
Model Checking vs. Theorem Proving: A Manifesto �Joseph Y. Halpern and Moshe Y. VardiIBM Almaden Research CenterSan Jose, CA 95120-6099, USAemail: fhalpern,vardig@almaden.ibm.comABSTRACT: We argue that rather than representing an agent's knowledge as acollection of formulas, and then doing theorem proving to see if a given formulafollows from an agent's knowledge base, it may be more useful to represent thisknowledge by a semantic model, and then do model checking to see if the givenformula is true in that model. We discuss how to construct a model that representsan agent's knowledge in a number of di�erent contexts, and then consider how toapproach the model-checking problem.
�This is an extended version of a paper that appears in Principles of Knowledge Representationand Reasoning: Procedings of the Second International Conference, J. A. Allen, R. Fikes, and E.Sandewall (eds.), pages 325{334, 1991.

1. IntroductionThe standard approach in AI to knowledge representation, going back to [Mc-Carthy, 1968], is to represent an agent's knowledge as a collection of formulas, whichwe can view as a knowledge base. An agent is then said to know a fact if it is prov-able from the formulas in his knowledge base. This is called in [Rosenschein, 1985]the \interpreted-symbolic-structures" approach. There are two problems in applyingthis approach. The �rst comes in the di�culty of representing agents' knowledge interms of formulas in some appropriate language. The second lies in the di�culty oftheorem proving. These problems are closely related; the need to use logic to rep-resent agents' knowledge necessitates the use of very expressive logics, but the moreexpressive a logic, the harder it is to prove theorems in that logic. In this paper, weargue for a model-theoretic rather than a proof-theoretic approach to the problem.Essentially, the idea is to represent the agent's knowledge by a data structure rep-resenting some semantic model (in the spirit of the \situated-automata" approach[Rosenschein, 1985; Rosenschein and Kaelbling, 1986]), and replace theorem provingby model checking, that is, checking whether a given formula is true in the model.As an example of this approach, consider the context of relational database sys-tems. Let B be a relational database and let ' be a �rst-order query. The theorem-proving approach would view B as representing some formula 'B and would evaluatethe query by trying to prove or disprove 'B) '. Unfortunately, theorem proving for�rst-order logic is undecidable. The model-checking approach, on the other hand,would check whether ' holds in the database B. This can be evaluated in timepolynomial in the size of the data (cf. [Vardi, 1982]).As another example, consider an agent Alice who knows that, given her currentepistemic state (i.e., the information she has obtained thus far), the world could bein any one of three possible states. In the possible-worlds approach, this situationis modeled by a Kripke structure with three possible worlds. As usual, we say thatAlice knows a fact p if p is true in all three of the worlds that Alice considers possiblegiven her epistemic state.Since, in particular, all tautologies will be true at all three worlds Alice considerspossible, it follows that Alice knows all propositional tautologies. This may seemstrange. The set of propositional tautologies is well-known to be co-NP-complete.How can Alice, who after all does not seem to possess any extraordinary reasoningpower, know all tautologies when she can't prove them? In the model-checkingapproach, there is nothing unusual about this fact. Alice knows a propositionalformula ' if ' is true in the three states that Alice considers possible. This can be1

checked in time linear in the length of '. Notice that even though Alice knows alltautologies (among other facts she knows given her epistemic state), she does notknow which of the facts she knows are tautologies (and probably does not care!).Thus, the well-known logical omniscience problem [Hintikka, 1975] does not presentthe same di�culties in the model-checking approach as it does in the theorem-provingapproach (although, as we shall see, other related di�culties do arise).The paradigm of model checking arose explicitly in the context of �nite-stateprogram veri�cation. (See [Clarke and Gr�umberg, 1987] for an overview.) Supposewe have a �nite-state program P (think of P as, for example, a communicationsprotocol), and we want to know whether it satis�es some speci�cation , which weassume can be expressed in temporal logic.1 It is not hard to completely characterizethe program P by a temporal logic formula 'P . (Essentially, 'P describes all thepossible transitions of P in each possible global state; this is possible since P is a�nite-state protocol.) One way of checking whether P satis�es the speci�cation isto check if 'P) is valid [Manna and Pnueli, 1981]. Unfortunately, the validityproblem for temporal logic is extremely di�cult. (Technically, it is exponential-timecomplete [Emerson and Halpern, 1985], which most likely makes it much harder thanthe validity problem for propositional logic.)Later, researchers noticed that another approach would work equally well [Clarkeet al., 1986a; Emerson and Clarke, 1982; Queille and Sifakis, 1982]. Rather thanhaving P be represented by a formula, P can be represented by a Kripke structureMP : the states in MP represent the possible global states of P , and the edgesrepresent the possible transitions of P . Note that the size (i.e., the number of states)of MP is essentially the same as the length of 'P (viewed as a string of symbols).Checking whether P satis�es the speci�cation now amounts to checking if istrue at the state in MP that corresponds to the initial state of P . This can be donein time linear in the size of MP and '.Of course, it could be argued that all that this argument shows is that for a specialsubclass of formulas (namely, those of the form 'P)), the validity problem issigni�cantly simpler than it is in general. Indeed, perhaps this observation shouldencourage us to �nd other subclasses for which the validity problem is solvable inpolynomial time (cf. [Emerson et al., 1989]). However, we would claim that thisargument misses the point. The reason that formulas of the form 'P) are easy1Our discussion here presumes the use of branching temporal logic. In the case of linear temporallogic, the situation is somewhat more complicated, see [Emerson and Halpern, 1985; Sistla andClarke, 1985; Lichtenstein and Pnueli, 1985]. 2

to deal with is because 'P characterizes a particular state in a particular structure, inthat any state where 'P is satis�ed is isomorphic to the initial state of the structurede�ned by P . Thus, for these formulas, the validity problem reduces to a model-checking problem, and so is tractable.The model-theoretic approach to �nite-state program veri�cation is quite practi-cal, and several systems based on model checking have been implemented [Clarke andGr�umberg, 1987; Burch et al., 1992]. Moreover, it has been extended to deal withmore complicated protocols and environments (including probabilistic protocols andassumptions of fairness [Vardi and Wolper, 1986]). In some cases, the assumptionsthat are being dealt with (such as fairness) are not even expressible in the languagebeing used for the speci�cation formula. This is not a hindrance to the model-theoretic approach. We can often check whether the model satis�es assumptionsthat are not expressible in the language.The core of this paper (Section 2) is devoted to a detailed description of themodel-checking approach, a discussion of potential problems with the approach andhow some might be dealt with by using current techniques, and a comparison of themodel-checking approach and the theorem-proving approach. We also consider (inSection 3) the logical omniscience problem for the model-checking point of view, anddiscuss a logic appropriate for reasoning using the model-checking approach, inspiredby the logic of resource-bounded knowledge presented in [Moses, 1988]. We concludein Section 4 with a general discussion of the appropriateness2. Using the model-theoretic approach2.1. The Muddy Children PuzzleBefore getting into technical details, we motivate the model-theoretic approachby applying it to the well-known \muddy children" puzzle. This seems particularlyappropriate for this Festschrift, since McCarthy was one of the pioneers of attemptingto formalize such puzzles using epistemic logics and, indeed, the muddy childrenpuzzle is a generalization of the wise-men puzzle considered in [McCarthy, 1978].The version of the muddy children puzzle given here is taken from [Barwise, 1981]:Imagine n children playing together. The mother of these childrenhas told them that if they get dirty there will be severe consequences.So, of course, each child wants to keep clean, but each would love to seethe others get dirty. Now it happens during their play that some of the3

