Model Checking vs. Theorem Proving: A Manifesto *

Joseph Y. Halpern and Moshe Y. Vardi
IBM Almaden Research Center
San Jose, CA 95120-6099, USA

email: {halpern,vardi}@almaden.ibm.com

ABSTRACT: We argue that rather than representing an agent’s knowledge as a
collection of formulas, and then doing theorem proving to see if a given formula
follows from an agent’s knowledge base, it may be more useful to represent this
knowledge by a semantic model, and then do model checking to see if the given
formula is true in that model. We discuss how to construct a model that represents
an agent’s knowledge in a number of different contexts, and then consider how to
approach the model-checking problem.

This is an extended version of a paper that appears in Principles of Knowledge Representation
and Reasoning: Procedings of the Second International Conference; J. A. Allen, R. Fikes, and E.
Sandewall (eds.), pages 325-334, 1991.

1. Introduction

The standard approach in Al to knowledge representation, going back to [Mc-
Carthy, 1968], is to represent an agent’s knowledge as a collection of formulas, which
we can view as a knowledge base. An agent is then said to know a fact if it is prov-
able from the formulas in his knowledge base. This is called in [Rosenschein, 1985]
the “interpreted-symbolic-structures” approach. There are two problems in applying
this approach. The first comes in the difficulty of representing agents’ knowledge in
terms of formulas in some appropriate language. The second lies in the difficulty of
theorem proving. These problems are closely related; the need to use logic to rep-
resent agents’ knowledge necessitates the use of very expressive logics, but the more
expressive a logic, the harder it is to prove theorems in that logic. In this paper, we
argue for a model-theoretic rather than a proof-theoretic approach to the problem.
Essentially, the idea is to represent the agent’s knowledge by a data structure rep-
resenting some semantic model (in the spirit of the “situated-automata” approach
[Rosenschein, 1985; Rosenschein and Kaelbling, 1986]), and replace theorem proving
by model checking, that is, checking whether a given formula is true in the model.

As an example of this approach, consider the context of relational database sys-
tems. Let B be a relational database and let ¢ be a first-order query. The theorem-
proving approach would view B as representing some formula ¢ and would evaluate
the query by trying to prove or disprove pp = . Unfortunately, theorem proving for
first-order logic is undecidable. The model-checking approach, on the other hand,
would check whether ¢ holds in the database B. This can be evaluated in time
polynomial in the size of the data (cf. [Vardi, 1982]).

As another example, consider an agent Alice who knows that, given her current
epistemic state (i.e., the information she has obtained thus far), the world could be
in any one of three possible states. In the possible-worlds approach, this situation
is modeled by a Kripke structure with three possible worlds. As usual, we say that
Alice knows a fact p if p is true in all three of the worlds that Alice considers possible
given her epistemic state.

Since, in particular, all tautologies will be true at all three worlds Alice considers
possible, it follows that Alice knows all propositional tautologies. This may seem
strange. The set of propositional tautologies is well-known to be co-NP-complete.
How can Alice, who after all does not seem to possess any extraordinary reasoning
power, know all tautologies when she can’t prove them? In the model-checking
approach, there is nothing unusual about this fact. Alice knows a propositional
formula @ if ¢ is true in the three states that Alice considers possible. This can be

checked in time linear in the length of . Notice that even though Alice knows all
tautologies (among other facts she knows given her epistemic state), she does not
know which of the facts she knows are tautologies (and probably does not care!).
Thus, the well-known logical omniscience problem [Hintikka, 1975] does not present
the same difficulties in the model-checking approach as it does in the theorem-proving
approach (although, as we shall see, other related difficulties do arise).

The paradigm of model checking arose explicitly in the context of finite-state
program verification. (See [Clarke and Griimberg, 1987] for an overview.) Suppose
we have a finite-state program P (think of P as, for example, a communications
protocol), and we want to know whether it satisfies some specification ¢, which we
assume can be expressed in temporal logic.! It is not hard to completely characterize
the program P by a temporal logic formula @p. (Essentially, ¢p describes all the
possible transitions of P in each possible global state; this is possible since P is a
finite-state protocol.) One way of checking whether P satisfies the specification 1 is
to check if op = ¥ is valid [Manna and Pnueli, 1981]. Unfortunately, the validity
problem for temporal logic is extremely difficult. (Technically, it is exponential-time
complete [Emerson and Halpern, 1985], which most likely makes it much harder than
the validity problem for propositional logic.)

Later, researchers noticed that another approach would work equally well [Clarke
et al., 1986a; Emerson and Clarke, 1982; Queille and Sifakis, 1982]. Rather than
having P be represented by a formula, P can be represented by a Kripke structure
Mp: the states in Mp represent the possible global states of P, and the edges
represent the possible transitions of P. Note that the size (i.e., the number of states)
of Mp is essentially the same as the length of ¢p (viewed as a string of symbols).
Checking whether P satisfies the specification ¥ now amounts to checking if ¥ is
true at the state in Mp that corresponds to the initial state of P. This can be done
in time [inear in the size of Mp and ¢.

Of course, it could be argued that all that this argument shows is that for a special
subclass of formulas (namely, those of the form ¢p =), the validity problem is
significantly simpler than it is in general. Indeed, perhaps this observation should
encourage us to find other subclasses for which the validity problem is solvable in
polynomial time (cf. [Emerson et al., 1989]). However, we would claim that this
argument misses the point. The reason that formulas of the form ¢p = 1 are easy

1Our discussion here presumes the use of branching temporal logic. In the case of linear temporal
logic, the situation is somewhat more complicated, see [Emerson and Halpern, 1985; Sistla and

Clarke, 1985; Lichtenstein and Pnueli, 1985].

to deal with is because pp characterizes a particular state in a particular structure, in
that any state where ¢p is satisfied is isomorphic to the initial state of the structure
defined by P. Thus, for these formulas, the validity problem reduces to a model-
checking problem, and so is tractable.

The model-theoretic approach to finite-state program verification is quite practi-
cal, and several systems based on model checking have been implemented [Clarke and
Griimberg, 1987; Burch et al., 1992]. Moreover, it has been extended to deal with
more complicated protocols and environments (including probabilistic protocols and
assumptions of fairness [Vardi and Wolper, 1986]). In some cases, the assumptions
that are being dealt with (such as fairness) are not even expressible in the language
being used for the specification formula. This is not a hindrance to the model-
theoretic approach. We can often check whether the model satisfies assumptions
that are not expressible in the language.

The core of this paper (Section 2) is devoted to a detailed description of the
model-checking approach, a discussion of potential problems with the approach and
how some might be dealt with by using current techniques, and a comparison of the
model-checking approach and the theorem-proving approach. We also consider (in
Section 3) the logical omniscience problem for the model-checking point of view, and
discuss a logic appropriate for reasoning using the model-checking approach, inspired
by the logic of resource-bounded knowledge presented in [Moses, 1988]. We conclude
in Section 4 with a general discussion of the appropriateness

2. Using the model-theoretic approach
2.1. The Muddy Children Puzzle

Before getting into technical details, we motivate the model-theoretic approach
by applying it to the well-known “muddy children” puzzle. This seems particularly
appropriate for this Festschrift, since McCarthy was one of the pioneers of attempting
to formalize such puzzles using epistemic logics and, indeed, the muddy children
puzzle is a generalization of the wise-men puzzle considered in [McCarthy, 1978].
The version of the muddy children puzzle given here is taken from [Barwise, 1981]:

Imagine n children playing together. The mother of these children
has told them that if they get dirty there will be severe consequences.
So, of course, each child wants to keep clean, but each would love to see
the others get dirty. Now it happens during their play that some of the

children, say k& of them, get mud on their foreheads. Each can see the
mud on others but not on his own forehead. So, of course, no one says a
thing. Along comes the father, who says, “At least one of you has mud
on your head,” thus expressing a fact known to each of them before he
spoke (if £ > 1). The father then asks the following question, over and
over: “[Does any of you know whether] you have mud on your head?”
Assuming that all the children are perceptive, intelligent, truthful, and
that they answer simultaneously, what will happen?

