)-pebble game on A and B is a 2k-tuple a,b, where
a = (a1, . . . , ak) and b = (b1, . . . , bk) are elements of Ak and Bk, respectively,
such that if ai = aj , then bi = bj ; this means that the correspondence ai 7→ bi,
1 ≤ i ≤ k, is a partial function from A to B, which we denote by ha,b. A win-
ning configuration for the Duplicator in the existential k-pebble game on A

and B is a configuration a,b for this game such that ha,b is a member of some
winning strategy for the Duplicator in this game. We denote by Wk(A,B) the
set of all such configurations. The following results show that expressibility in
∃Lk

∞ω can be characterized in terms of the set Wk(A,B).

Proposition 1.17. [49] If F and F ′ are two winning strategies for the Du-
plicator in the (∃, k)-pebble game on two structures A and B, then also
the union F ∪ F ′ is a winning strategy for the Duplicator. Consequently,
there is a largest winning strategy for the Duplicator in the (∃, k)-pebble
game, namely the union of all winning strategies, which is precisely the set
Hk(A,B) = {h

a,b
: (a, b) ∈ Wk(A,B)}.

1.8 Games and Consistency 25

Corollary 1.18. [48] Let k be a positive integer and Q a k-ary query on a
class C of finite structures. Then the following two statements are equivalent:

1. Q is expressible in ∃Lk
∞ω on C.

2. If A, B are two structures in C, (a,b) ∈ Wk(A,B), and A |= Q(a), then
B |= Q(b).

The following lemma is a crucial definability result.

Lemma 1.19. [48] There is a positive-in-S first-order formula ϕ(x, y, S),
where x and y are k-tuples of variables, such that the complement of its least
fixed-point on a pair (A,B) of structures defines the set Wk(A,B) of all
winning configurations for the Duplicator in the (∃, k)-pebble game on A,B.

We now formally define the concepts of i-consistency and strong k-
consistency.

Definition 1.20. Let P = (V,D, C) be a constraint-satisfaction instance.

• A partial solution on a set V ′ ⊂ V is an assignment h : V ′ → D that
satisfies all the constraints whose scope is contained in V ′.

• P is i-consistent if for every i− 1 variables v1, . . . , vi−1, for every partial
solution on these variables, and for every variable vi 6∈ {v1, . . . , vi−1},
there is a partial solution on the variables v1, . . . , vi−1, vi extending the
given partial solution on the variables v1, . . . , vi−1.

• P is strongly k-consistent if it is i-consistent for every i ≤ k.

To illustrate these concepts, consider the Boolean formula

(¬x1 ∨ x3) ∧ (¬x2 ∨ x3) ∧ (x2 ∨ ¬x3).

It is easy to verify that this formula, viewed as a constraint-satisfaction in-
stance, is strongly 3-consistent. For instance, the partial solution x2 = 0,
x3 = 0 can be extended to the solution x1 = 0, x2 = 0, x3 = 0, while the
partial solution x1 = 1, x3 = 1 can be extended to the solution x1 = 1, x2 = 1,
x3 = 1. In contrast, the Boolean formula

(x1 ∨ x2) ∧ (¬x1 ∨ x3) ∧ (¬x2 ∨ x3) ∧ (x2 ∨ ¬x3)

is satisfiable and strongly 2-consistent, but not 3-consistent (hence, it is not
strongly 3-consistent either). The reason is that the partial solution x2 = 0,
x3 = 0 cannot be extended to a solution, since the only solutions of this
formula are x1 = 0, x2 = 1, x3 = 1 and x1 = 1, x2 = 1, x3 = 1. We
note that the concepts of strong 2-consistency and strong 3-consistency were
first studied in the literature under the names of arc consistency and path
consistency (see [23]).

A key insight is that the concepts of i-consistency and strong k-consistency
can be naturally recast in terms of existential pebble games.

26 1 Constraint Satisfaction

Proposition 1.21. [49] Let P be a CSP instance, and let (AP ,BP) be the
associated homomorphism instance.

• P is i-consistent if and only if the family of all partial homomorphisms
from AP to BP with i− 1 elements in their universe has the i-forth prop-
erty.

• P is strongly k-consistent if and only if the family of all k-partial homo-
morphisms from AP to BP is a winning strategy for the Duplicator in the
(∃, k)-pebble game on AP and BP .