children, say k of them, get mud on their foreheads. Each can see themud on others but not on his own forehead. So, of course, no one says athing. Along comes the father, who says, \At least one of you has mudon your head," thus expressing a fact known to each of them before hespoke (if k > 1). The father then asks the following question, over andover: \[Does any of you know whether] you have mud on your head?"Assuming that all the children are perceptive, intelligent, truthful, andthat they answer simultaneously, what will happen?There is a \proof" that the �rst k�1 times he asks the question, theywill all say \no", but then the kth time the dirty children will answer\yes".The \proof" is by induction on k. For k = 1 the result is obvious:the dirty child sees that no one else is muddy, so he must be the muddyone. Let us do k = 2. So there are just two dirty children, a and b. Eachanswers \no" the �rst time, because of the mud on the other. But, whenb says \no," a realizes that he must be muddy, for otherwise b would haveknown the mud was on his head and answered \yes" the �rst time. Thusa answers \yes" the second time. But b goes through the same reasoning.Now suppose k = 3; so there are three dirty children, a; b; c. Child aargues as follows. Assume I don't have mud on my head. Then, by thek = 2 case, both b and c will answer \yes" the second time. When theydon't, he realizes that the assumption was false, that he is muddy, andso will answer \yes" on the third question. Similarly for b and c. [Thegeneral case is similar.]There have been many attempts to describe this type of reasoning within a logic,particularly in the context of the wise-men puzzle. Besides McCarthy's own formal-ization in [McCarthy, 1978], other formalizations (many carried out at McCarthy'sinstigation) can be found in, for example, [Attardi and Simi, 1984; Aiello et al., 1988;Aiello et al., 1989; Kuo, 1984; Konolige, 1984; Nait Abdallah, 1989; Stark, 1981]. Thewise-men puzzle is essentially a special case of the muddy children puzzle, where thereare three muddy children, and the wise men are queried sequentially rather than si-multaneously. Even for this special case, formalizing the puzzle is nontrivial; andall the previous formalizations involve some mechanism (typically using higher-orderlogic or circumscription) for capturing the deduction capabilities of the agents withinthe logic. We show how the situation can be characterized model-theoretically, in aparticularly elegant way. 4

To explain our characterization, we need some preliminaries on modal logic andthe possible-worlds paradigm. We want to describe an agent's knowledge. Thetraditional way to do this is to say that an agent knows a fact ' if it is true inall worlds that the agent considers possible. We capture this by means of a Kripkestructure. A Kripke structureM for n agents is a tuple (S; �;K1; : : : ;Kn), where S isa set of possible worlds or states, � associates with each world in S a truth assignment(propositional or �rst-order as the case may be), and Ki is a binary relation on S.Intuitively, the truth assignment �(w) tells us what is true in a world w. The relationKi is intended to capture the possibility relation according to agent i: (u; v) 2 Ki ifagent i considers world v possible when in world u. We then say agent i knows 'at world u in structure M , and write (M;u) j= Ki', if ' is true in all the worlds vthat agent i considers possible in world u. This captures the intuition that an agentknows a fact if it is true at all the worlds he considers possible.Now we return to the muddy children puzzle; much of our discussion is taken froma forthcoming book [Fagin et al., 1995]. First consider the situation before the fatherspeaks. Suppose there are n children altogether; we number them 1; : : : ; n. Some ofthe children have muddy foreheads, while the rest do not. We can describe a possiblesituation by an n-tuple of 0's and 1's of the form (x1; : : : ; xn), where xi = 1 if child ihas a muddy forehead, and xi = 0 otherwise. Thus, if n = 3, then a tuple of the form(1; 0; 1) would say that there are exactly two children with muddy foreheads, namely,child 1 and child 3. Suppose the actual situation is described by this tuple. Whatsituations does child 1 consider possible before the father speaks? Since child 1 cansee the foreheads of all the children besides himself, his only doubt is about whetherhe has mud on his own forehead. Thus child 1 considers two situations possible,namely, (1; 0; 1) (the actual situation) and (0; 0; 1). Similarly, child 2 considers twosituations possible: (1; 0; 1) and (1; 1; 1). Note that in general, child i will havethe same information in two possible worlds exactly if they agree in all componentsexcept possibly the ith component.We can capture the general situation by a Kripke structure M consisting of 2nstates (one for each of the 2n n-tuples). Since child i considers a world possible ifit agrees in all components except possibly the ith component, we take (s; t) 2 Kiexactly if s and t agree in all components except possibly the ith-component. Noticethat this de�nition makes Ki an equivalence relation. To complete the descriptionof the Kripke structure M , we have to de�ne the truth assignment �. To do this, wehave to decide what the primitive propositions are in our language. We take them tobe fp1; : : : ; pn; pg, where, intuitively, pi stands for \child i has a muddy forehead",while p stands for \at least one child has a muddy forehead". Thus, we de�ne � so5

that (M; (x1; : : : ; xn)) j= pi if and only if xi = 1, and (M; (x1; : : : ; xn)) j= p if andonly if xj = 1 for some j. Of course, p is equivalent to p1_ : : :_pn, so its truth valuecan be determined from the truth value of the other primitive propositions. Thereis nothing to prevent us from choosing a language where the primitive propositionsare not independent. Since it is convenient to add a primitive proposition describingthe father's statement, we do so. This completes the description of M .While this Kripke structure may seem quite complicated, it actually has an el-egant graphical representation. We can think of the 2n states in S as nodes in agraph, and place an edge labeled i between states s and t if i cannot tell apart statess and t (because they agree in all components other than the i component). Supposewe ignore self-loops and the labeling on the edges for the moment. Then we have astructure with 2n nodes, each described by an n-tuple of 0's and 1's, such that twonodes are joined by an edge exactly if they di�er in one component. The reader witha good imagination will see that this de�nes an n-dimensional cube. The case n = 3is illustrated in Figure 1.
@@@@@@@ �������@@@@@@@��������������@@@@@@@@@@@@@@
�������rrrr rr rr(0; 0; 0)(1; 0; 0) (0; 0; 1)(1; 1; 0)(1; 0; 1) (0; 1; 0)(0; 1; 1)(1; 1; 1)

11 223
33 32 12 1

Figure 1: The Kripke structure for the muddy children puzzle with n = 3Intuitively, each child knows which of the other children have muddy foreheads.This intuition is borne out in our formal de�nition of knowledge. For example, it is6

easy to see that when the actual situation is (1; 0; 1), we have (M; (1; 0; 1)) j= K1:p2,since in both worlds that child 1 considers possible if the actual situation is (1; 0; 1),child 2 does not have a muddy forehead. Similarly, we have (M; (1; 0; 1)) j= K1p3:child 1 knows that child 3's forehead is muddy. However, (M; (1; 0; 1)) j= :K1p1.Child 1 does not know that his own forehead is muddy, since in the other world heconsiders possible|(0,0,1)|his forehead is not muddy.Returning to our analysis of the puzzle, consider what happens after the fatherspeaks. The father says p, a fact that is already known to all the children if there aretwo or more children with muddy foreheads. Nevertheless, the state of knowledgechanges, even if all the children already know p. Going back to our example withn = 3, if the initial situation was (1; 0; 1), although everyone knew before the fatherspoke that at least one child had a muddy forehead, child 1 considered the situation(0; 0; 1) possible before the father spoke. In that situation, child 3 would consider(0; 0; 0) possible. Thus, before the father spoke, child 1 thought it was possible thatchild 3 thought it was possible that none of the children had a muddy forehead.After the father speaks, it is common knowledge that at least one child has a muddyforehead. The notion of common knowledge, what everyone knows that everyoneknows that everyone knows . . . , or, in McCarthy's terminology [McCarthy et al.,1979], what \any fool" knows, plays a crucial role here, as we shall see. We canrepresent the change in the group's state of knowledge graphically (in the generalcase) by simply removing the point (0; 0; : : : ; 0) from the cube, getting a \truncated"cube. (More accurately, what happens is that the node (0; 0; : : : ; 0) remains, but allthe edges between (0; 0; : : : ; 0) and nodes with exactly one 1 disappear, since it iscommon knowledge that even if only one child has a muddy forehead, after the fatherspeaks that child will not consider it possible that no one has a muddy forehead.)The situation is illustrated in Figure 2.We next show that each time the children respond to the father's question witha \no", the group's state of knowledge changes and the cube is further truncated.Consider what happens after the children respond \no" to the father's �rst question.We claim that now all the nodes with exactly one 1 can be eliminated. (Or, moreaccurately, the edges to these nodes from nodes with exactly two 1's all disappearfrom the graph. Nodes with one or fewer 1's are no longer reachable from nodes withtwo or more 1's. If there are in fact two or more children with muddy foreheads, thenit is common knowledge among all the children that there are at least two childrenwho have muddy foreheads.) The reasoning parallels that done in the \proof" givenin the story. If the actual situation were described by, say, the tuple (1; 0; : : : ; 0),then child 1 would initially have considered two situations possible: (1; 0; : : : ; 0) and7