There is a “proof” that the first k—1 times he asks the question, they

will all say “no”, but then the k™" time the dirty children will answer
[14 2

yes”.
The “proof” is by induction on k. For k = 1 the result is obvious:
the dirty child sees that no one else is muddy, so he must be the muddy
one. Let us do & = 2. So there are just two dirty children, ¢ and b. Fach
answers “no” the first time, because of the mud on the other. But, when
b says “no,” a realizes that he must be muddy, for otherwise b would have
known the mud was on his head and answered “yes” the first time. Thus
a answers “yes” the second time. But b goes through the same reasoning.
Now suppose & = 3; so there are three dirty children, a,b,c. Child a
argues as follows. Assume I don’t have mud on my head. Then, by the
k = 2 case, both b and ¢ will answer “yes” the second time. When they
don’t, he realizes that the assumption was false, that he is muddy, and
so will answer “yes” on the third question. Similarly for b and ¢. [The
general case is similar.]

There have been many attempts to describe this type of reasoning within a logic,
particularly in the context of the wise-men puzzle. Besides McCarthy’s own formal-
ization in [McCarthy, 1978], other formalizations (many carried out at McCarthy’s
instigation) can be found in, for example, [Attardi and Simi, 1984; Aiello et al., 1988;
Aiello et al., 1989; Kuo, 1984; Konolige, 1984; Nait Abdallah, 1989; Stark, 1981]. The
wise-men puzzle is essentially a special case of the muddy children puzzle, where there
are three muddy children, and the wise men are queried sequentially rather than si-
multaneously. Fven for this special case, formalizing the puzzle is nontrivial; and
all the previous formalizations involve some mechanism (typically using higher-order
logic or circumscription) for capturing the deduction capabilities of the agents within
the logic. We show how the situation can be characterized model-theoretically, in a
particularly elegant way.

To explain our characterization, we need some preliminaries on modal logic and
the possible-worlds paradigm. We want to describe an agent’s knowledge. The
traditional way to do this is to say that an agent knows a fact ¢ if it is true in
all worlds that the agent considers possible. We capture this by means of a Kripke
structure. A Kripke structure M for n agents is a tuple (5,7, Ky, ..., K,), where S is
a set of possible worlds or states, m associates with each world in S a truth assignment
(propositional or first-order as the case may be), and K; is a binary relation on S.
Intuitively, the truth assignment 7(w) tells us what is true in a world w. The relation
K; is intended to capture the possibility relation according to agent i: (u,v) € K; if
agent ¢ considers world v possible when in world u. We then say agent ¢ knows ¢
at world w in structure M, and write (M, u) | Kip, if ¢ is true in all the worlds v
that agent i considers possible in world u. This captures the intuition that an agent
knows a fact if it is true at all the worlds he considers possible.

Now we return to the muddy children puzzle; much of our discussion is taken from
a forthcoming book [Fagin et al., 1995]. First consider the situation before the father

speaks. Suppose there are n children altogether; we number them 1,...,n. Some of
the children have muddy foreheads, while the rest do not. We can describe a possible
situation by an n-tuple of 0’s and 1’s of the form (x4, ..., z,), where x; = 1 if child s

has a muddy forehead, and z; = 0 otherwise. Thus, if n = 3, then a tuple of the form
(1,0,1) would say that there are exactly two children with muddy foreheads, namely,
child 1 and child 3. Suppose the actual situation is described by this tuple. What
situations does child 1 consider possible before the father speaks? Since child 1 can
see the foreheads of all the children besides himself, his only doubt is about whether
he has mud on his own forehead. Thus child 1 considers two situations possible,
namely, (1,0,1) (the actual situation) and (0,0,1). Similarly, child 2 considers two
situations possible: (1,0,1) and (1,1,1). Note that in general, child 7 will have
the same information in two possible worlds exactly if they agree in all components
except possibly the i*® component.

We can capture the general situation by a Kripke structure M consisting of 2"
states (one for each of the 2" n-tuples). Since child ¢ considers a world possible if
it agrees in all components except possibly the i component, we take (s,t) € K;
exactly if s and ¢ agree in all components except possibly the :*’-component. Notice
that this definition makes K'; an equivalence relation. To complete the description
of the Kripke structure M, we have to define the truth assignment 7. To do this, we
have to decide what the primitive propositions are in our language. We take them to
be {p1,...,pu,p}, where, intuitively, p; stands for “child ¢ has a muddy forehead”,
while p stands for “at least one child has a muddy forehead”. Thus, we define 7 so

that (M, (x1,...,2,)) | pi if and only if «; = 1, and (M, (24,...,2,)) E p if and
only if z; = 1 for some j. Of course, p is equivalent to p; V...V p,, so its truth value
can be determined from the truth value of the other primitive propositions. There
is nothing to prevent us from choosing a language where the primitive propositions
are not independent. Since it is convenient to add a primitive proposition describing
the father’s statement, we do so. This completes the description of M.

While this Kripke structure may seem quite complicated, it actually has an el-
egant graphical representation. We can think of the 2" states in S as nodes in a
graph, and place an edge labeled ¢ between states s and ¢ if ¢ cannot tell apart states
s and t (because they agree in all components other than the ¢ component). Suppose
we ignore self-loops and the labeling on the edges for the moment. Then we have a
structure with 2" nodes, each described by an n-tuple of 0’s and 1’s, such that two
nodes are joined by an edge exactly if they differ in one component. The reader with
a good imagination will see that this defines an n-dimensional cube. The case n = 3
is illustrated in Figure 1.

(1,1,1)
(1,0,1 (0,1,1)
3
(1,0,0 (0,1,0)
1 2
(0,0,0)

Figure 1: The Kripke structure for the muddy children puzzle with n = 3

Intuitively, each child knows which of the other children have muddy foreheads.
This intuition is borne out in our formal definition of knowledge. For example, it is

easy to see that when the actual situation is (1,0, 1), we have (M, (1,0,1)) E Ki—p2,
since in both worlds that child 1 considers possible if the actual situation is (1,0, 1),
child 2 does not have a muddy forehead. Similarly, we have (M, (1,0,1)) | Kips:
child 1 knows that child 3’s forehead is muddy. However, (M, (1,0,1)) E —~Kip;.
Child 1 does not know that his own forehead is muddy, since in the other world he
considers possible—(0,0,1)—his forehead is not muddy.

Returning to our analysis of the puzzle, consider what happens after the father
speaks. The father says p, a fact that is already known to all the children if there are
two or more children with muddy foreheads. Nevertheless, the state of knowledge
changes, even if all the children already know p. Going back to our example with
n = 3, if the initial situation was (1,0, 1), although everyone knew before the father
spoke that at least one child had a muddy forehead, child 1 considered the situation
(0,0,1) possible before the father spoke. In that situation, child 3 would consider
(0,0,0) possible. Thus, before the father spoke, child 1 thought it was possible that
child 3 thought it was possible that none of the children had a muddy forehead.
After the father speaks, it is common knowledge that at least one child has a muddy
forehead. The notion of common knowledge, what everyone knows that everyone
knows that everyone knows ..., or, in McCarthy’s terminology [McCarthy et al.,
1979], what “any fool” knows, plays a crucial role here, as we shall see. We can
represent the change in the group’s state of knowledge graphically (in the general
case) by simply removing the point (0,0,...,0) from the cube, getting a “truncated”
cube. (More accurately, what happens is that the node (0,0,...,0) remains, but all
the edges between (0,0,...,0) and nodes with exactly one 1 disappear, since it is
common knowledge that even if only one child has a muddy forehead, after the father
speaks that child will not consider it possible that no one has a muddy forehead.)
The situation is illustrated in Figure 2.

We next show that each time the children respond to the father’s question with
a “no”, the group’s state of knowledge changes and the cube is further truncated.
Consider what happens after the children respond “no” to the father’s first question.
We claim that now all the nodes with exactly one 1 can be eliminated. (Or, more
accurately, the edges to these nodes from nodes with exactly two 1’s all disappear
from the graph. Nodes with one or fewer 1’s are no longer reachable from nodes with
two or more 1’s. If there are in fact two or more children with muddy foreheads, then
it is common knowledge among all the children that there are at least two children
who have muddy foreheads.) The reasoning parallels that done in the “proof” given
in the story. If the actual situation were described by, say, the tuple (1,0,...,0),
then child 1 would initially have considered two situations possible: (1,0,...,0) and

(1,1,1)

(1,0,1 (0,1,1)
3
(1,0,0 ! 2 (0,1,0)
(0,0,1

Figure 2: The Kripke structure after the father speaks

(0,0,...,0). Since once the father speaks it is common knowledge that (0,0,...,0)
is not possible, he would then know that the situation is described by (1,0,...,0),
and thus would know that his own forehead is muddy. Once everyone answers “no”
to the father’s first question, it is common knowledge that the situation cannot
be (1,0,...,0). (Note that here we must use the assumption that it is common
knowledge that everyone is intelligent and truthful, and so can do the reasoning
required to show (1,0,...,0) is not possible.) Similar reasoning allows us to eliminate
every situation with exactly one 1. Thus, after all the children have answered “no”
to the father’s first question, it is common knowledge that at least two children have
muddy foreheads.