Let us now recall the concept of establishing strong k-consistency, as de-
fined, for instance, in [15,21]. This concept has been defined rather informally
in the AI literature to mean that, given a constraint-satisfaction instance P ,
we associate with it another instance P ′ that has the following properties: (1)
P ′ has the same set of variables and the same set of values as P (2) P ′ is
strongly k-consistent; (3) P ′ is at least as constrained as P ; and (4) P and
P ′ have the same space of solutions. The next definition formalizes the above
concept in the context of the homomorphism problem (cf. [19,49]).

Definition 1.22. Let A and B be two relational structures over a k-ary vo-
cabulary σ (i.e., every relation symbol in σ has arity at most k). Establish-
ing strong k-consistency for A and B means that we associate two relational
structures A′ and B′ with the following properties:

1. A′ and B′ are structures over some k-ary vocabulary σ′ (in general, dif-
ferent than σ); moreover, the universe of A′ is the universe A of A, and
the universe of B′ is the universe B of B.

2. CSP(A′,B′) is strongly k-consistent.
3. if h is a k-partial homomorphism from A′ to B′, then h is a k-partial

homomorphism from A to B.
4. If h is a function from A to B, then h is a homomorphism from A to B

if and only if h is a homomorphism from A′ to B′.

If the structures A′ and B′ have the above properties, then we say that A′

and B′ establish strong k-consistency for A and B.

A constraint-satisfaction instance P is coherent if every constraint (t, R) of
P completely determines all constraints (u, Q) in which all variables occurring
in u are among the variables of t. We formalize this concept as follows.

Definition 1.23. An instance A,B of the homomorphism problem is coher-
ent if its associated constraint-satisfaction instance CSP(A,B) has the follow-
ing property: for every constraint (a, R) of CSP(A,B) and every tuple b ∈ R,
the mapping ha,b is well defined and is a partial homomorphism from A to
B.

Note that a constraint-satisfaction instance can be made coherent in polynomial-
time by constraint propagation.

1.8 Games and Consistency 27

The main result of this section is that strong k-consistency can be estab-
lished precisely when the Duplicator wins the (∃, k)-pebble game. Moreover,
one method for establishing strong k-consistency is to first compute the largest
winning strategy for the Duplicator in this game and then generate an instance
of the constraint-satisfaction problem consisting of all the constraints embod-
ied in the largest winning strategy. Furthermore, this method gives rise to the
largest coherent instance that establishes strong k-consistency (and, hence,
the least constrained such instance).

Theorem 1.24. [49] Let k be a positive integer, let σ be a k-ary vocabulary,
and let A and B be two relational structures over σ with universes A and
B, respectively. It is possible to establish strong k-consistency for A and B if
and only if Wk(A,B) 6= ∅. Furthermore, if Wk(A,B) 6= ∅, then the following
sequence of steps gives rise to two structures A′ and B′ that establish strong
k-consistency for A and B:

1. Compute the set Wk(A,B).
2. For every i ≤ k and for every i-tuple a ∈ Ai, form the set Ra = {b ∈ Bi :

(a,b) ∈ Wk(A,B)}.
3. Form the constraint-satisfaction instance P with A as the set of variables,
B as the set of values, and {(a, Ra) : a ∈ ∪k

i=1A
i} as the collection of

constraints.
4. Let (A′, B′) be the homomorphism instance of P.

In addition, the structures A′ and B′ obtained above constitute the largest
coherent instance establishing strong k-consistency for A and B, that is, if
(A′′,B′′) is another such coherent instance, then for every constraint (a, R)
of CSP(A′′,B′′), we have that R ⊆ Ra.

The key step in the procedure described in Theorem 1.24 is the first
step, in which the set Wk(A,B) is computed. The other steps simply “re-
format” Wk(A,B). From Lemma 1.19 it follows that we can establish strong
k-consistency by computing the fixed-point of a monotone first-order formula.
We can now relate the concept of strong k-consistency to the results in [29]
regarding Datalog and non-uniform CSP.

Theorem 1.25. [49] Let B be a relational structure over a vocabulary σ.
Then the following two statements are equivalent.

• CSP(B) is expressible in k-Datalog.
• For every structure A over σ, establishing strong k-consistency for A,B

implies that there is a homomorphism from A to B.

Given the fundamental role that the set Wk(A,B) plays here, it is nat-
ural to ask about the complexity of computing it. To turn it into a decision
problem, we just ask about the non-emptiness of this set.