�������@@@@@@@��������������@@@@@@@@@@@@@@rrr rr rr(1; 0; 0) (0; 0; 1)(1; 1; 0)(1; 0; 1) (0; 1; 0)(0; 1; 1)(1; 1; 1)
1 233 32 12 1Figure 2: The Kripke structure after the father speaks(0; 0; : : : ; 0). Since once the father speaks it is common knowledge that (0; 0; : : : ; 0)is not possible, he would then know that the situation is described by (1; 0; : : : ; 0),and thus would know that his own forehead is muddy. Once everyone answers \no"to the father's �rst question, it is common knowledge that the situation cannotbe (1; 0; : : : ; 0). (Note that here we must use the assumption that it is commonknowledge that everyone is intelligent and truthful, and so can do the reasoningrequired to show (1; 0; : : : ; 0) is not possible.) Similar reasoning allows us to eliminateevery situation with exactly one 1. Thus, after all the children have answered \no"to the father's �rst question, it is common knowledge that at least two children havemuddy foreheads.Further arguments in the same spirit can be used to show that after the childrenanswer \no" k times, we can eliminate all the nodes with at most k 1's (or, moreaccurately, disconnect these nodes from the rest of the graph). We thus have asequence of Kripke structures, describing the children's knowledge at every step inthe process. Essentially, what is going on is that if, in some node s, it becomescommon knowledge that a node t is impossible, then all edges from every node ureachable from s to t are eliminated. (This situation is even easier to describe oncewe add time to the picture. We return to this point in the next section.)After k rounds of questioning, it is common knowledge that at least k+1 childrenhave mud on their foreheads. If the true situation is described by a tuple with exactly8

k+1 1's, then before the father asks the question for the (k+1)st time, those childrenwith muddy foreheads will know the exact situation, and in particular know theirforeheads are muddy, and consequently answer \yes". Note that they couldn't answer\yes" any earlier, since up to this point each child with a muddy forehead considersit possible that he did not have a muddy forehead.We contend that this model-based argument gives a much clearer indication ofwhat is going on with this puzzle than any of the previous formalizations that at-tempted to describe the theorem-proving abilities of the agents within a formal logic.The reader should note that our reasoning about the puzzle applies to any numbern of children and any number k � n of dirty children. In contrast, the theorem-proving approaches to the puzzle usually deal with some �xed k and n (typicallyn = k = 3). The ability to deal with a parametrized family of models, which isimportant in many instances of common-sense reasoning (cf. [Kaufmann, 1991]),is an important feature of the model-checking approach; see [Clarke et al., 1986b;Sistla and German, 1987].2.2. What is the appropriate semantic model?The construction of the semantic model for the muddy children puzzle was some-what ad hoc. Clearly, if we are to apply the model-theoretic approach in general, weneed techniques for describing and constructing the semantic model, and techniquesfor checking if a formula is true in that model. We consider the �rst issue in thissubsection, and leave the second to the next subsection.Many AI applications deal with agents interacting among themselves and/or withan external environment.2 In such a setting, we believe that the possible-worldsparadigm yields the appropriate semantic model. Thus, we would like to model asystem of interacting agents as a Kripke structure. To do so, we use the formal modelof [Fagin et al., 1992; Halpern and Fagin, 1989] (which in turn is based on earliermodels that appeared in [Halpern and Moses, 1990; Parikh and Ramanujam, 1985;Chandy and Misra, 1986; Rosenschein and Kaelbling, 1986]). We briey describethe formal model here, since we shall make use of it later, referring the reader to[Halpern and Fagin, 1989] for more details.We assume that at each point in time, each agent is in some local state. Informally,2The notion of \agent" should be taken rather loosely here. An agent can be a robot observingan environment, a knowledge base (or knowledge bases) being told information, or a processor in aparallel machine. Everything we say applies in all of these contexts.9

this local state encodes the information it has observed thus far. In addition, there isalso an environment state, which keeps track of everything relevant to the system notrecorded in the agents' states. A global state is a sequence (se; s1; : : : ; sn) consistingof the environment state se and the local state si of each agent i. A run of thesystem is a function from time (which, for ease of exposition, we assume ranges overthe natural numbers, although we could easily take it to range over the reals) toglobal states. Thus, if r is a run, then r(0); r(1); : : : is a sequence of global statesthat, roughly speaking, is a complete description of what happens over time in onepossible execution of the system. We take a system to consist of a set of runs.Intuitively, these runs describe all the possible sequences of events that could occurin a system.Given a system R, we refer to a pair (r;m) consisting of a run r 2 R anda time m as a point. The points can be viewed as worlds in a Kripke structure.We say two points (r;m) and (r0;m0) such that r(m) = (se; s1; : : : ; sm) and r0(m0) =(s0e; s01; : : : ; s0m) are indistinguishable to agent i, and write (r;m) �i (r0;m0), is si = s0i,i.e., if agent i has the same local state at both points. We take �i to play the roleof the possibility relation Ki; note that Ki is an equivalence relation under thisinterpretation.An interpreted system is a pair (R; �) consisting of a system R together with amapping � that associates a truth assignment with each point. The semantics ofknowledge formulas in interpreted systems is identical to that in Kripke structures.In particular, given a point (r;m) in an interpreted system I = (R; �), we have(I; r;m) j= Ki' if (I; r0;m0) j= ' for all points (r0;m0) such that (r0;m0) �i (r;m).Notice that under this interpretation, an agent knows ' if ' is true at all the situa-tions the system could be in, given the agent's current information (as encoded byits local state).For a given distributed protocol, it is often relatively straightforward to constructthe system corresponding to the protocol. The local state of each process can typi-cally be characterized by a number of internal variables (that, for example, describethe messages thus far received and the values of certain local variables), and there isa transition function that describes how the system changes from one global state toanother. (See, for example, [Halpern and Zuck, 1992] for a detailed example of themodeling process and a knowledge-based analysis of a distributed protocol.) In thecase of the muddy children puzzle, there are 2n runs, one corresponding to each ini-tial situation. The n-dimensional cube we started with describes the initial situation:that is, the Kripke structure consisting just of the time 0 points. The \truncatedcubes" are the Kripke structures consisting of time m points, for m = 1; 2; 3; : : : By10

viewing the system as a set of runs, we bring time into the picture in a natural way,and see that, in fact, nodes do not disappear, only edges. More accurately, while tworuns may be joined by an edge at time m, there may not be an edge between themat time m+1, because the agent that couldn't distinguish them at time m acquiredsome information that allowed him to distinguish them at timem+1. (See [Halpernand Fagin, 1989] for a detailed description of the set of runs corresponding to themuddy children puzzle.)For knowledge-based applications, the modeling problem may be harder becauseof the di�culty in describing the state space. Basically, it is not clear how to describethe states when they contain information about agents' knowledge. In this context,the knowledge structures approach suggested in [Fagin et al., 1991] may prove useful(cf. [Hamilton and Delgrande, 1989; Lejoly and Minsoul, 1990]).Suppose we have constructed a model of the system. Provided that we cancompletely characterize an agent's local state s by a formula 's, then we can reducethe problem of checking whether an agent in local state s knows ' to checking thevalidity of 's) ', since agent i knows ' in local state s if ' is true at all possibleworlds where its local state is s. However, being able to characterize an agent'slocal state by means of a formula will almost certainly require the use of a veryexpressive logic, for which theorem proving is quite intractable. The model-checkingapproach, on the other hand, does not require that local states be encodable asformulas. Thus, it does not require resorting to a logic that is more expressive thannecessary to express the assertion '.An important issue to consider when comparing the two approaches is that ofrepresentation. The theorem-proving approach requires us to represent the agent'sknowledge by a collection of formulas in some language. The model-checking ap-proach instead represents the agent's knowledge as a local state in some structure.We have, however, complete freedom to decide on the representation of the localstate and the structure. There are applications that arise frequently in AI wherethe logical choice for the representation is in terms of formulas. For example, theproblem-solving system STRIPS represents a state by a set of �rst-order formulas;operations on the state are represented by adding certain formulas and deleting others[Fikes and Nilsson, 1972]. As another example, Levesque [Levesque, 1984a] studiesknowledge bases (KBs) where we have TELL and ASK operations. After the KBis told a sequence of facts, we should be able to represent the situation using the set11