Further arguments in the same spirit can be used to show that after the children
answer “no” k times, we can eliminate all the nodes with at most k& 1’s (or, more
accurately, disconnect these nodes from the rest of the graph). We thus have a
sequence of Kripke structures, describing the children’s knowledge at every step in
the process. Essentially, what is going on is that if, in some node s, it becomes
common knowledge that a node ¢ is impossible, then all edges from every node u
reachable from s to ¢t are eliminated. (This situation is even easier to describe once
we add time to the picture. We return to this point in the next section.)

After k£ rounds of questioning, it is common knowledge that at least £+ 1 children
have mud on their foreheads. If the true situation is described by a tuple with exactly

k+1 1’s, then before the father asks the question for the (k4 1) time, those children
with muddy foreheads will know the exact situation, and in particular know their
foreheads are muddy, and consequently answer “yes”. Note that they couldn’t answer

“yes” any earlier, since up to this point each child with a muddy forehead considers
it possible that he did not have a muddy forehead.

We contend that this model-based argument gives a much clearer indication of
what is going on with this puzzle than any of the previous formalizations that at-
tempted to describe the theorem-proving abilities of the agents within a formal logic.
The reader should note that our reasoning about the puzzle applies to any number
n of children and any number k& < n of dirty children. In contrast, the theorem-
proving approaches to the puzzle usually deal with some fixed & and n (typically
n = k = 3). The ability to deal with a parametrized family of models, which is
important in many instances of common-sense reasoning (cf. [Kaufmann, 1991]),
is an important feature of the model-checking approach; see [Clarke et al., 1986b;
Sistla and German, 1987].

2.2. What is the appropriate semantic model?

The construction of the semantic model for the muddy children puzzle was some-
what ad hoe. Clearly, if we are to apply the model-theoretic approach in general, we
need techniques for describing and constructing the semantic model, and techniques
for checking if a formula is true in that model. We consider the first issue in this
subsection, and leave the second to the next subsection.

Many Al applications deal with agents interacting among themselves and/or with
an external environment.? In such a setting, we believe that the possible-worlds
paradigm yields the appropriate semantic model. Thus, we would like to model a
system of interacting agents as a Kripke structure. To do so, we use the formal model
of [Fagin et al., 1992; Halpern and Fagin, 1989] (which in turn is based on earlier
models that appeared in [Halpern and Moses, 1990; Parikh and Ramanujam, 1985;
Chandy and Misra, 1986; Rosenschein and Kaelbling, 1986]). We briefly describe
the formal model here, since we shall make use of it later, referring the reader to
[Halpern and Fagin, 1989] for more details.

We assume that at each point in time, each agent is in some local state. Informally,

?The notion of “agent” should be taken rather loosely here. An agent can be a robot observing
an environment, a knowledge base (or knowledge bases) being told information, or a processor in a
parallel machine. Everything we say applies in all of these contexts.

this local state encodes the information it has observed thus far. In addition, there is
also an environment state, which keeps track of everything relevant to the system not
recorded in the agents’ states. A global state is a sequence (s, s1,...,8,) consisting
of the environment state s. and the local state s; of each agent ¢. A run of the
system is a function from time (which, for ease of exposition, we assume ranges over
the natural numbers, although we could easily take it to range over the reals) to
global states. Thus, if r is a run, then r(0),r(1),... is a sequence of global states
that, roughly speaking, is a complete description of what happens over time in one
possible execution of the system. We take a system to consist of a set of runs.
Intuitively, these runs describe all the possible sequences of events that could occur
in a system.

Given a system R, we refer to a pair (r,m) consisting of a run r € R and
a time m as a point. The points can be viewed as worlds in a Kripke structure.
We say two points (r,m) and (', m’) such that r(m) = (s, s1,...,8,) and r'(m') =
(sL,sh,...,8.,) are indistinguishable to agent ¢, and write (r,m) ~; (r',;m’), is s; = s,
i.e., if agent ¢ has the same local state at both points. We take ~; to play the role
of the possibility relation K;; note that K; is an equivalence relation under this

interpretation.

An interpreted system is a pair (R, 7) consisting of a system R together with a
mapping 7 that associates a truth assignment with each point. The semantics of
knowledge formulas in interpreted systems is identical to that in Kripke structures.
In particular, given a point (r,m) in an interpreted system Z = (R, w), we have
(Z,r,m) E Ko if (Z,7',m’) |= ¢ for all points (', m’) such that (', m') ~; (r,m).
Notice that under this interpretation, an agent knows ¢ if ¢ is true at all the situa-
tions the system could be in, given the agent’s current information (as encoded by
its local state).

For a given distributed protocol, it is often relatively straightforward to construct
the system corresponding to the protocol. The local state of each process can typi-
cally be characterized by a number of internal variables (that, for example, describe
the messages thus far received and the values of certain local variables), and there is
a transition function that describes how the system changes from one global state to
another. (See, for example, [Halpern and Zuck, 1992] for a detailed example of the
modeling process and a knowledge-based analysis of a distributed protocol.) In the
case of the muddy children puzzle, there are 2" runs, one corresponding to each ini-
tial situation. The n-dimensional cube we started with describes the initial situation:
that is, the Kripke structure consisting just of the time 0 points. The “truncated
cubes” are the Kripke structures consisting of time m points, for m = 1,2.3,... By

10

viewing the system as a set of runs, we bring time into the picture in a natural way,
and see that, in fact, nodes do not disappear, only edges. More accurately, while two
runs may be joined by an edge at time m, there may not be an edge between them
at time m 4 1, because the agent that couldn’t distinguish them at time m acquired
some information that allowed him to distinguish them at time m + 1. (See [Halpern
and Fagin, 1989] for a detailed description of the set of runs corresponding to the
muddy children puzzle.)

For knowledge-based applications, the modeling problem may be harder because
of the difficulty in describing the state space. Basically, it is not clear how to describe
the states when they contain information about agents’ knowledge. In this context,
the knowledge structures approach suggested in [Fagin et al., 1991] may prove useful
(cf. [Hamilton and Delgrande, 1989; Lejoly and Minsoul, 1990]).

Suppose we have constructed a model of the system. Provided that we can
completely characterize an agent’s local state s by a formula @, then we can reduce
the problem of checking whether an agent in local state s knows ¢ to checking the
validity of ¢s = ¢, since agent ¢ knows ¢ in local state s if ¢ is true at all possible
worlds where its local state is s. However, being able to characterize an agent’s
local state by means of a formula will almost certainly require the use of a very
expressive logic, for which theorem proving is quite intractable. The model-checking
approach, on the other hand, does not require that local states be encodable as
formulas. Thus, it does not require resorting to a logic that is more expressive than
necessary to express the assertion .

An important issue to consider when comparing the two approaches is that of
representation. The theorem-proving approach requires us to represent the agent’s
knowledge by a collection of formulas in some language. The model-checking ap-
proach instead represents the agent’s knowledge as a local state in some structure.
We have, however, complete freedom to decide on the representation of the local
state and the structure. There are applications that arise frequently in Al where
the logical choice for the representation is in terms of formulas. For example, the
problem-solving system STRIPS represents a state by a set of first-order formulas;
operations on the state are represented by adding certain formulas and deleting others
[Fikes and Nilsson, 1972]. As another example, Levesque [Levesque, 1984a] studies
knowledge bases (KBs) where we have TELL and ASK operations. After the KB

is told a sequence of facts, we should be able to represent the situation using the set

11

k of facts that it has been told.> * What Kripke structure does this represent?