28 1 Constraint Satisfaction

Theorem 1.26. [45] The problem {(A,B, k) : Wk(A,B) 6= ∅}, with k en-
coded in unary, is EXPTIME-complete. In words, the following problem is
EXPTIME-complete: given a positive integer k and two structures A and B,
does the Duplicator win the (∃, k)-pebble game on A and B?

This result is rather surprising. After all, the complexity of constraint sat-
isfaction is “only” NP-complete. In contrast, the complexity of establishing
strong k-consistency is provably exponential and not in PTIME. This offers
an a posteriori justification of the practice of establishing only a “low degree”
of consistency, such as arc consistency or path consistency [3, 23].

1.9 Uniform Constraint Satisfaction and Bounded

Treewidth

So far, we focused on the pursuit of islands of tractability of non-uniform
constraint satisfaction, that is, islands of the form CSP(B) = CSP(All, {B}),
where B is a fixed template. Even when we discussed uniform constraint
satisfaction, it was with respect to tractable templates. In this section we
focus on uniform constraint satisfaction of the form CSP(A, All), where A
is a class of structures. The goal is to identify conditions on A that ensure
uniform tractability.

As is well known, many algorithmic problems that are “hard” on arbitrary
structures become “easy” on trees. This phenomenon motivated researchers
to investigate whether the concept of a tree can be appropriately relaxed while
maintaining good computational behavior. As part of their seminal work on
graph minors, Robertson and Seymour introduced the concept of treewidth,
which, intuitively, measures how “tree-like” a structure is; moreover, they
showed that graphs of bounded treewidth exhibit such good behavior, cf. [59].

Definition 1.27. A tree decomposition of a relational structure A is a la-
belled tree T such that the following conditions hold:

1. every node of T is labelled by a non-empty subset of the universe A of A,
2. for every relation R of A and every tuple (a1, . . . , an) in R, there is a

node of T whose label contains {a1, . . . , an},
3. for every a ∈ A, the set of nodes of T whose labels include a forms a

subtree of T .

The width of a tree decomposition T is the maximum cardinality of a label
of a node in T minus 1. The treewidth of A, denoted tw(A), is the smallest
positive integer k such that A has a tree decomposition of width k. We write
T (k) to denote the class of all structures A such that tw(A) < k.

Clearly, if T is a tree, then tw(T) = 1. Similarly, if n ≥ 3 and Cn is the
n-element (directed) cycle, then tw(C) = 2. At the other end of the scale,
tw(Kk) = k − 1, for every k ≥ 2. Computing the treewidth of a structure is

1.9 Uniform Constraint Satisfaction and Bounded Treewidth 29

an intractable problem. Specifically, the following problem is NP-complete [4]:
given a graph H and an integer k ≥ 1, is tw(H) ≤ k? Nonetheless, Bodlaender
[7] showed that for every fixed integer k ≥ 1, there is a linear-time algorithm
such that, given a structure A, it determines whether or not tw(A) < k. In
other words, each class T (k) is recognizable in polynomial time.

Dechter and Pearl [25] and Freuder [33] showed that the classes of struc-
tures of bounded treewidth give rise to large islands of tractability of uniform
constraint satisfaction.

Theorem 1.28. [25, 33] If k ≥ 2 is a positive integer, then CSP(T (k), All)
is in PTIME.

The polynomial-time algorithm for CSP(T (k), All) in the above theorem
is often described as a bucket-elimination algorithm [22]. It should be noted
that it is not a constraint-propagation algorithm. Instead, this algorithm uses
the bound on the treewidth to test if a solution to the constraint-satisfaction
problem exists by solving a join-evaluation problem in which all intermediate
relations are of bounded arity.

Kolaitis and Vardi [48], and Dalmau, Kolaitis and Vardi [18] investigated
certain logical aspects of the treewidth of a relational structure and showed
that this combinatorial concept is closely connected to the canonical con-
junctive query of the structure being definable in a fragment of first-order
logic with a fixed number of variables. This made it possible to show that
the tractability of CSP(T (k), All) can be explained in purely logical terms.
Moreover, it led to the discovery of larger islands of tractability of uniform
constraint satisfaction.

Definition 1.29. Let k ≥ 2 be a positive integer.

• FOk is the collection of all first-order formulas with at most k distinct
variables.

• Lk is the collection of all FOk-formulas built using atomic formulas, con-
junction, and existential first-order quantification only.

Intuitively, queries expressible in FOk and Lk are simply first-order queries
and conjunctive queries, respectively, with a bound k on the number of distinct
variables (each variable, however, may be reused any number of times).