� of facts that it has been told.3 4 What Kripke structure does this represent?The �rst thing we have to decide is what the global states are going to be. Thereis only one agent in the system, namely, the KB itself, so a global state will be a pairconsisting of the environment state and the KB's local state. As we said above, wecan identify the KB's local state with the formulas that it has been told. What aboutthe environment? Since we assume that there is a real world external to the KB, wecan take the environment to be a complete description of the relevant features of theworld. We model this by taking the environment state to be a relational structure.5Thus, a global state is a pair (A;�), where A is a relational structure (intuitively,describing the world) and � is a formula (intuitively, the conjunction of the facts theKB has been told).Next we have to decide what the allowable global states are. This turns out tobe quite sensitive to the expressiveness of the KB. Suppose we assume that the KBis assertion-based, i.e, it is told only facts in the assertion language and no factsabout its knowledge. Then we can restrict attention to global states (A;�) wherethe formula � is true in A. (This captures the assumption that the KB is only toldtrue facts about the world.) If we make no further restrictions, then, according toour de�nition of knowledge, the knowledge base KB knows a fact ' in a state � if' holds in all the global states of the form (A;�). But that means that the KBknows ' in a state � if ' holds in all the models of � or, equivalently, if ' is a logicalconsequence of �.This example already shows how the model-checking approach can be viewed as3To model the evolution of the knowledge base, one has to use some temporal structure whereeach point is represented by a set of formulas. See [Morris and Nado, 1986] and references thereinfor a discussion of such a model.4Although it may indeed be reasonable in many cases to represent a situation by the set of factsan agent has been told, note that by doing so we are assuming (among other things) that the KBis being told facts about a static situation, so that when the information arrived is irrelevant. Forexample, if we consider propositions whose truth may change over time, it may be that at somepoint the KB is told ' and then later it is told :'. We do not necessarily want to view the KB asbeing in an inconsistent state at this point. We can get around this di�culty by augmenting ourrepresentation to include time, so that \' at time 3" would not be inconsistent with \:' at time 4".We can also imagine a more sophisticated KB that discards an earlier fact if it is inconsistent withlater information. However, such an approach quickly leads to all the di�culties one encounters ingeneral with updating beliefs (see, e.g., [Fagin et al., 1983; G�ardenfors, 1988]). For example, whatdo we do if we have three facts that are pairwise consistent, but whose conjunction is inconsistent?Which of the three facts do we discard?5A relational structure consists of a domain of individual elements, and an assignment of func-tions and relations to the function and relation symbols of the assertion language.12

a generalization of the theorem-proving approach. But the model-checking approachgives us added exibility. For example, consider the closed-world assumption [Reiter,1984], where any fact not explicitly stored in the database is taken to be false.The need for such an assumption about negative information stems from the factthat in any complex application, the number of negative facts vastly outnumbersthe number of positive ones, so that it is totally infeasible to explicitly representthe negative information in the database. We can capture this assumption model-theoretically by restricting attention to pairs (A;�) where not only is � true in A,but every atomic formula P (d1; : : : ; dn) not implied by � is false in A. While theclosed-world assumption can be formalized in �rst-order logic, which means thatwe can use the theorem-proving approach to query closed-world knowledge bases[Reiter, 1984], analyzing the problem from the model-checking perspective leads toa complete characterization of the complexity of query answering, and furthermore,it enables one to deal with higher-order queries, which are not usually amenable tothe theorem-proving approach [Vardi, 1986].The closed-world assumption is only one of many we might consider making torestrict attention to only certain (A;�). As Shoham [Shoham, 1987] observed, mostforms of nonmonotonic reasoning can be viewed as attempts to restrict attention tosome collection of preferred pairs. The focus in many of the works on nonmonotonicreasoning is on using some logical formalism to describe the set of preferred mod-els. This is necessary if one wishes to apply the theorem-proving approach. Ourcontention is that theorem proving is just one way to evaluate queries and not neces-sarily the optimal way. From our point of view, the right question is not whether onecan prove if an assertion ' follows from a knowledge base �, using some nonmono-tonic logic, but rather if ' holds in the Kripke structure represented by � (where thenonmonotonicity is captured by restricting attention to a preferred set of possibleworlds).Even without the complication arising from the notion of preference, the situationgets more complicated if we assume that the KB is told facts that include informationabout its own knowledge, i.e., the speci�cation is knowledge-based. As pointed outin [Levesque, 1984a], this can be quite important in practice. For example, supposea KB is told the following facts about a small group of people: \John is a teacher",\Mary is a teacher", and \you know about all the teachers". Then we expect theKB to know that Bill is not a teacher (assuming it knows that Bill is distinct fromMary and John). Intuitively, this is because the three assertions together restrict theset of possible worlds to ones where only John and Mary are teachers.How can we model this? That is, what pairs (A;�) should we allow now (where13

� is the conjunction of the three formulas mentioned above)? Clearly, taking pairs(A;�) such that � is true in A will not work, since a relational structure A doesnot determine the truth of formulas involving knowledge. The answer is that whenwe have a knowledge-based speci�cation, we cannot select the allowable states oneat a time, even if we allow some notion of preference. Rather, it is the collectionof all possible states that has to be consistent with the KB. Thus, we cannot justfocus on the global states; we have to consider the whole resulting Kripke structure.Intuitively, we are trying to describe a Kripke structure consisting of a collection ofpairs (A;�) such that � is true in the resulting Kripke structure. (Notice that thetruth of � depends on the whole Kripke structure, not just on A.)Just as there are potentially many states consistent with a given assertion-basedspeci�cation, there are potentially many Kripke structures consistent with a givenknowledge-based speci�cation. We can use some notion of preference to select aunique Kripke structure. A popular notion of preference is one that tries to circum-scribe the KB's knowledge. The idea is to view the knowledge speci�ed in the KBas all that is known. Thus, this preference can be viewed as a closed-world assump-tion at the knowledge level. This notion has received a lot of attention in the pastdecade [Fagin et al., 1991; Halpern and Moses, 1984; Konolige, 1984; Levesque, 1981;Levesque, 1984a; Levesque, 1990; Parikh, 1991; Vardi, 1985].So far we have considered only situations with a single agent. In such situations,Kripke structures degenerate to essentially sets of worlds. Many AI applications,however, deal with multiple interacting agents. It is when we try to give formalsemantics to sentences such as \Dean doesn't know whether Nixon knows that Deanknows that Nixon knows about the Watergate break-in" that the full power of Kripkestructures comes into play. In such situations, circumscribing the agents' knowledgeis highly nontrivial (cf. [Fagin et al., 1991; Parikh, 1991; Vardi, 1985]).To summarize, in relatively simple settings it may not be too di�cult to describe,implicitly or explicitly, the set of runs that characterize the system, and thus we canget a Kripke structure, which is the appropriate semantic model. Preference criteriaand defaults may make this task more di�cult, but we expect that even in this case,the task will become manageable as our understanding of these notions deepens.2.3. Model checkingSuppose we have somehow constructed what we consider to be the appropriatesemantic model. We now want to check if a given formula ' is true in a particular14