The first thing we have to decide is what the global states are going to be. There
is only one agent in the system, namely, the KB itself, so a global state will be a pair
consisting of the environment state and the KB’s local state. As we said above, we
can identify the KB’s local state with the formulas that it has been told. What about
the environment? Since we assume that there is a real world external to the KB, we
can take the environment to be a complete description of the relevant features of the
world. We model this by taking the environment state to be a relational structure.”
Thus, a global state is a pair (A,), where A is a relational structure (intuitively,
describing the world) and & is a formula (intuitively, the conjunction of the facts the

KB has been told).

Next we have to decide what the allowable global states are. This turns out to
be quite sensitive to the expressiveness of the KB. Suppose we assume that the KB
is assertion-based, i.e, it is told only facts in the assertion language and no facts
about its knowledge. Then we can restrict attention to global states (A, x) where
the formula & is true in A. (This captures the assumption that the KB is only told
true facts about the world.) If we make no further restrictions, then, according to
our definition of knowledge, the knowledge base KB knows a fact ¢ in a state k if
¢ holds in all the global states of the form (A, k). But that means that the KB
knows @ in a state x if ¢ holds in all the models of k or, equivalently, if ¢ is a logical
consequence of k.

This example already shows how the model-checking approach can be viewed as

3To model the evolution of the knowledge base, one has to use some temporal structure where
each point is represented by a set of formulas. See [Morris and Nado, 1986] and references therein
for a discussion of such a model.

*Although it may indeed be reasonable in many cases to represent a situation by the set of facts
an agent has been told, note that by doing so we are assuming (among other things) that the KB
is being told facts about a static situation, so that when the information arrived is irrelevant. For
example, if we consider propositions whose truth may change over time, it may be that at some
point the KB is told ¢ and then later it is told =¢. We do not necessarily want to view the KB as
being in an inconsistent state at this point. We can get around this difficulty by augmenting our
representation to include time, so that “¢ at time 3” would not be inconsistent with “—p at time 4”.
We can also imagine a more sophisticated KB that discards an earlier fact if it is inconsistent with
later information. However, such an approach quickly leads to all the difficulties one encounters in
general with updating beliefs (see, e.g., [Fagin et al., 1983; Gardenfors, 1988]). For example, what
do we do if we have three facts that are pairwise consistent, but whose conjunction is inconsistent?
Which of the three facts do we discard?

%A relational structure consists of a domain of individual elements, and an assignment of func-
tions and relations to the function and relation symbols of the assertion language.

12

a generalization of the theorem-proving approach. But the model-checking approach
gives us added flexibility. For example, consider the closed-world assumption [Reiter,
1984], where any fact not explicitly stored in the database is taken to be false.
The need for such an assumption about negative information stems from the fact
that in any complex application, the number of negative facts vastly outnumbers
the number of positive ones, so that it is totally infeasible to explicitly represent
the negative information in the database. We can capture this assumption model-
theoretically by restricting attention to pairs (A, k) where not only is k true in A,
but every atomic formula P(dy,...,d,) not implied by & is false in A. While the
closed-world assumption can be formalized in first-order logic, which means that
we can use the theorem-proving approach to query closed-world knowledge bases
[Reiter, 1984], analyzing the problem from the model-checking perspective leads to
a complete characterization of the complexity of query answering, and furthermore,
it enables one to deal with higher-order queries, which are not usually amenable to
the theorem-proving approach [Vardi, 1986].

The closed-world assumption is only one of many we might consider making to
restrict attention to only certain (A,). As Shoham [Shoham, 1987] observed, most
forms of nonmonotonic reasoning can be viewed as attempts to restrict attention to
some collection of preferred pairs. The focus in many of the works on nonmonotonic
reasoning is on using some logical formalism to describe the set of preferred mod-
els. This is necessary if one wishes to apply the theorem-proving approach. Our
contention is that theorem proving is just one way to evaluate queries and not neces-
sarily the optimal way. From our point of view, the right question is not whether one
can prove if an assertion ¢ follows from a knowledge base k, using some nonmono-
tonic logic, but rather if ¢ holds in the Kripke structure represented by & (where the
nonmonotonicity is captured by restricting attention to a preferred set of possible
worlds).

Even without the complication arising from the notion of preference, the situation
gets more complicated if we assume that the KB is told facts that include information
about its own knowledge, i.e., the specification is knowledge-based. As pointed out
in [Levesque, 1984al, this can be quite important in practice. For example, suppose
a KB is told the following facts about a small group of people: “John is a teacher”,
“Mary is a teacher”, and “you know about all the teachers”. Then we expect the
KB to know that Bill is not a teacher (assuming it knows that Bill is distinct from
Mary and John). Intuitively, this is because the three assertions together restrict the
set of possible worlds to ones where only John and Mary are teachers.

How can we model this? That is, what pairs (A, k) should we allow now (where

13

K is the conjunction of the three formulas mentioned above)? Clearly, taking pairs
(A,) such that & is true in A will not work, since a relational structure A does
not determine the truth of formulas involving knowledge. The answer is that when
we have a knowledge-based specification, we cannot select the allowable states one
at a time, even if we allow some notion of preference. Rather, it is the collection
of all possible states that has to be consistent with the KB. Thus, we cannot just
focus on the global states; we have to consider the whole resulting Kripke structure.
Intuitively, we are trying to describe a Kripke structure consisting of a collection of
pairs (A, k) such that s is true in the resulting Kripke structure. (Notice that the
truth of k depends on the whole Kripke structure, not just on A.)

Just as there are potentially many states consistent with a given assertion-based
specification, there are potentially many Kripke structures consistent with a given
knowledge-based specification. We can use some notion of preference to select a
unique Kripke structure. A popular notion of preference is one that tries to circum-
scribe the KB’s knowledge. The idea is to view the knowledge specified in the KB
as all that is known. Thus, this preference can be viewed as a closed-world assump-
tion at the knowledge level. This notion has received a lot of attention in the past
decade [Fagin et al., 1991; Halpern and Moses, 1984; Konolige, 1984; Levesque, 1981;
Levesque, 1984a; Levesque, 1990; Parikh, 1991; Vardi, 1985].

So far we have considered only situations with a single agent. In such situations,
Kripke structures degenerate to essentially sets of worlds. Many Al applications,
however, deal with multiple interacting agents. It is when we try to give formal
semantics to sentences such as “Dean doesn’t know whether Nixon knows that Dean
knows that Nixon knows about the Watergate break-in” that the full power of Kripke
structures comes into play. In such situations, circumscribing the agents’ knowledge

is highly nontrivial (cf. [Fagin et al., 1991; Parikh, 1991; Vardi, 1985]).

To summarize, in relatively simple settings it may not be too difficult to describe,
implicitly or explicitly, the set of runs that characterize the system, and thus we can
get a Kripke structure, which is the appropriate semantic model. Preference criteria
and defaults may make this task more difficult, but we expect that even in this case,
the task will become manageable as our understanding of these notions deepens.

2.3. Model checking

Suppose we have somehow constructed what we consider to be the appropriate
semantic model. We now want to check if a given formula ¢ is true in a particular

14

state of that model.

Checking whether an arbitrary formula in the extended language holds in a given
world of a given Kripke structure has two components: we have to be able to check
whether assertions (i.e., knowledge-free formulas) hold in a given state (we call this
assertion checking), and check whether knowledge formulas (i.e., formulas of the form
K;p) hold in a given state. If we can do both of these tasks, then we can handle
arbitrary formulas by induction on the structure of the formula. Since checking
whether a knowledge formula holds involves quantification over the possible worlds,
the complexity of model checking depends on (and is typically polynomial in the
product of) three quantities: the complexity of assertion checking, the size of the
given Kripke structure, and the size of the formula. Thus, our ability to do model
checking efficiently depends crucially on our ability to do assertion checking efficiently
and our ability to deal with “large” structures.

For propositional languages, assertion checking is quite easy: it can be done
in linear time. Adding modalities for knowledge does not significantly complicate
things. Given a finite Kripke structure M = (S, 7,K4,...,K,), define ||M]|| to be
the sum of the number of states in S and the number of pairs in K;, ¢ = 1,...,n.
Thus, ||M]|| is a measure of the size of the Kripke structure M. Let || be the length
of , viewed as a string of symbols.

Proposition 2.1.: There is an algorithm that checks if a propositional formula
is satisfied in a structure M. The algorithm runs in time O(||M|| x |¢]).