As an example, it is easy to see that if Cn is the n-element cycle, n ≥ 3,
then the canonical conjunctive query QCn

is expressible in L3. For instance,
QC4

is logically equivalent to (∃x∃y∃z)(E(x, y) ∧ E(y, z) ∧ (∃y)(E(z, y) ∧
E(y, x))). As mentioned earlier, for every n ≥ 3, we have that tw(Cn) = 2.

The logics FOk and Lk are referred to as variable-confined logics [47]. The
complexity of query evaluation for such queries has been studied in [68]. Since
in data complexity the queries are fixed, bounding the number of variables
does not change data complexity. The change in expression and combined
complexity, however, is quite dramatic, as the combined complexity of FOk

has been shown to be in PTIME [68]. (More generally, the exponential gap

30 1 Constraint Satisfaction

between data complexity and expression and combined complexity shrinks
when the number of variables is bounded.)

The next result shows that the relationship we just saw in the example
between treewidth and number of variables needed to express the canonical
conjunctive query of a cycle is not an accident.

Theorem 1.30. [48] Let k ≥ 2 be a positive integer. If A ∈ T (k), then the
canonical conjunctive query QA is expressible in Lk.

Corollary 1.31. CSP(T (k), All) can be solved in polynomial time by deter-
mining, given a structure A ∈ T (k) and an arbitrary structure B, whether
B |= QA.

A precise complexity analysis of CSP(T (k), All) is provided in [37], where it
is shown that the problem is LOGFCL-complete; by definition, LOGCFL is
the class of decision problems that are logspace-reducible to a context-free
language. Note that, in contrast, the combined complexity of evaluating FOk-
queries, for k > 3, is PTIME-complete [68].

Theorem 1.30 can be viewed as a logical recasting of the bucket-elimination
algorithm. It derives the tractability of CSP(T (k), All) from the fact that the
canonical conjunctive queryQA can be written using at most k variables. Con-
sequently, evaluating this query amounts to solving a join-evaluation problem
in which all intermediate relations are of bounded arity. For an investiga-
tion of how the ideas underlying Theorem 1.30 can be used to solve practical
join-evaluation problems, see [55].

It turns out, however, that we can also approach solving CSP(T (k), All)
from the perspective of k-Datalog and (∃, k)-pebble games. This is because
Lk is a fragment of ∃Lk

∞ω , whose expressive power, as seen earlier, can be
characterized in terms of such games.

Theorem 1.32. [18] Let k ≥ 2 be a positive integer.

• If B is an arbitrary, but fixed, structure, then T (k) ∩ CSP(T (k), {B}) is
expressible in k-Datalog6.

• CSP(T (k), All) can be solved in polynomial time by determining whether,
given a structure A ∈ T (k) and an arbitrary structure B, the Duplicator
wins the (∃, k)-pebble on A and B.

The situation for bounded treewidth structures, as described by Theorem 1.32,
should be contrasted with the situation for bounded cliquewidth structures
[16]. Let C(k) be the class of structures of cliquewidth bounded by k. It
is shown in [16] that CSP(C(k), {B}) is in PTIME for each structure B.
Since, however, complete graphs have bounded cliquewidth, it follows that the
Clique problem can be reduced to CSP(C(k), All), implying NP-hardness of
the latter.

6 The intersection with T (k) ensures that only structures with treewidth bounded
by k are considered.

1.9 Uniform Constraint Satisfaction and Bounded Treewidth 31

As a consequence of Theorem 1.32, we see that CSP(T (k), All) can be
solved in polynomial time using a constraint-propagation algorithm that is
quite different from the bucket-elimination algorithm in Theorem 1.28. It
should be noted, however, that this requires knowing that we are given an in-
stance A,B where tw(A) ≤ k. In contrast, the bucket-elimination algorithm
can be used for arbitrary constraint-satisfaction instances (with no tractability
guarantee, in general).

The classes CSP(T (k), All) enjoy also nice tractability properties from
the perspective of Parameterized Complexity Theory [26], as they are fixed-
parameter tractable, and, in a precise technical sense, are maximal with this
property under a certain complexity-theoretic assumption (see [41]).

The development so far shows that T (k) provides an island of tractabil-
ity for uniform constraint satisfaction. We now show that this island can be
expanded.

Definition 1.33. Let A and B be two relational structures.

• We say that A and B are homomorphically equivalent, denoted A ∼h B,
if both A → B and B → A hold.