state of that model.Checking whether an arbitrary formula in the extended language holds in a givenworld of a given Kripke structure has two components: we have to be able to checkwhether assertions (i.e., knowledge-free formulas) hold in a given state (we call thisassertion checking), and check whether knowledge formulas (i.e., formulas of the formKi') hold in a given state. If we can do both of these tasks, then we can handlearbitrary formulas by induction on the structure of the formula. Since checkingwhether a knowledge formula holds involves quanti�cation over the possible worlds,the complexity of model checking depends on (and is typically polynomial in theproduct of) three quantities: the complexity of assertion checking, the size of thegiven Kripke structure, and the size of the formula. Thus, our ability to do modelchecking e�ciently depends crucially on our ability to do assertion checking e�cientlyand our ability to deal with \large" structures.For propositional languages, assertion checking is quite easy: it can be donein linear time. Adding modalities for knowledge does not signi�cantly complicatethings. Given a �nite Kripke structure M = (S; �;K1; : : : ;Kn), de�ne jjM jj to bethe sum of the number of states in S and the number of pairs in Ki, i = 1; : : : ; n.Thus, jjM jj is a measure of the size of the Kripke structureM . Let j'j be the lengthof ', viewed as a string of symbols.Proposition 2.1. : There is an algorithm that checks if a propositional formula 'is satis�ed in a structure M . The algorithm runs in time O(jjM jj � j'j).Proof: Let '1; : : : ; 'k be the subformulas of ', listed in order of length, with tiesbroken arbitrarily. Thus, we have 'k = ', and if 'i is a subformula of 'j, theni < j. It is easy to check that there are at most j'j subformulas of ', so we musthave k � j'j. An easy induction on k0 shows that we can label each state s in Mwith 'j or :'j , for j = 1; : : : ; k0, depending on whether or not 'j is true at s, intime O(k0jjM jj). The only nontrivial case is if 'j is of the form Ki'j0, where j0 < j.We label a state s with Ki'j0 i� each state t such that (s; t) 2 Ki is labeled with 'j0.Assuming inductively that each state has already been labeled with 'j0 or :'j0, thisstep can clearly be carried out in time O(jjM jj), as desired.Things get more complicated once we move to �rst-order languages. Even asser-tion checking may be di�cult. If we consider structures with in�nite domains, it isnot always clear how to represent them, let alone do assertion checking.6 Even if we6Recent works [Kanellakis et al., 1990; Kabanza et al., 1990] address special cases of assertionchecking for in�nite structures. 15

restrict attention to structures with �nite domains, assertion checking may be verydi�cult due to the size of the domain. In general, to check the truth of a formulasuch as 8x'(x), we may have to check the truth of '(d) for each domain element d.Even if assertion checking is easy, we still have to cope with the multitude ofpossible worlds. For example, in the context of incomplete knowledge bases, thenumber of possible worlds can be exponential in the size of the knowledge base, whichmakes query evaluation intractable [Vardi, 1986]. We note, however, that the factthat the number of possible worlds is quite large does not automatically mean thatit is hard to check all knowledge formulas. The results of [Dwork and Moses, 1990;Moses and Tuttle, 1988] demonstrate that some knowledge formulas of interest canbe evaluated e�ciently in certain contexts despite an exponential number of possibleworlds.What can we do to deal with situations where the number of possible worlds or thenumber of domain elements is too large to handle? There are a number of approachesone could pursue. For one thing, we might hope to be able to �nd restricted (but stillinteresting) subclasses of formulas for which we can do model checking e�ciently incertain restricted (but still interesting) subclasses of structures, just as we now havetechniques for doing inference e�ciently with certain subclasses of formulas (such asHorn clauses). Indeed, IS-A formulas (which essentially correspond to Horn clauses,although see [Brachman, 1985] for some caveats) can be checked very e�ciently inIS-A hierarchies.A second approach is to consider heuristics and defaults. Since the di�culty inmodel checking arises when we have large structures and/or large domains, we needgood heuristics for handling such situations. We in fact use such heuristics all thetime in our daily life. For example, if there are too many possibilities (i.e., too manypossible worlds), we focus attention on only a few (the ones we deem to be the \mostrelevant" according to some metric or \most likely" according to some probabilitydistribution), ignoring the rest. Consider a situation where Alice is asked if (sheknows that) ' is the case. To answer this question, Alice would have to check all theworlds she considers possible to see if ' holds in all of them. There may be 1; 000; 000worlds that Alice considers possible, which means that she has a lot of checking todo. However, if Alice has a probability space on these worlds, then there may be asubset of worlds of size 1; 000 that has probability :99. Alice could check these 1; 000worlds; if ' holds in all of them, then this might be taken as su�cient \evidence"for Alice to say that ' indeed holds. Even without explicit probability, Alice mightstill have a notion of which of the 1; 000; 000 worlds are most likely or most relevant.Similarly, if we have a large domain and want to check the truth of a formula such16

as 8x'(x), we can use heuristics and defaults to cut down the search space (perhapschecking '(d) for only a few potentially \abnormal" domain elements).Yet another approach would be to have a notion of what features are \relevant"to the problem, and identify all worlds that agree on irrelevant features, thus cuttingdown on the search space. Being able to do this depends both on being able toidentify relevant notions and on being able to check relevant features rapidly. Goingback to our previous example, suppose ' is a propositional formula such as (p1 _p2) ^ (:p2 _ p3), where p1, p2, and p3 are primitive propositions. It is easy to seethat ' is true unless p1 and at least one of p2 or p3 are false. The truth values of allother propositions are clearly irrelevant to the truth of '. Depending on how Alice'spossible worlds are represented, it may be that Alice can check that Alice does notconsider a world possible where p1 and at least one of p2 and p3 are false, withoutchecking all 1; 000; 000 possible worlds. We remark that formalisms for expressingand reasoning with irrelevance have been developed, both probabilistic (for example,[Pearl and Verma, 1987]) and non-probabilistic [Subramanian and Genesereth, 1987],but this is an area where much further work remains to be done.As all these approaches show, much depends on precisely how the worlds aregenerated and represented. Finding appropriate representations is, of course, a majoropen problem.A great deal of e�ort in theorem proving has been expended on �nding heuristicsthat work well for the formulas that arise in practice. Analogously, in model checking,it would be useful to �nd heuristics that work well for structures that arise in practice.Although the work on model checking in this regard is still in its infancy, the earlyresults appear quite promising [Holtzmann, 1988; Burch et al., 1992]. For example,when verifying circuits, we are not dealing with arbitrary Kripke structures. Theregularity in the structure suggests heuristics that seem to work well in structureswith up to 1020 states [Burch et al., 1992]!Of course, techniques need to be developed to allow us to use these heuristicsand defaults in a principled way. Much of the recent work in \vivifying" can beviewed as being in this spirit [Etherington et al., 1989; Levesque, 1986]. The idea isto cut down on the number of possibilities by �lling in some (hopefully) inessentialdetails. Work on a possible-worlds framework for probability [Bacchus, 1990; Faginand Halpern, 1991; Halpern, 1990; Nilsson, 1986] may provide insights into usingprobabilistic heuristics in a principled way to cut down the search space.Notice that by using defaults in this way, we are led naturally to nonmonotonicity.However, rather than the logic being nonmonotonic, the model checking is nonmono-17

tonic. We might withdraw some of our conclusions about a formula being true in agiven structure if we get further information that leads us to believe that the defaultassumptions we used to simplify the model-checking problem are not correct.3. Modeling resource-bounded agentsAs is well known, the standard possible-world model for knowledge su�ers fromthe logical omniscience problem: agents know all tautologies, and know all the logicalconsequences of their knowledge (that is, we have the inference rule \from ' inferKi'" and the axiom \Ki' ^Ki('))) Ki "). The logical omniscience problemhas been viewed as a major shortcoming of the possible-world framework. Variousattempts have been made to overcome it (see, for example, [Fagin and Halpern,1988; Levesque, 1984b] and the references therein). The logical omniscience problemis somewhat transformed when viewed from a model-checking perspective. As wementioned earlier, it is no longer so unreasonable that an agent knows all tautologies(although the agent will typically not know which of the many formulas it knows tobe true are in fact tautologies). Nevertheless, as we observed earlier, model checkingcan also be intractable. It can still be the case, given our de�nition, that an agentcan \know" a formula without being able to compute that it knows the formula.This can be viewed as the reincarnation of the logical omniscience problem in themodel-checking framework.The source of the problem is our de�nition of knowledge as truth in all possibleworlds. This de�nition does not take into account the computational e�ort needed toevaluate truth in all possible worlds. We would like to have a formal way of capturingthe knowledge of a resource-bounded agent in the model-checking framework. In[Moses, 1988], Moses presents a logic of resource-bounded knowledge, where he triesto make sense out of notions such as \an agent can compute ' in polynomial time".His approach is very much in the spirit of the model-theoretic approach advocatedhere, since what it means for him to be able to compute ' in polynomial time isnot that ' can be proved (in some appropriate axiom system) in polynomial time,but rather that the truth of ' at a particular state in a structure can be computedin polynomial time.7 We informally discuss some details of Moses' logic here andrelate it to our framework; the reader is encouraged to consult [Moses, 1988] for more7A related approach to the logical omniscience problem from the theorem-proving viewpoint wasproposed by Konolige [Konolige, 1986]. In his approach the agent is given some initial information.What it knows is then what it can deduce from this initial information, using a particular axiomsystem, in a bounded number of steps. 18