Proof: Let ¢q,...,pr be the subformulas of ¢, listed in order of length, with ties
broken arbitrarily. Thus, we have ¢, = ¢, and if ¢; is a subformula of ¢;, then
i < j. It is easy to check that there are at most |¢| subformulas of ¢, so we must
have k& < |¢|. An easy induction on k' shows that we can label each state s in M
with ¢; or =g, for 7 = 1,... k', depending on whether or not ¢; is true at s, in
time O(K'||M]||). The only nontrivial case is if ¢, is of the form K;p;, where 5’ < j.
We label a state s with K, iff each state ¢ such that (s,t) € K, is labeled with ¢ ;.
Assuming inductively that each state has already been labeled with ¢ or —p;, this
step can clearly be carried out in time O(||M]|), as desired. }

Things get more complicated once we move to first-order languages. Even asser-
tion checking may be difficult. If we consider structures with infinite domains, it is
not always clear how to represent them, let alone do assertion checking.® Even if we

SRecent works [Kanellakis et al., 1990; Kabanza et al., 1990] address special cases of assertion
checking for infinite structures.

15

restrict attention to structures with finite domains, assertion checking may be very
difficult due to the size of the domain. In general, to check the truth of a formula
such as Vap(x), we may have to check the truth of ¢(d) for each domain element d.

Even if assertion checking is easy, we still have to cope with the multitude of
possible worlds. For example, in the context of incomplete knowledge bases, the
number of possible worlds can be exponential in the size of the knowledge base, which
makes query evaluation intractable [Vardi, 1986]. We note, however, that the fact
that the number of possible worlds is quite large does not automatically mean that
it is hard to check all knowledge formulas. The results of [Dwork and Moses, 1990;
Moses and Tuttle, 1988] demonstrate that some knowledge formulas of interest can
be evaluated efficiently in certain contexts despite an exponential number of possible
worlds.

What can we do to deal with situations where the number of possible worlds or the
number of domain elements is too large to handle? There are a number of approaches
one could pursue. For one thing, we might hope to be able to find restricted (but still
interesting) subclasses of formulas for which we can do model checking efficiently in
certain restricted (but still interesting) subclasses of structures, just as we now have
techniques for doing inference efficiently with certain subclasses of formulas (such as
Horn clauses). Indeed, IS-A formulas (which essentially correspond to Horn clauses,
although see [Brachman, 1985] for some caveats) can be checked very efficiently in

IS-A hierarchies.

A second approach is to consider heuristics and defaults. Since the difficulty in
model checking arises when we have large structures and/or large domains, we need
good heuristics for handling such situations. We in fact use such heuristics all the
time in our daily life. For example, if there are too many possibilities (i.e., too many
possible worlds), we focus attention on only a few (the ones we deem to be the “most
relevant” according to some metric or “most likely” according to some probability
distribution), ignoring the rest. Consider a situation where Alice is asked if (she
knows that) ¢ is the case. To answer this question, Alice would have to check all the
worlds she considers possible to see if ¢ holds in all of them. There may be 1,000, 000
worlds that Alice considers possible, which means that she has a lot of checking to
do. However, if Alice has a probability space on these worlds, then there may be a
subset of worlds of size 1,000 that has probability .99. Alice could check these 1,000
worlds; if ¢ holds in all of them, then this might be taken as sufficient “evidence”
for Alice to say that ¢ indeed holds. Even without explicit probability, Alice might
still have a notion of which of the 1,000,000 worlds are most likely or most relevant.
Similarly, if we have a large domain and want to check the truth of a formula such

16

as Vap(x), we can use heuristics and defaults to cut down the search space (perhaps
checking (d) for only a few potentially “abnormal” domain elements).

Yet another approach would be to have a notion of what features are “relevant”
to the problem, and identify all worlds that agree on irrelevant features, thus cutting
down on the search space. Being able to do this depends both on being able to
identify relevant notions and on being able to check relevant features rapidly. Going
back to our previous example, suppose @ is a propositional formula such as (p; V
p2) A (mp2 V p3), where py, pa, and ps are primitive propositions. It is easy to see
that ¢ is true unless p; and at least one of p, or ps are false. The truth values of all
other propositions are clearly irrelevant to the truth of ¢. Depending on how Alice’s
possible worlds are represented, it may be that Alice can check that Alice does not
consider a world possible where p; and at least one of py and ps are false, without
checking all 1,000,000 possible worlds. We remark that formalisms for expressing
and reasoning with irrelevance have been developed, both probabilistic (for example,
[Pearl and Verma, 1987]) and non-probabilistic [Subramanian and Genesereth, 1987],
but this is an area where much further work remains to be done.

As all these approaches show, much depends on precisely how the worlds are
generated and represented. Finding appropriate representations is, of course, a major
open problem.

A great deal of effort in theorem proving has been expended on finding heuristics
that work well for the formulas that arise in practice. Analogously, in model checking,
it would be useful to find heuristics that work well for structures that arise in practice.
Although the work on model checking in this regard is still in its infancy, the early
results appear quite promising [Holtzmann, 1988; Burch et al., 1992]. For example,
when verifying circuits, we are not dealing with arbitrary Kripke structures. The
regularity in the structure suggests heuristics that seem to work well in structures
with up to 10%° states [Burch et al., 1992]!

Of course, techniques need to be developed to allow us to use these heuristics
and defaults in a principled way. Much of the recent work in “vivifying” can be
viewed as being in this spirit [Etherington et al., 1989; Levesque, 1986]. The idea is
to cut down on the number of possibilities by filling in some (hopefully) inessential
details. Work on a possible-worlds framework for probability [Bacchus, 1990; Fagin
and Halpern, 1991; Halpern, 1990; Nilsson, 1986] may provide insights into using
probabilistic heuristics in a principled way to cut down the search space.

Notice that by using defaults in this way, we are led naturally to nonmonotonicity.
However, rather than the logic being nonmonotonic, the model checking is nonmono-

17

tonic. We might withdraw some of our conclusions about a formula being true in a
given structure if we get further information that leads us to believe that the default
assumptions we used to simplify the model-checking problem are not correct.

3. Modeling resource-bounded agents

As is well known, the standard possible-world model for knowledge suffers from
the logical omniscience problem: agents know all tautologies, and know all the logical
consequences of their knowledge (that is, we have the inference rule “from ¢ infer
K;¢” and the axiom “K;o A Ki(¢ =) = K;1”). The logical omniscience problem
has been viewed as a major shortcoming of the possible-world framework. Various
attempts have been made to overcome it (see, for example, [Fagin and Halpern,
1988; Levesque, 1984b] and the references therein). The logical omniscience problem
is somewhat transformed when viewed from a model-checking perspective. As we
mentioned earlier, it is no longer so unreasonable that an agent knows all tautologies
(although the agent will typically not know which of the many formulas it knows to
be true are in fact tautologies). Nevertheless, as we observed earlier, model checking
can also be intractable. It can still be the case, given our definition, that an agent
can “know” a formula without being able to compute that it knows the formula.
This can be viewed as the reincarnation of the logical omniscience problem in the
model-checking framework.

The source of the problem is our definition of knowledge as truth in all possible
worlds. This definition does not take into account the computational effort needed to
evaluate truth in all possible worlds. We would like to have a formal way of capturing
the knowledge of a resource-bounded agent in the model-checking framework. In
[Moses, 1988], Moses presents a logic of resource-bounded knowledge, where he tries
to make sense out of notions such as “an agent can compute ¢ in polynomial time”.
His approach is very much in the spirit of the model-theoretic approach advocated
here, since what it means for him to be able to compute ¢ in polynomial time is
not that ¢ can be proved (in some appropriate axiom system) in polynomial time,
but rather that the truth of ¢ at a particular state in a structure can be computed
in polynomial time.” We informally discuss some details of Moses’ logic here and
relate it to our framework; the reader is encouraged to consult [Moses, 1988] for more

A related approach to the logical omniscience problem from the theorem-proving viewpoint was
proposed by Konolige [Konolige, 1986]. In his approach the agent is given some initial information.
What it knows is then what it can deduce from this initial information, using a particular axiom
system, in a bounded number of steps.

18

details and motivation.