• We say that B is the core of A, and write core(A) = B, if B is a substruc-
ture of A, A → B holds, and A → B′ fails for each proper substructure
B′ of B.

Clearly, core(Kk) = Kk and core(Cn) = Cn. On the other hand, if H

is a 2-colorable graph with at least one edge, then core(H) = K2. It should
be noted that cores play an important role in database query processing and
optimization (see [11]). The next result shows that they can also be used to
characterize when the canonical conjunctive query is definable in Lk.

Theorem 1.34. [18] Let k ≥ 2 be a positive integer and A a relational
structure. Then the following are equivalent:

• QA is definable in Lk.
• There is a structure B ∈ T (k) such that A ∼h B.
• core(A) ∈ T (k).

The tight connection between definability in Lk and the boundedness of
the treewidth of the core suggests a way to expand the “island” T (k).

Definition 1.35. If k ≥ 2 is a positive integer, then H(T (k)) is the class of
relational structures A such that core(A) has treewidth less than k.

It should noted that T (k) is properly contained in H(T (k)), for every
k ≥ 2. Indeed, it is known that there are 2-colorable graphs of arbitrarily large
treewidth. In particular, grids are known to have these properties (see [26]).
Yet, these graphs are members of H(T (2)), since their core is K2.

Theorem 1.36. [18] Let k ≥ 2 be a positive integer.

32 1 Constraint Satisfaction

• If B is an arbitrary, but fixed, structure, then H(T (k))∩CSP(H(T (k)), {B})
is expressible in k-Datalog.

• CSP(H(T (k)), All) is in PTIME. Moreover, CSP(H(T (k)), All) can be
solved in polynomial time by determining whether, given a structure A ∈
H(T (k)) and an arbitrary structure B, the Spoiler or the Duplicator wins
the (∃, k)-pebble on A and B.

The preceding Theorem 1.36 yields new islands of tractability for uniform
constraint satisfaction, which properly subsume the islands of tractability con-
stituted by the classes of structures of bounded treewidth. This expansion of
the tractability landscape comes, however, at a certain price. Specifically, as
seen earlier, for every fixed k ≥ 2, there is a polynomial-time algorithm for
determining membership in T (k) [7]. In contrast, it has been shown that, for
every fixed k ≥ 2, determining membership in H(T (k)) is an NP-complete
problem [18]. Thus, these new islands of tractability are, in some sense, “in-
accessible”.

Since H(T (k)) contains structures of arbitrarily large treewidth, the
bucket-elimination algorithm cannot be used to solve CSP(H(T (k)), All) in
polynomial time. Thus, Theorem 1.36 also shows that determining the winner
of the (∃, k)-pebble is a polynomial-time algorithm that applies to islands of
tractability not covered by the bucket elimination algorithm.

It is now natural to ask whether there are classes A of relational structures
that are larger than the classes H(T (k)) and CSP(A, All) is solvable in poly-
nomial time. A remarkable result by Grohe [40] essentially shows that, if we fix
the vocabulary, no such classes exist, provided a certain complexity-theoretic
hypothesis is true.

Theorem 1.37. [40] Assume that FPT 6= W [1]. If A is a recursively
enumerable class of relational structures over some fixed vocabulary such
that CSP(A, All) is in PTIME, then there is a positive integer k such that
A ⊆ H(T (k)).

The hypothesis FPT 6= W [1] is a statement in parameterized complexity that is
analogous to the hypothesis PTIME 6= NP, and it is widely accepted as being
true (see [26]). In effect, Grohe’s Theorem 1.37 is a converse to Theorem
1.36 for fixed vocabularies. Together, these two theorems yield a complete
characterization of all islands of tractability of the form CSP(A, All), where
A is a class of structures over some fixed vocabulary. Moreover, they reveal
that all tractable cases of the form CSP(A, All) can be solved by the same
polynomial-time algorithm, namely, the algorithm for determining the winner
in the (∃, k)-pebble game. In other words, all tractable cases of constraint
satisfaction of the form CSP(A, All) can be solved in polynomial time using
constraint propagation.