details and motivation.Moses uses the distributed systems model discussed in the previous section, wherea system is identi�ed with a set of runs. As we mentioned above, the de�nitionof what it means for Ki' to hold at a point in a run does not take into accountcomplexity-theoretic considerations. We want to de�ne a notion KPi ' which intu-itively amounts to \agent i knows ' and, moreover, can compute this knowledge inpolynomial time."8 Notice that whether (I; r;m) j= Ki' depends only on ri(m),agent i's local state at the point (r;m). If we say that agent i knows how to compute' in polynomial time, we take this to mean that no matter what state i is in, i cancompute '. To capture this intuition, we require that there exist an algorithm A thatgets i's local state as input, and computes in polynomial time whether ' is impliedby the local state. Notice that there is a slight subtlety here: we have said that Amust run in polynomial time, but we have not said what the time is polynomial in.We sidestep this issue by simply assuming that with each local state, there is someparameter; the computation must be polynomial in that parameter. For example,the parameter can be the number of agents in the system, a particular shared input(this is appropriate in cryptographic applications; see [Halpern et al., 1988]), or thetime (since this corresponds roughly to the number of pieces of information that theagent has received thus far, so the computation would be polynomial in the amountof information held by the agent). To summarize, given an interpreted system I anda point (r;m) in the system, we say that (I; r;m) j= KPi ' if1. (I; r;m) j= Ki', and2. there exists an algorithm A that takes as input s, a local state of agent i, andreturns \Yes" or \No", depending on whether Ki' holds in all (resp. none) ofthe points where i has local state s; moreover, A runs in time polynomial inthe parameter associated with s.The logic of resource-bounded reasoning provides an elegant framework for ana-lyzing resource-bounded notions of knowledge. It is shown to be useful for analyzing8We remark that polynomial time knowledge can be viewed as a special case of explicit knowledgein the logic of general awareness of [Fagin and Halpern, 1988]. In the logic of general awareness,there are operators Ki, Bi, and Ai, where Ki', Bi' and Ai' represent, respectively, that agenti implicitly knows ', explicitly knows ', and is aware of '. An agent explicitly knows ' exactlyif he implicitly knows ' and is aware of '; thus, the equivalence Bi' � (Ki' ^ Ai') holds. Inthe logic of resource-bounded reasoning, polynomial-time knowledge (KPi) plays the role of explicitknowledge, the usual notion of knowledge (Ki) plays the role of implicit knowledge, and \beingable to compute in polynomial time" plays the role of awareness.19

distributed protocols in [Moses, 1988], and it is extended in a number of ways in[Halpern et al., 1988] to deal with cryptographic protocols. Some of these extensionssuggest further modi�cations which make the logic more applicable to AI. We discussthese here.First note that if KPi ' holds, then there is some polynomial time algorithm thatwill allow the agent to compute whether he knows ' at any state in the structure.However, the agent may not know what that algorithm is. More realistically, ratherthan having access to all polynomial time algorithms, an agent may have severalalgorithms that she can try to use to �gure out whether she knows '. It is easyto modify the logic to handle this situation. Let B be some set of algorithms. Wethen de�ne (I; r;m) j= KBi ' just as we did (I; r;m) j= KPi ', except that in thesecond clause, we require that A 2 B, rather than that A is polynomial time. (Ofcourse, if we take B to consist of all polynomial-time algorithms, then we recover thede�nition of KPi '.) Thus, if Alice tries exactly one of two algorithms to �gure out if' is true, then B would consist of those two algorithms, and KBAlice' would hold ata point exactly if Alice knows ' and she can compute this fact using one of her twoalgorithms. We can imagine that di�erent agents have access to di�erent algorithms;an agent with more expertise would have access to more and better algorithms. Inthis way, we can model a situation where one agent knows how to do something whileanother does not.This framework can also be extended to capture learning. One way that an agentmight learn is that it learns new algorithms. Thus, rather than having the class ofalgorithms B being �xed, we can imagine that it is a function of the state, whichmay change over time. Formally, we could expand the notion of a Kripke structureto include a function B that associates with each state s and agent i, the set ofalgorithms B(i; s) that agent i has at his disposal at state s. We can then de�neXi'|agent i explicitly knows '|to be true at state s if KB(i;s)i ' holds at state s,that is, if agent i knows ' and can compute it by using one of the algorithms inB(i; s). We omit the formal details here; they are all straightforward.Finally, we remark that in practice it may seem to be too strong a requirementfor Alice to have to know '. For example, it may be enough for Alice to know 'with high probability, or to let her algorithms make occasional mistakes, as long asthey are not too frequent. It is not too hard to modify our de�nitions to get suchprobabilistic notions of computable knowledge; these issues are discussed in moredetail in [Halpern et al., 1988]. These probabilistic notions where error is allowedmay give us a principled way to deal with the problem of having too many states in20

the model to do e�cient model checking. This issue deserves further exploration.4. Discussion and conclusionsWe have argued here for a model-theoretic rather than a proof-theoretic approachto reasoning about knowledge. We do not mean to suggest that the model-theoreticapproach is a panacea. There are di�culties to be overcome here, involving how to�nd the model and how to do model checking on large structures, just as there aredi�culties in the theorem-proving approach. Our hope is that the model-theoreticperspective will suggest new heuristics and new approaches. We feel that many of theapproaches that are currently being tried, including the preferred models approachto nonmonotonic reasoning and the idea of \vivifying" knowledge bases, are also bestunderstood in the context of the model-checking framework. Thus, this perspectivemay allow us to unify a number of current lines of research.The question still remains, for any particular application, whether to use themodel-theoretic or proof-theoretic approach. At some level, it could be argued thatthis is a non-question; at a su�ciently high level, the two approaches converge: Witha su�ciently rich logic, we can certainly characterize a model inside the logic, andthere is nothing in the proof-theoretic approach that prevents us from doing ourtheorem proving by using model checking. Similarly, as we have suggested in theprevious sections, the model-checking approach can capture theorem proving: wesimply look at the class of all models consistent with the axioms. Assuming our logichas a complete axiomatization, if a fact is true in all of them, then it is provable.However, this convergence obscures the fact that the two approaches have ratherdi�erent philosophies and domains of applicability. The theorem-proving approach ismore appropriate when we do not know what the models look like and the best wayto describe them is by means of axioms. In contrast, the model-checking approach isappropriate when we do know what the models look like and we can describe themrather precisely, as in the muddy-children puzzle.We would argue, however, that the model-checking approach has one major ad-vantage over the theorem-proving approach, which is perhaps not immediately obvi-ous from the way we have described them. The theorem-proving approach implicitlyassumes that the language for describing the situation (i.e., the system or the model)is the same as the language for describing the properties of the system in which weare interested. For example, the situation calculus has been used for both purposessince McCarthy �rst introduced it in 1958 (when the �rst version of [McCarthy,21

1968] appeared). That we may need rather powerful languages for describing a sit-uation (typically far more powerful than those needed for describing the propertieswe want to prove about the system) is evident already in the muddy children andthe wise-men puzzles.The model-checking approach allows us to e�ectively decouple the description ofthe model from the description of the properties we want to prove about the model.This decoupling is useful in many cases besides those where circumscription is anissue. Consider the case of programming languages. Here we can view the programas describing the system. (There will be a particular set of runs corresponding toeach program.) We may then want to prove properties of the program (such astermination, or some invariants). It seems awkward to require that the propertiesof the program be expressed in the same language as the model of the program, butthat is essentially what would be required by a theorem-proving approach.These examples suggest that when using the model-checking approach, it willprobably be useful to have techniques for constructing more complicated modelsfrom simpler models, using various constructors. Work on such techniques has beena major focus in the study of programming languages for years. (A typical exampleis the work on CCS by Milner and his colleagues [Milner, 1980].) Indeed, in almostany discipline where complicated systems need to be analyzed, there are techniquesfor constructing models for a complicated system from simpler components. Moreemphasis on a model-checking approach might lead to more work along these lines.The hope would be that if we have a better understanding of where the models arecoming from, we might be able to devise better techniques for doing model checking.In summary, we do not expect the model-checking approach to supplant thetheorem-proving approach. Rather, we would hope that techniques from each onecan inspire advances in the other. In any case, we hope this manifesto inspires furtherresearch on model-checking techniques from the AI perspective.AcknowledgmentsThe ideas in this paper have been brewing for a while. (A brief paragraph dis-cussing some of these issues appeared in [Halpern, 1987].) Discussions with HectorLevesque and Yoram Moses helped us formulate these issues. We would like to thankRon Fagin, Adam Grove, David, Israel, Steve Kaufmann, Gerhard Lakemeyer, andHector Levesque for useful comments on an earlier draft of this paper.22