Moses uses the distributed systems model discussed in the previous section, where
a system is identified with a set of runs. As we mentioned above, the definition
of what it means for K;p to hold at a point in a run does not take into account
complexity-theoretic considerations. We want to define a notion K7 ¢ which intu-
itively amounts to “agent ¢ knows ¢ and, moreover, can compute this knowledge in
polynomial time.”® Notice that whether (Z,r,m) = K;¢ depends only on r;(m),
agent 1’s local state at the point (r,m). If we say that agent ¢ knows how to compute
@ in polynomial time, we take this to mean that no matter what state v is in, v can
compute p. To capture this intuition, we require that there exist an algorithm A that
gets 1’s local state as input, and computes in polynomial time whether ¢ is implied
by the local state. Notice that there is a slight subtlety here: we have said that A
must run in polynomial time, but we have not said what the time is polynomial in.
We sidestep this issue by simply assuming that with each local state, there is some
parameter; the computation must be polynomial in that parameter. For example,
the parameter can be the number of agents in the system, a particular shared input
(this is appropriate in cryptographic applications; see [Halpern et al., 1988]), or the
time (since this corresponds roughly to the number of pieces of information that the
agent has received thus far, so the computation would be polynomial in the amount
of information held by the agent). To summarize, given an interpreted system Z and
a point (r,m) in the system, we say that (Z,r,m) | KFp if

L. (Z,r,m) = Kip, and

2. there exists an algorithm A that takes as input s, a local state of agent ¢, and
returns “Yes” or “No”, depending on whether K;p holds in all (resp. none) of
the points where ¢ has local state s; moreover, A runs in time polynomial in
the parameter associated with s.

The logic of resource-bounded reasoning provides an elegant framework for ana-
lyzing resource-bounded notions of knowledge. It is shown to be useful for analyzing

8We remark that polynomial time knowledge can be viewed as a special case of explicit knowledge
in the logic of general awareness of [Fagin and Halpern, 1988]. In the logic of general awareness,
there are operators K;, B;, and A;, where K;p, B;p and A;p represent, respectively, that agent
¢ implicitly knows ¢, explicitly knows ¢, and is aware of ¢. An agent explicitly knows ¢ exactly
if he implicitly knows ¢ and is aware of ¢; thus, the equivalence B;y = (K;p A A;p) holds. In
the logic of resource-bounded reasoning, polynomial-time knowledge (K7) plays the role of explicit
knowledge, the usual notion of knowledge (K;) plays the role of implicit knowledge, and “being
able to compute in polynomial time” plays the role of awareness.

19

distributed protocols in [Moses, 1988], and it is extended in a number of ways in
[Halpern et al., 1988] to deal with cryptographic protocols. Some of these extensions
suggest further modifications which make the logic more applicable to AI. We discuss
these here.

First note that if K¢ holds, then there is some polynomial time algorithm that
will allow the agent to compute whether he knows ¢ at any state in the structure.
However, the agent may not know what that algorithm is. More realistically, rather
than having access to all polynomial time algorithms, an agent may have several
algorithms that she can try to use to figure out whether she knows ¢. It is easy
to modify the logic to handle this situation. Let B be some set of algorithms. We
then define (Z,r,m) = KPyp just as we did (Z,r,m) | K, except that in the
second clause, we require that A € B, rather than that A is polynomial time. (Of
course, if we take B to consist of all polynomial-time algorithms, then we recover the
definition of K7 .) Thus, if Alice tries exactly one of two algorithms to figure out if
¢ is true, then B would consist of those two algorithms, and K4, would hold at
a point exactly if Alice knows ¢ and she can compute this fact using one of her two
algorithms. We can imagine that different agents have access to different algorithms;
an agent with more expertise would have access to more and better algorithms. In
this way, we can model a situation where one agent knows how to do something while
another does not.

This framework can also be extended to capture learning. One way that an agent
might learn is that it learns new algorithms. Thus, rather than having the class of
algorithms B being fixed, we can imagine that it is a function of the state, which
may change over time. Formally, we could expand the notion of a Kripke structure
to include a function B that associates with each state s and agent i, the set of
algorithms B(7, s) that agent ¢ has at his disposal at state s. We can then define
(i’s)c,o holds at state s,
that is, if agent ¢« knows ¢ and can compute it by using one of the algorithms in
B(i,s). We omit the formal details here; they are all straightforward.

X;ip—agent 1 explicitly knows ¢—to be true at state s if KZ»B

Finally, we remark that in practice it may seem to be too strong a requirement
for Alice to have to know ¢. For example, it may be enough for Alice to know ¢
with high probability, or to let her algorithms make occasional mistakes, as long as
they are not too frequent. It is not too hard to modify our definitions to get such
probabilistic notions of computable knowledge; these issues are discussed in more
detail in [Halpern et al., 1988]. These probabilistic notions where error is allowed
may give us a principled way to deal with the problem of having too many states in

20

the model to do efficient model checking. This issue deserves further exploration.

4. Discussion and conclusions

We have argued here for a model-theoretic rather than a proof-theoretic approach
to reasoning about knowledge. We do not mean to suggest that the model-theoretic
approach is a panacea. There are difficulties to be overcome here, involving how to
find the model and how to do model checking on large structures, just as there are
difficulties in the theorem-proving approach. Our hope is that the model-theoretic
perspective will suggest new heuristics and new approaches. We feel that many of the
approaches that are currently being tried, including the preferred models approach
to nonmonotonic reasoning and the idea of “vivifying” knowledge bases, are also best
understood in the context of the model-checking framework. Thus, this perspective
may allow us to unify a number of current lines of research.

The question still remains, for any particular application, whether to use the
model-theoretic or proof-theoretic approach. At some level, it could be argued that
this is a non-question; at a sufficiently high level, the two approaches converge: With
a sufficiently rich logic, we can certainly characterize a model inside the logic, and
there is nothing in the proof-theoretic approach that prevents us from doing our
theorem proving by using model checking. Similarly, as we have suggested in the
previous sections, the model-checking approach can capture theorem proving: we
simply look at the class of all models consistent with the axioms. Assuming our logic
has a complete axiomatization, if a fact is true in all of them, then it is provable.

However, this convergence obscures the fact that the two approaches have rather
different philosophies and domains of applicability. The theorem-proving approach is
more appropriate when we do not know what the models look like and the best way
to describe them is by means of axioms. In contrast, the model-checking approach is
appropriate when we do know what the models look like and we can describe them
rather precisely, as in the muddy-children puzzle.

We would argue, however, that the model-checking approach has one major ad-
vantage over the theorem-proving approach, which is perhaps not immediately obvi-
ous from the way we have described them. The theorem-proving approach implicitly
assumes that the language for describing the situation (i.e., the system or the model)
is the same as the language for describing the properties of the system in which we
are interested. For example, the situation calculus has been used for both purposes
since McCarthy first introduced it in 1958 (when the first version of [McCarthy,

21

1968] appeared). That we may need rather powerful languages for describing a sit-
uation (typically far more powerful than those needed for describing the properties
we want to prove about the system) is evident already in the muddy children and
the wise-men puzzles.

The model-checking approach allows us to effectively decouple the description of
the model from the description of the properties we want to prove about the model.
This decoupling is useful in many cases besides those where circumscription is an
issue. Consider the case of programming languages. Here we can view the program
as describing the system. (There will be a particular set of runs corresponding to
each program.) We may then want to prove properties of the program (such as
termination, or some invariants). It seems awkward to require that the properties
of the program be expressed in the same language as the model of the program, but
that is essentially what would be required by a theorem-proving approach.

These examples suggest that when using the model-checking approach, it will
probably be useful to have techniques for constructing more complicated models
from simpler models, using various constructors. Work on such techniques has been
a major focus in the study of programming languages for years. (A typical example
is the work on CCS by Milner and his colleagues [Milner, 1980].) Indeed, in almost
any discipline where complicated systems need to be analyzed, there are techniques
for constructing models for a complicated system from simpler components. More
emphasis on a model-checking approach might lead to more work along these lines.
The hope would be that if we have a better understanding of where the models are
coming from, we might be able to devise better techniques for doing model checking.

In summary, we do not expect the model-checking approach to supplant the
theorem-proving approach. Rather, we would hope that techniques from each one
can inspire advances in the other. In any case, we hope this manifesto inspires further
research on model-checking techniques from the Al perspective.