It is important to emphasize that the classes H(T (k)) are the largest is-
lands of tractability for uniform constraint satisfaction only under the assump-
tion in Theorem 1.37 of a fixed vocabulary. For variable vocabularies, there is

1.9 Uniform Constraint Satisfaction and Bounded Treewidth 33

a long line of research, studying the impact of the “topology” of conjunctive
queries on the complexity of their evaluation; this line of research goes back
to the study of acyclic joins in [69], The connection between acyclic joins and
acyclic constraints was pointed out in [42]. This is still an active research area.
Chekuri and Ramajaran [12] showed that the uniform constraint-satisfaction
problem CSP(Q(k), All) is solvable in polynomial time, where Q(k) is the
class of structures of querywidth k. Gottlob, Leone, and Scarcello [39] define
another notion of width, called hypertree width. They showed that the query-
width of a structure A provides a strict upper bound for the hypertree width
of A, but that the class H(k) of structures of hypertree width at most k is
polynomially recognizable (unlike the class Q(k)), and that CSP(H(k), All)
is tractable. For further discussion on the relative merit of various notions of
“width”, see [38]. This is an active area of research (see [13, 14]).
Acknowledgements: We are grateful to Benoit Larose and Scott Weinstein
for helpful comments on a previous draft of this chapter. This work was sup-
ported in part by NSF grants CCR-9988322, CCR-0124077, CCR-0311326,
ANI-0216467, and a Guggenheim Fellowship. Part of this work was done while
the second author was visiting the Isaac Newton Institute for Mathematical
Science, as part of a Special Programme on Logic and Algorithms.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. M. Ajtai and Y. Gurevich. Datalog vs first-order logic. J. Comput. Syst. Sci.,
49(3):562–588, 1994.

3. K. Apt. Principles of Constraint Programming. Cambridge Univ. Press, 2003.
4. S. Arnborg, D.G. Corneil, and A. Proskurowski. Complexity of finding em-

beddings in a k-tree. SIAM J. of Algebraic and Discrete Methods, 8:277–284,
1987.

5. A. Atserias. On digraph coloring problems and treewidth duality. In Proc. 20th
IEEE Symp. on Logic in Computer Science, pages 106–115. IEEE Computer
Society, 2005.

6. W. Bibel. Constraint satisfaction from a deductive viewpoint. Artificial Intel-
ligence, 35:401–413, 1988.

7. H.L. Bodlaender. A linear-time algorithm for finding tree-decompositions of
small treewidth. In Proc. 25th ACM Symp. on Theory of Computing, pages
226–234, 1993.

8. A.A. Bulatov. A dichotomy theorem for constraints on a three-element set. In
Proc. 43rd Symp. on Foundations of Computer Science, pages 649–658. IEEE
Computer Society, 2002.

9. A.A. Bulatov. Tractable conservative constraint satisfaction problems. In Proc.
18th IEEE Symp. on Logic in Computer Science, pages 321–330. IEEE Com-
puter Society, 2003.

10. A.A. Bulatov, P. Jeavons, and A.A. Krokhin. Classifying the complexity of
constraints using finite algebras. SIAM J. Comput., 34(3):720–742, 2005.

11. A.K. Chandra and P.M. Merlin. Optimal implementation of conjunctive queries
in relational databases. In Proc. 9th ACM Symp. on Theory of Computing,
pages 77–90, 1977.

12. C. Chekuri and A. Rajaraman. Conjunctive query containment revisited. In
Ph.G. Kolaitis and F. Afrati, editors, Database Theory - ICDT ’97, volume 1186
of Lecture Notes in Computer Science, pages 56–70. Springer-Verlag, 1997.

13. H. Chen and V. Dalmau. Beyond hypertree width: Decomposition methods
without decompositions. In Proc. 11th Int’l Conf. on Principles and Practice of
Constraint Programming, volume 3709 of Lecture Notes in Computer Science,
pages 167–181. Springer, 2005.

36 References

14. D. A. Cohen, P. Jeavons, and M. Gyssens. A unified theory of structural
tractability for constraint satisfaction and spread cut decomposition. In Proc.
19th Int’l Joint Conf. on Artificial Intelligence, pages 72–77, 2005.

15. M.C. Cooper. An optimal k-consistency algorithm. Artificial Intelligence,
41(1):89–95, 1989.

16. B. Courcelle, J.A. Makowsky, and U. Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory of Computing Systems,
33:125–150, 2000.

17. V. Dalmau. Generalized majority-minority operations are tractable. In Proc.
20th IEEE Symp. on Logic in Computer Science, pages 438–447, 2005.

18. V. Dalmau, P.G. Kolaitis, and M.Y. Vardi. Constraint satisfaction, bounded
treewidth, and finite-variable logics. In P. Van Hentenryck, editor, Proc. 8th
Int’l Conf. on Constraint Programming (CP’02), Lecture Notes in Computer
Science 2470, pages 310–326. Springer-Verlag, 2002.