References[Aiello et al., 1988] L. C. Aiello, D. Nardi, and M. Schaerf. Yet another solution tothe three wisemen puzzle. In Proc. 3rd Int'l. Symp. on Methodologies for IntelligentSystems, pages 398{407, 1988.[Aiello et al., 1989] L. C. Aiello, D. Nardi, and M. Schaerf. Reasoning about knowl-edge and ignorance. In Proc. Int'l. Conf. on Fifth Generation Systems, pages618{627, 1989.[Attardi and Simi, 1984] G. Attardi and M. Simi. Reasoning across viewpoints. InProc. of ECAI 84, pages 315{325, 1984.[Bacchus, 1990] F. Bacchus. Representing and Reasoning with Probabilistic Knowl-edge. MIT Press, Cambridge, Mass., 1990.[Barwise, 1981] J. Barwise. Scenes and other situations. Journal of Philosophy,78(7):369{397, 1981.[Brachman, 1985] R. Brachman. I lied about the trees (or, defaults and de�nitionsin knowledge representation). The AI Magazine, 6(3):80{93, 1985.[Burch et al., 1992] J. R. Burch, E. M. Clarke, D. L. Dill, J. Hwang, and K. L.McMillan. Symbolic model checking: 1020 states and beyond. Information andComputation, 98(2):142{171, 1992.[Chandy and Misra, 1986] K. M. Chandy and J. Misra. How processes learn. Dis-tributed Computing, 1(1):40{52, 1986.[Clarke and Gr�umberg, 1987] E. M. Clarke and O. Gr�umberg. Research on auto-matic veri�cation and �nite-state concurrent systems. In J. F. Traub, B. J. Grosz,B. W. Lampson, and N. J. Nilsson, editors, Annual Review of Computer Science,Vol. 2, pages 269{289. Annual Reviews Inc., Palo Alto, Calif., 1987.[Clarke et al., 1986a] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automaticveri�cation of �nite-state concurrent systems using temporal logic speci�cations.ACM Trans. on Programming Languages and Systems, 8(2):244{263, 1986. Anearly version appeared in Proc. 10th ACM Symposium on Principles of Program-ming Languages, 1983. 23

[Clarke et al., 1986b] E. M. Clarke, O. Gr�umberg, and M. Browne. Reasoning aboutnetworks with many �nite-state processes. In Proc. 5th ACM Symp. on Principlesof Distributed Computing, pages 240{248, 1986.[Dwork and Moses, 1990] C. Dwork and Y. Moses. Knowledge and common knowl-edge in a Byzantine environment: crash failures. Information and Computation,88(2):156{186, 1990.[Emerson and Clarke, 1982] E. A. Emerson and E. M. Clarke. Using branching timetemporal logic to synthesize synchronization skeletons. Science of Computer Pro-gramming, 2:241{266, 1982.[Emerson and Halpern, 1985] E. A. Emerson and J. Y. Halpern. Decision proceduresand expressiveness in the temporal logic of branching time. Journal of Computerand System Sciences, 30(1):1{24, 1985.[Emerson et al., 1989] E. A. Emerson, T. Sadler, and J. Srinivasan. E�cient tempo-ral reasoning. In Proc. 16th ACM Symp. on Principles of Programming Languages,pages 166{178, 1989.[Etherington et al., 1989] D. Etherington, A. Borgida, R. J. Brachman, andH. Kautz. Vivid knowledge and tractable reasoning: preliminary report. InProc. Eleventh International Joint Conference on Arti�cial Intelligence (IJCAI'89), pages 1146{1152, 1989.[Fagin and Halpern, 1988] R. Fagin and J. Y. Halpern. Belief, awareness, and limitedreasoning. Arti�cial Intelligence, 34:39{76, 1988.[Fagin and Halpern, 1991] R. Fagin and J. Y. Halpern. Uncertainty, belief, and prob-ability. Computational Intelligence, 7(3):160{173, 1991.[Fagin et al., 1983] R. Fagin, J. D. Ullman, and M. Y. Vardi. On the semanticsof updates in databases. In Proc. 2nd ACM Symp. on Principles of DatabaseSystems, pages 352{365, 1983.[Fagin et al., 1991] R. Fagin, J. Y. Halpern, and M. Y. Vardi. A model-theoreticanalysis of knowledge. Journal of the ACM, 91(2):382{428, 1991. A preliminaryversion appeared in Proc. 25th IEEE Symposium on Foundations of ComputerScience, 1984. 24

[Fagin et al., 1992] R. Fagin, J. Y. Halpern, and M. Y. Vardi. What can machinesknow? On the properties of knowledge in distributed systems. Journal of theACM, 39(2):328{376, 1992.[Fagin et al., 1995] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoningabout Knowledge. MIT Press, Cambridge, Mass., 1995.[Fikes and Nilsson, 1972] R. E. Fikes and N. J. Nilsson. STRIPS: a new approachto the application of theorem proving to problem solving. Arti�cial Intelligence,2:189{208, 1972.[G�ardenfors, 1988] P. G�ardenfors. Knowledge in Flux. MIT Press, Cambridge, Mass.,1988.[Halpern and Fagin, 1989] J. Y. Halpern and R. Fagin. Modelling knowledge andaction in distributed systems. Distributed Computing, 3(4):159{179, 1989. Apreliminary version appeared in Proc. 4th ACM Symposium on Principles of Dis-tributed Computing, 1985, with the title \A formal model of knowledge, action,and communication in distributed systems: preliminary report".[Halpern and Moses, 1984] J. Y. Halpern and Y. Moses. Towards a theory of knowl-edge and ignorance. In Proc. AAAI Workshop on Non-monotonic Logic, pages125{143, 1984. Reprinted in K. R. Apt (Ed.), Logics and Models of ConcurrentSystems, Springer-Verlag, Berlin/New York, pp. 459{476, 1985.[Halpern and Moses, 1990] J. Y. Halpern and Y. Moses. Knowledge and commonknowledge in a distributed environment. Journal of the ACM, 37(3):549{587,1990. A preliminary version appeared in Proc. 3rd ACM Symposium on Principlesof Distributed Computing, 1984.[Halpern and Zuck, 1992] J. Y. Halpern and L. D. Zuck. A little knowledge goesa long way: knowledge-based derivations and correctness proofs for a family ofprotocols. Journal of the ACM, 39(3):449{478, 1992.[Halpern et al., 1988] J. Y. Halpern, Y. Moses, and M. R. Tuttle. A knowledge-basedanalysis of zero knowledge. In Proc. 20th ACM Symp. on Theory of Computing,pages 132{147, 1988.[Halpern, 1987] J. Y. Halpern. Using reasoning about knowledge to analyze dis-tributed systems. In J. F. Traub, B. J. Grosz, B. W. Lampson, and N. J. Nilsson,25