Acknowledgments

The ideas in this paper have been brewing for a while. (A brief paragraph dis-
cussing some of these issues appeared in [Halpern, 1987].) Discussions with Hector
Levesque and Yoram Moses helped us formulate these issues. We would like to thank
Ron Fagin, Adam Grove, David, Israel, Steve Kaufmann, Gerhard Lakemeyer, and
Hector Levesque for useful comments on an earlier draft of this paper.

22

References

[Aiello et al., 1988] L. C. Aiello, D. Nardi, and M. Schaerf. Yet another solution to
the three wisemen puzzle. In Proc. 3rd Int’l. Symp. on Methodologies for Intelligent
Systems, pages 398-407, 1988.

[Aiello et al., 1989] L. C. Aiello, D. Nardi, and M. Schaerf. Reasoning about knowl-
edge and ignorance. In Proc. Int’l. Conf. on Fifth Generation Systems, pages
618-627, 1989.

[Attardi and Simi, 1984] G. Attardi and M. Simi. Reasoning across viewpoints. In
Proc. of ECAT 84, pages 315-325, 1984.

[Bacchus, 1990] F. Bacchus. Representing and Reasoning with Probabilistic Knowl-
edge. MIT Press, Cambridge, Mass., 1990.

[Barwise, 1981] J. Barwise. Scenes and other situations. Journal of Philosophy,
78(7):369-397, 1981.

[Brachman, 1985] R. Brachman. I lied about the trees (or, defaults and definitions
in knowledge representation). The Al Magazine, 6(3):80-93, 1985.

[Burch et al., 1992] J. R. Burch, E. M. Clarke, D. L. Dill, J. Hwang, and K. L.
McMillan. Symbolic model checking: 10?° states and beyond. Information and
Computation, 98(2):142-171, 1992.

[Chandy and Misra, 1986] K. M. Chandy and J. Misra. How processes learn. Dis-
tributed Computing, 1(1):40-52, 1986.

[Clarke and Griimberg, 1987] E. M. Clarke and O. Griimberg. Research on auto-
matic verification and finite-state concurrent systems. In J. F. Traub, B. J. Grosz,

B. W. Lampson, and N. J. Nilsson, editors, Annual Review of Computer Science,
Vol. 2, pages 269-289. Annual Reviews Inc., Palo Alto, Calif., 1987.

[Clarke et al., 1986a] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic
verification of finite-state concurrent systems using temporal logic specifications.
ACM Trans. on Programming Languages and Systems, 8(2):244-263, 1986. An
early version appeared in Proc. 10th ACM Symposium on Principles of Program-
ming Languages, 1983.

23

[Clarke et al., 1986b] E. M. Clarke, O. Griimberg, and M. Browne. Reasoning about
networks with many finite-state processes. In Proc. 5th ACM Symp. on Principles
of Distributed Computing, pages 240-248, 1986.

[Dwork and Moses, 1990] C. Dwork and Y. Moses. Knowledge and common knowl-
edge in a Byzantine environment: crash failures. Information and Computation,

88(2):156-186, 1990.

[Emerson and Clarke, 1982] E. A. Emerson and E. M. Clarke. Using branching time
temporal logic to synthesize synchronization skeletons. Science of Computer Pro-
grammaing, 2:241-266, 1982.

[Emerson and Halpern, 1985] E. A. Emerson and J. Y. Halpern. Decision procedures
and expressiveness in the temporal logic of branching time. Journal of Computer

and System Sciences, 30(1):1-24, 1985.

[Emerson et al., 1989] E. A. Emerson, T. Sadler, and J. Srinivasan. Efficient tempo-
ral reasoning. In Proc. 16th ACM Symp. on Principles of Programming Languages,
pages 166-178, 1989.

[Etherington et al., 1989] D. Etherington, A. Borgida, R. J. Brachman, and
H. Kautz. Vivid knowledge and tractable reasoning: preliminary report. In
Proc. Eleventh International Joint Conference on Artificial Intelligence (IJCAI
'89), pages 1146-1152, 1989.

[Fagin and Halpern, 1988] R. Fagin and J. Y. Halpern. Belief, awareness, and limited
reasoning. Artificial Intelligence, 34:39-76, 1988.

[Fagin and Halpern, 1991] R. Fagin and J. Y. Halpern. Uncertainty, belief, and prob-
ability. Computational Intelligence, 7(3):160-173, 1991.

[Fagin et al., 1983] R. Fagin, J. D. Ullman, and M. Y. Vardi. On the semantics
of updates in databases. In Proc. 2nd ACM Symp. on Principles of Database
Systems, pages 352-365, 1983.

[Fagin et al., 1991] R. Fagin, J. Y. Halpern, and M. Y. Vardi. A model-theoretic
analysis of knowledge. Journal of the ACM, 91(2):382-428, 1991. A preliminary
version appeared in Proc. 25th IEEFE Symposium on Foundations of Computer
Science, 1984.

24

[Fagin et al., 1992] R. Fagin, J. Y. Halpern, and M. Y. Vardi. What can machines
know? On the properties of knowledge in distributed systems. Journal of the
ACM, 39(2):328-376, 1992.

[Fagin et al., 1995] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning
about Knowledge. MIT Press, Cambridge, Mass., 1995.

[Fikes and Nilsson, 1972] R. E. Fikes and N. J. Nilsson. STRIPS: a new approach
to the application of theorem proving to problem solving. Artificial Intelligence,

2:189-208, 1972.

[Gardenfors, 1988] P. Gardenfors. Knowledge in Fluz. MIT Press, Cambridge, Mass.,
1988.

[Halpern and Fagin, 1989] J. Y. Halpern and R. Fagin. Modelling knowledge and
action in distributed systems. Distributed Computing, 3(4):159-179, 1989. A
preliminary version appeared in Proc. jth ACM Symposium on Principles of Dis-
tributed Computing, 1985, with the title “A formal model of knowledge, action,
and communication in distributed systems: preliminary report”.

[Halpern and Moses, 1984] J. Y. Halpern and Y. Moses. Towards a theory of knowl-
edge and ignorance. In Proc. AAAI Workshop on Non-monotonic Logic, pages
125-143, 1984. Reprinted in K. R. Apt (Ed.), Logics and Models of Concurrent
Systems, Springer-Verlag, Berlin/New York, pp. 459-476, 1985.

[Halpern and Moses, 1990] J. Y. Halpern and Y. Moses. Knowledge and common
knowledge in a distributed environment. Journal of the ACM, 37(3):549-587,
1990. A preliminary version appeared in Proc. 3rd ACM Symposium on Principles
of Distributed Computing, 1984.

[Halpern and Zuck, 1992] J. Y. Halpern and L. D. Zuck. A little knowledge goes
a long way: knowledge-based derivations and correctness proofs for a family of

protocols. Journal of the ACM, 39(3):449-478, 1992.

[Halpern et al., 1988] J. Y. Halpern, Y. Moses, and M. R. Tuttle. A knowledge-based
analysis of zero knowledge. In Proc. 20th ACM Symp. on Theory of Computing,
pages 132-147, 1988.

[Halpern, 1987] J. Y. Halpern. Using reasoning about knowledge to analyze dis-
tributed systems. In J. F. Traub, B. J. Grosz, B. W. Lampson, and N. J. Nilsson,

25

editors, Annual Review of Computer Science, Vol. 2, pages 37-68. Annual Reviews
Inc., Palo Alto, Calif., 1987.

[Halpern, 1990] J. Y. Halpern. An analysis of first-order logics of probability. Arti-
ficial Intelligence, 46:311-350, 1990.

amilton an elgrande, . J. Hamilton and J. P. Delgrande. An imvesti-

[Hamil d Delgrande, 1989] S. J. Hamil d J. P. Delgrande. An i i
gation of modal structures as an alternative semantic basis for epistemic logics.
Computational Intelligence, 5:82-96, 1989.

[Hintikka, 1975] J. Hintikka. Impossible possible worlds vindicated. Journal of Philo-
sophical Logic, 4:475-484, 1975.

[Holtzmann, 1988] G. J. Holtzmann. An improved protocol reachability analysis
technique. Software Practice and Experience, 18(2):137-161, 1988.

[Kabanza et al., 1990] F. Kabanza, J.-M. Stevenne, and P. Wolper. Handling infinite
temporal data. In Proc. 9th ACM Symp. on Principles of Database Systems, pages
392-403, 1990.