19. V. Dalmau and J. Pearson. Closure functions and width 1 problems. In Proc.
5th Int’l Conf. on Principles and Practice of Constraint Programming, volume
1713 of Lecture Notes in Computer Science, pages 159–173. Springer, 1999.

20. R. Dechter. Constraint networks. In S.C. Shapiro, editor, Encyclopedia of Ar-
tificial Intelligence, pages 276–185. Wiley, New York, 1992.

21. R. Dechter. From local to global consistency. Artificial Intelligence, 55(1):87–
107, May 1992.

22. R. Dechter. Bucket elimination: a unifying framework for reasoning. Artificial
Intelligence, 113(1–2):41–85, 1999.

23. R. Dechter. Constraint Processing. Morgan Kaufmman, 2003.
24. R. Dechter and I. Meiri. Experimental evaluation of preprocessing algorithms

for constraint satisfaction problems. Artificial Intelligence, 68:211–241, 1994.
25. R. Dechter and J. Pearl. Tree clustering for constraint networks. Artificial

Intelligence, pages 353–366, 1989.
26. R.G. Downey and M.R. Fellows. Parametrized Complexity. Springer-Verlag,

1999.
27. T. Feder. Constraint satisfaction: A personal perspective. Technical report,

Electronic Colloquium on Computational Complexity, 2006. Report TR06-021.
28. T. Feder and D. Ford. Classification of bipartite boolean constraint satisfaction

through delta-matroid intersection, 2005.
29. T. Feder and M.Y. Vardi. The computational structure of monotone monadic

SNP and constraint satisfaction: a study through Datalog and group theory.
SIAM J. on Computing, 28:57–104, 1998. Preliminary version in Proc. 25th
ACM Symp. on Theory of Computing, May 1993, pp. 612–622.

30. T.A. Feder and M.Y. Vardi. Monotone monadic SNP and constraint satisfaction.
In Proc. 25th ACM Symp. on Theory of Computing, pages 612–622, 1993.

31. E.C. Freuder. Synthesizing constraint expressions. Communications of the
ACM, 21(11):958–966, November 1978.

32. E.C. Freuder. A sufficient condition for backtrack-free search. Journal of the
Association for Computing Machinery, 29(1):24–32, 1982.

33. E.C Freuder. Complexity of k-tree structured constraint satisfaction problems.
In Proc. AAAI-90, pages 4–9, 1990.

34. D.H. Frost. Algorithms and Heuristics for Constraint Satisfaction Problems.
PhD thesis, Department of Computer Science, University of California, Irvine,
1997.

References 37

35. H. Gaifman, H. Mairson, Y. Sagiv, and M. Y. Vardi. Undecidable optimization
problems for database logic programs. In Proc. 2nd IEEE Symp. on Logic in
Computer Science, pages 106–115, 1987.

36. M. R. Garey and D. S. Johnson. Computers and Intractability - A Guide to the
Theory of NP-Completeness. W. H. Freeman and Co., 1979.

37. G. Gottlob, N. Leone, and F. Scarcello. The complexity of acyclic conjunctive
queries. In Proc. 39th IEEE Symp. on Foundation of Computer Science, pages
706–715, 1998.

38. G. Gottlob, N. Leone, and F. Scarcello. A comparison of structural CSP de-
composition methods. In Proc. 16th Int’l Joint Conf. on Artificial Intelligence
(IJCAI’99), pages 394–399, 1999.

39. G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions and tractable
queries. In Proc. 18th ACM Symp. on Principles of Database Systems, pages
21–32, 1999.

40. M. Grohe. The complexity of homomorphism and constraint satisfaction prob-
lems seen from the other side. In Proc. 44th IEEE Symp. on Foundations of
Computer Science, pages 552–561. IEEE Computer Society, 2003.

41. M. Grohe, T. Schwentick, and L. Segoufin. When is the evaluation of conjunctive
queries tractable? In Proc. 33rd ACM Symp. on Theory of Computing, pages
657–666, 2001.

42. M. Gyssens, P.G. Jeavons, and D.A. Cohen. Decomposition constraint satis-
faction problems using database techniques. Artificial Intelligence, 66:57–89,
1994.

43. P. Hell and J. Nešetřil. On the complexity of H-coloring. Journal of Combina-
torial Theory, Series B, 48:92–110, 1990.

44. P. Hell and J. Nešetřil. Graphs and Homomorphisms. Oxford Lecture Series in
Mathematics and Its applications 28. Oxford Univ. Press, 2004.