editors, Annual Review of Computer Science, Vol. 2, pages 37{68. Annual ReviewsInc., Palo Alto, Calif., 1987.[Halpern, 1990] J. Y. Halpern. An analysis of �rst-order logics of probability. Arti-�cial Intelligence, 46:311{350, 1990.[Hamilton and Delgrande, 1989] S. J. Hamilton and J. P. Delgrande. An investi-gation of modal structures as an alternative semantic basis for epistemic logics.Computational Intelligence, 5:82{96, 1989.[Hintikka, 1975] J. Hintikka. Impossible possible worlds vindicated. Journal of Philo-sophical Logic, 4:475{484, 1975.[Holtzmann, 1988] G. J. Holtzmann. An improved protocol reachability analysistechnique. Software Practice and Experience, 18(2):137{161, 1988.[Kabanza et al., 1990] F. Kabanza, J.-M. Stevenne, and P. Wolper. Handling in�nitetemporal data. In Proc. 9th ACM Symp. on Principles of Database Systems, pages392{403, 1990.[Kanellakis et al., 1990] F. Kanellakis, G. M. Kuper, and P. Z. Revesz. Constraintquery languages. In Proc. 9th ACM Symp. on Principles of Database Systems,pages 299{313, 1990.[Kaufmann, 1991] S. G. Kaufmann. A formal theory of spatial reasoning. In J. A.Allen, R. Fikes, and E. Sandewall, editors, Principles of Knowledge Representationand Reasoning: Proc. Second International Conference (KR '91), pages 347{356.Morgan Kaufmann, San Francisco, Calif., 1991.[Konolige, 1984] K. Konolige. Circumscriptive ignorance. In Proc. National Confer-ence on Arti�cial Intelligence (AAAI '84), pages 202{204, 1984.[Konolige, 1986] K. Konolige. A Deduction Model of Belief. Morgan Kaufmann, SanFrancisco, Calif., 1986.[Kuo, 1984] V. Kuo. A formal natural deduction system about knowledge.Manuscript, Computer Science Dept., Stanford University, 1984.[Lejoly and Minsoul, 1990] Ph. Lejoly and M. Minsoul. A subjective logic of knowl-edge. Manuscript, 1990. 26

[Levesque, 1981] H. J. Levesque. The interaction with incomplete knowledge bases:a formal treatment. In Proc. Seventh International Joint Conference on Arti�cialIntelligence (IJCAI '81), pages 240{245, 1981.[Levesque, 1984a] H. J. Levesque. Foundations of a functional approach to knowledgerepresentation. Arti�cial Intelligence, 23:155{212, 1984.[Levesque, 1984b] H. J. Levesque. A logic of implicit and explicit belief. In Proc. Na-tional Conference on Arti�cial Intelligence (AAAI '84), pages 198{202, 1984.[Levesque, 1986] H. J. Levesque. Making believers out of computers. Arti�cial In-telligence, 30:81{108, 1986.[Levesque, 1990] H. J. Levesque. All I know: a study in autoepistemic logic. Arti�cialIntelligence, 42(3):263{309, 1990.[Lichtenstein and Pnueli, 1985] O. Lichtenstein and A. Pnueli. Checking the �nite-state concurrent programs satisfy their linear speci�cations. In Proc. 13th ACMSymp. on Principles of Programming Languages, pages 97{107, 1985.[Manna and Pnueli, 1981] Z. Manna and A. Pnueli. Veri�cation of temporal pro-grams: the temporal framework. In R. S. Boyer and J. S. Moore, editors, TheCorrectness Problem in Computer Science. Academic Press, New York, 1981.[McCarthy et al., 1979] J. McCarthy, M. Sato, T. Hayashi, and S. Igarishi. On themodel theory of knowledge. Technical Report STAN-CS-78-657, Stanford Univer-sity, 1979.[McCarthy, 1968] J. McCarthy. Programs with common sense. In M. Minsky, ed-itor, Semantic Information Processing, pages 403{418. MIT Press, Cambridge,Mass., 1968. Part of this article is a reprint from an an article by the same ti-tle, in Proc. Conf. on the Mechanization of Thought Processes, National PhysicalLaboratory, Teddington, England, Vol. 1, pp. 77{84, 1958.[McCarthy, 1978] J. McCarthy. Formalization of two puzzles involving knowledge.Manuscript, Computer Science Dept., Stanford University, 1978.[Milner, 1980] R. Milner. A Calculus of Communicating Systems. Lecture Notes inComputer Science, Vol. 92. Springer-Verlag, Berlin/New York, 1980.27

[Morris and Nado, 1986] P. H. Morris and R. A. Nado. Representing actions withan assumption-based truth maintenance system. In Proceedings, Fifth NationalConference on Arti�cial Intelligence (AAAI '86), pages 13{17, 1986.[Moses and Tuttle, 1988] Y. Moses and M. R. Tuttle. Programming simultaneousactions using common knowledge. Algorithmica, 3:121{169, 1988.[Moses, 1988] Y. Moses. Resource-bounded knowledge. In M. Y. Vardi, editor,Proc. Second Conference on Theoretical Aspects of Reasoning about Knowledge,pages 261{276. Morgan Kaufmann, San Francisco, Calif., 1988.[Nait Abdallah, 1989] M. A. Nait Abdallah. A logico-algebraic approach to themodel theory of knowledge. Theoretical Computer Science, 66(2):205{232, 1989.[Nilsson, 1986] N. Nilsson. Probabilistic logic. Arti�cial Intelligence, 28:71{87, 1986.[Parikh and Ramanujam, 1985] R. Parikh and R. Ramanujam. Distributed process-ing and the logic of knowledge. In R. Parikh, editor, Proc. Workshop on Logics ofPrograms, pages 256{268, 1985.[Parikh, 1991] R. Parikh. Monotonic and nonmonotonic logics of knowledge. Fun-damenta Informaticae, 15(3,4):255{274, 1991.[Pearl and Verma, 1987] J. Pearl and T. Verma. The logic of representing dependen-cies by directed graphs. In Proceedings, Sixth National Conference on Arti�cialIntelligence (AAAI '87), pages 374{379, 1987.[Queille and Sifakis, 1982] J. P. Queille and J. Sifakis. Speci�cation and veri�cationof concurrent systems in CESAR. In Proc. 5th Int'l Symp. on Programming,Lecture Notes in Computer Science, Vol. 137, pages 337{371. Springer-Verlag,Berlin/New York, 1982.[Reiter, 1984] R. Reiter. Towards a logical reconstruction of relational databasetheory. In M. L. Brodie, J. Mylopoulos, and J. W. Schmidt, editors, On ConceptualModelling, pages 191{233. Springer-Verlag, Berlin/New York, 1984.[Rosenschein and Kaelbling, 1986] S. J. Rosenschein and L. P. Kaelbling. The syn-thesis of digital machines with provable epistemic properties. In J. Y. Halpern,editor, Theoretical Aspects of Reasoning about Knowledge: Proc. 1986 Conference,pages 83{97. Morgan Kaufmann, San Francisco, Calif., 1986.28

[Rosenschein, 1985] S. J. Rosenschein. Formal theories of AI in knowledge androbotics. New Generation Computing, 3:345{357, 1985.[Shoham, 1987] Y. Shoham. A semantical approach to nonmonotonic logics. InProc. 2nd IEEE Symp. on Logic in Computer Science, pages 275{279, 1987.Reprinted in M. L. Ginsberg (Ed.), Readings in Nonmonotonic Reasoning, MorganKaufman, San Francisco, Calif., 1987, pp. 227{250.[Sistla and Clarke, 1985] A. P. Sistla and E. M. Clarke. The complexity of proposi-tional linear temporal logics. Journal of the ACM, 32(3):733{749, 1985.[Sistla and German, 1987] A. P. Sistla and S. M. German. Reasoning with manyprocesses. In Proc. 2nd IEEE Symp. on Logic in Computer Science, pages 138{152, 1987.[Stark, 1981] W. R. Stark. A logic of knowledge. Zeitschrift f�ur Mathematische Logikund Grundlagen der Mathematik, 27:371{374, 1981.[Subramanian and Genesereth, 1987] D. Subramanian and M. R. Genesereth. Therelevance of irrelevance. In Proc. Tenth International Joint Conference on Arti�-cial Intelligence (IJCAI '87), pages 416{422, 1987.[Vardi and Wolper, 1986] M. Y. Vardi and P. Wolper. An automata-theoretic ap-proach to automatic program veri�cation. In Proc. 1st IEEE Symp. on Logic inComputer Science, pages 332{344, 1986.[Vardi, 1982] M. Y. Vardi. The complexity of relational query languages. InProc. 14th ACM Symp. on Theory of Computing, pages 137{146, 1982.[Vardi, 1985] M. Y. Vardi. A model-theoretic analysis of monotonic knowledge. InProc. Ninth International Joint Conference on Arti�cial Intelligence (IJCAI '85),pages 509{512, 1985.[Vardi, 1986] M. Y. Vardi. Querying logical databases. Journal of Computer andSystem Sciences, 33:142{160, 1986. 29