[Kanellakis et al., 1990] F. Kanellakis, G. M. Kuper, and P. Z. Revesz. Constraint
query languages. In Proc. 9th ACM Symp. on Principles of Database Systems,
pages 299-313, 1990.

[Kaufmann, 1991] S. G. Kaufmann. A formal theory of spatial reasoning. In J. A.
Allen, R. Fikes, and E. Sandewall, editors, Principles of Knowledge Representation
and Reasoning: Proc. Second International Conference (KR '91), pages 347-356.
Morgan Kaufmann, San Francisco, Calif., 1991.

[Konolige, 1984] K. Konolige. Circumscriptive ignorance. In Proc. National Confer-
ence on Artificial Intelligence (AAAI '84), pages 202-204, 1984.

[Konolige, 1986] K. Konolige. A Deduction Model of Belief. Morgan Kaufmann, San
Francisco, Calif., 1986.

[Kuo, 1984] V. Kuo. A formal natural deduction system about knowledge.
Manuscript, Computer Science Dept., Stanford University, 1984.

[Lejoly and Minsoul, 1990] Ph. Lejoly and M. Minsoul. A subjective logic of knowl-
edge. Manuscript, 1990.

26

[Levesque, 1981] H. J. Levesque. The interaction with incomplete knowledge bases:
a formal treatment. In Proc. Seventh International Joint Conference on Artificial

Intelligence (IJCAI "81), pages 240-245, 1981.

[Levesque, 1984a] H.J. Levesque. Foundations of a functional approach to knowledge
representation. Artificial Intelligence, 23:155-212, 1984.

[Levesque, 1984b] H. J. Levesque. A logic of implicit and explicit belief. In Proc. Na-
tional Conference on Artificial Intelligence (AAAI °84), pages 198202, 1984.

[Levesque, 1986] H. J. Levesque. Making believers out of computers. Artificial In-
telligence, 30:81-108, 1986.

[Levesque, 1990] H. J. Levesque. All I know: a study in autoepistemic logic. Artificial
Intelligence, 42(3):263-309, 1990.

[Lichtenstein and Pnueli, 1985] O. Lichtenstein and A. Pnueli. Checking the finite-
state concurrent programs satisfy their linear specifications. In Proc. 13th ACM
Symp. on Principles of Programming Languages, pages 97-107, 1985.

[Manna and Pnueli, 1981] Z. Manna and A. Pnueli. Verification of temporal pro-
grams: the temporal framework. In R. S. Boyer and J. S. Moore, editors, The
Correctness Problem in Computer Science. Academic Press, New York, 1981.

[McCarthy et al., 1979] J. McCarthy, M. Sato, T. Hayashi, and S. Igarishi. On the
model theory of knowledge. Technical Report STAN-CS-78-657, Stanford Univer-
sity, 1979.

[McCarthy, 1968] J. McCarthy. Programs with common sense. In M. Minsky, ed-
itor, Semantic Information Processing, pages 403-418. MIT Press, Cambridge,
Mass., 1968. Part of this article is a reprint from an an article by the same ti-
tle, in Proc. Conf. on the Mechanization of Thought Processes, National Physical
Laboratory, Teddington, England, Vol. 1, pp. 77-84, 1958.

[McCarthy, 1978] J. McCarthy. Formalization of two puzzles involving knowledge.
Manuscript, Computer Science Dept., Stanford University, 1978.

[Milner, 1980] R. Milner. A Calculus of Communicating Systems. Lecture Notes in
Computer Science, Vol. 92. Springer-Verlag, Berlin/New York, 1980.

27

[Morris and Nado, 1986] P. H. Morris and R. A. Nado. Representing actions with
an assumption-based truth maintenance system. In Proceedings, Fifth National

Conference on Artificial Intelligence (AAAI "86), pages 13-17, 1986.

[Moses and Tuttle, 1988] Y. Moses and M. R. Tuttle. Programming simultaneous
actions using common knowledge. Algorithmica, 3:121-169, 1988.

[Moses, 1988] Y. Moses. Resource-bounded knowledge. In M. Y. Vardi, editor,
Proc. Second Conference on Theoretical Aspects of Reasoning about Knowledge,
pages 261-276. Morgan Kaufmann, San Francisco, Calif., 1988.

[Nait Abdallah, 1989] M. A. Nait Abdallah. A logico-algebraic approach to the
model theory of knowledge. Theoretical Computer Science, 66(2):205-232, 1989.

[Nilsson, 1986] N. Nilsson. Probabilistic logic. Artificial Intelligence, 28:71-87, 1986.

[Parikh and Ramanujam, 1985] R. Parikh and R. Ramanujam. Distributed process-
ing and the logic of knowledge. In R. Parikh, editor, Proc. Workshop on Logics of
Programs, pages 256268, 1985.

[Parikh, 1991] R. Parikh. Monotonic and nonmonotonic logics of knowledge. Fun-
damenta Informaticae, 15(3,4):255-274, 1991.

[Pearl and Verma, 1987] J. Pearl and T. Verma. The logic of representing dependen-
cies by directed graphs. In Proceedings, Sizth National Conference on Artificial
Intelligence (AAAI '87), pages 374-379, 1987.

[Queille and Sifakis, 1982] J. P. Queille and J. Sifakis. Specification and verification
of concurrent systems in CESAR. In Proc. 5th Int’l Symp. on Programming,

Lecture Notes in Computer Science, Vol. 137, pages 337-371. Springer-Verlag,
Berlin/New York, 1982.

[Reiter, 1984] R. Reiter. Towards a logical reconstruction of relational database
theory. In M. L. Brodie, J. Mylopoulos, and J. W. Schmidt, editors, On Conceptual
Modelling, pages 191-233. Springer-Verlag, Berlin/New York, 1984.

[Rosenschein and Kaelbling, 1986] S. J. Rosenschein and L. P. Kaelbling. The syn-
thesis of digital machines with provable epistemic properties. In J. Y. Halpern,
editor, Theoretical Aspects of Reasoning about Knowledge: Proc. 1986 Conference,
pages 83-97. Morgan Kaufmann, San Francisco, Calif., 1986.

28

[Rosenschein, 1985] S. J. Rosenschein. Formal theories of Al in knowledge and
robotics. New Generation Computing, 3:345-357, 1985.

[Shoham, 1987] Y. Shoham. A semantical approach to nonmonotonic logics. In
Proc. 2nd IEEE Symp. on Logic in Computer Science, pages 275279, 1987.
Reprinted in M. L. Ginsberg (Ed.), Readings in Nonmonotonic Reasoning, Morgan
Kaufman, San Francisco, Calif., 1987, pp. 227-250.

[Sistla and Clarke, 1985] A. P. Sistla and E. M. Clarke. The complexity of proposi-
tional linear temporal logics. Journal of the ACM, 32(3):733-749, 1985.

[Sistla and German, 1987] A. P. Sistla and S. M. German. Reasoning with many
g
processes. In Proc. 2nd IEEE Symp. on Logic in Computer Science, pages 138—
152, 1987.

[Stark, 1981] W. R. Stark. A logic of knowledge. Zeitschrift fiir Mathematische Logik
und Grundlagen der Mathematik, 27:371-374, 1981.

[Subramanian and Genesereth, 1987] D. Subramanian and M. R. Genesereth. The
relevance of irrelevance. In Proc. Tenth International Joint Conference on Artifi-

cial Intelligence (ILJCAI '87), pages 416-422, 1987.

[Vardi and Wolper, 1986] M. Y. Vardi and P. Wolper. An automata-theoretic ap-
proach to automatic program verification. In Proc. 1st IEEFE Symp. on Logic in
Computer Science, pages 332344, 1986.

[Vardi, 1982] M. Y. Vardi. The complexity of relational query languages. In
Proc. 14th ACM Symp. on Theory of Computing, pages 137-146, 1982.

[Vardi, 1985] M. Y. Vardi. A model-theoretic analysis of monotonic knowledge. In
Proc. Ninth International Joint Conference on Artificial Intelligence (IJCAI 85),
pages 509-512, 1985.

[Vardi, 1986] M. Y. Vardi. Querying logical databases. Journal of Computer and
System Sciences, 33:142-160, 1986.

29