45. P.G. Kolaitis and J. Panttaja. On the complexity of existential pebble games.
In Proc. 12th Conf. Computer Science Logic, volume 2803 of Lecture Notes in
Computer Science, pages 314–329. Springer, 2003.

46. Ph. G. Kolaitis and M. Y. Vardi. The decision problem for the probabilities of
higher-order properties. In Proc. 19th ACM Symp. on Theory of Computing,
pages 425–435, 1987.

47. Ph. G. Kolaitis and M. Y. Vardi. On the expressive power of variable-confined
logics. In Proc. 11th IEEE Symp. on Logic in Computer Science, pages 348–359,
1996.

48. Ph.G. Kolaitis and M.Y. Vardi. Conjunctive-query containment and constraint
satisfaction. Journal of Computer and System Sciences, pages 302–332, 2000.
Earlier version in: Proc. 17th ACM Symp. on Principles of Database Systems
(PODS ’98).

49. Ph.G. Kolaitis and M.Y. Vardi. A game-theoretic approach to constraint sat-
isfaction. In Proc. of the 17th National Conference on Artificial Intelligence
(AAAI 2000), pages 175–181, 2000.

50. V. Kumar. Algorithms for constraint-satisfaction problems. AI Magazine, 13:32–
44, 1992.

51. R.E. Ladner. On the structure of polynomial time reducibility. J. Assoc. Com-
put. Mach., 22:155–171, 1975.

52. B. Larose, C. Loten, and C. Tardif. A characterisation of first-order constraint
satisfaction problems. In Proc. 21st IEEE Symp. on Logic in Computer Science,
pages 201–210, 2006.

38 References

53. L. A. Levin. Universal sorting problems. Problemy Peredaci Informacii, 9:115–
116, 1973. In Russian. English translation in Problems of Information Trans-
mission 9:265–266.

54. A.K. Mackworth and E.C. Freuder. The complexity of constraint satisfaction
revisited. Artificial Intelligence, 59(1-2):57–62, 1993.

55. B.J. McMahan, G. Pan, P. Porter, and M.Y. Vardi. Projection pushing revisited.
In Proc. 9th Int’l Conf. on on Extending Database Technology, volume 2992 of
Lecture Notes in Computer Science, pages 441–458. Springer, 2004.

56. P. Meseguer. Constraint satisfaction problems: an overview. AICOM, 2:3–16,
1989.

57. C. Papadimitriou and M. Yannakakis. Optimization, approximation and com-
plexity classes. J. Comput. System Sci., 43:425–440, 1991.

58. J. Pearson and P. Jeavons. A survey of tractable constraint satisfaction prob-
lems. Technical Report CSD-TR-97-15, Royal Holloway University of London,
1997.

59. N. Robertson and P. D. Seymour. Graph minors IV: Tree-width and well-quasi-
ordering. J. Combinatorial Theory, Ser. B, 48(2):227–254, 1990.

60. E. Rosen. Finite Model Theory and Finite Variable Logics. PhD thesis, Univer-
sity of Pennsylvania, 1995.

61. B. Rossman. Existential positive types and preservation under homomorphi-
sisms. In Proc. 20th IEEE Symp. on Logic in Computer Science, pages 467–476.
IEEE Computer Society, 2005.

62. Y. Saraiya. Subtree elimination algorithms in deductive databases. PhD thesis,
Department of Computer Science, Stanford University, 1991.

63. T.J. Schaefer. The complexity of satisfiability problems. In Proc. 10th ACM
Symp. on Theory of Computing, pages 216–226, 1978.

64. E.P.K. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.
65. P. van Beek. On the inherent tightness of local consistency in constraint net-

works. In Proc. of National Conference on Artificial Intelligence (AAAI-94),
pages 368–373, 1994.

66. P. van Beek and R. Dechter. Constraint tightness and looseness versus local
and global consistency. Journal of the ACM, 44(4):549–566, 1997.

67. M. Y. Vardi. The complexity of relational query languages. In Proc. 14th ACM
Symp. on Theory of Computing, pages 137–146, 1982.

68. M.Y. Vardi. On the complexity of bounded-variable queries. In Proc. 14th ACM
Symp. on Principles of Database Systems, pages 266–76, 1995.

69. M. Yannakakis. Algorithms for acyclic database schemes. In Proc. 7 Int’l Conf.
on Very Large Data Bases, pages 82–94, 1981.

