BLACK BOX CHECKING

DORON PELED

Bell Laboratories

600 Mountain Ave.

Murray Hill, NJ 07974, USA

MOSHEY. VARDI!

Rice University

Department of Computer Science
Houston, TX 77005, USA

MIHALIS YANNAKAKIS
Bell Laboratories

600 Mountain Ave.

Murray Hill, NJ 07974, USA

Abstract Two main approaches are used for increasing the quality stesys: in
model checkingone checks properties of a known design of a systemesiing
one usually checks whether a given implementation, whdsenal structure is
often unknown, conforms with an abstract design. We areésted in the com-
bination of these techniques. Namely, we would like to be abltest whether
an implementation with unknown structure satisfies somergproperties. We
propose and formalize this problem loffack box checkingnd suggest several
algorithms. Since the input to black box checking is not giwvetially, as is the
case in the classical model of computation, but is learneslitih experiments,
we propose a computational model based on games with inetenipiforma-
tion. We use this model to analyze the complexity of the mobl We also
address the more practical question of finding an approatttén detect errors
in the implementation before completing an exhaustivectear

Keywords: Formal methods, Model checking, Specification, Testingifi¢ation.

1 INTRODUCTION

Model checking5] andtesting[16] are two complementary approaches for enhancing
the reliability of systems. Model checking usually dealshméhecking whether the
designof a finite state system satisfies sopreperties(e.g., mutual exclusion or re-
sponsiveness). On the other hand, testing is usually apiglitneactual systenqoften

I'Supported in part by NSF grants CCR-9628400 and CCR-970086d by a grant from the Intel
Corporation. Part of this work was done when this author wearan Visiting Professor at the Weizmann
Institute of Science.

without having access to, or knowledge of its internal strcee It checks whether a
system(or animplementatioh conformswith some design (i.e., informally, has the
same behaviors). Even if access to the internal structutkeofested system is pos-
sible, it is not always a good idea to use it when performirggsteas this may lead
to a bias in the testing process. Furthermore, the wholesyshay be very large
(e.g., millions of lines of code), while we are interestedyan specific aspects of it;
think for example of a typical telephony switch and supposewant to check that the
implementation of a particular feature, such as call wgitimeets certain correctness
properties. Extracting the part of the code that is relefi@mh the whole system, es-
pecially in the case of large legacy systems, is most prghiaf#asible (and is itself
subject to errors). Suppose one is interested in checkiagifsp properties of some
system such as a communication switch or protocol systendeMchecking would
be appropriate for checking properties of a model of thessysbut not checking the
system itself. On the other hand, testing methods can camparsystem with some
abstract design, but usually are not used for checking Bpgcoperties.

One motivation for the current work is the case where accegtdests need to
be performed by a user who does not have access to the desigty the internal
structure of the checked system. Our aim is thus to combm#nth approaches, hence
checking automaticallpropertiesof finite state systems whosg&ucture is unknown
Of course, a completely hidden structure cannot be effelgtichecked. Thus, the
following properties are assumed:

e A boundn on the number of states of the checked system is known.
e The tester can alway®set the system to its (unique) initial state.
e The input alphabeXt of the checked system is known.

e An experiment consists of repeatedly applying an input fdoor areset to the
current state. An indication of whether the input was pdesfbnabled) from
the current state is available.

e If an inputa was possible from the current state, the system makes the.mov
Otherwise, it stays in the current state. No backtrackingvigilable (but the
tester can simulate backtracking by resetting and repg#imsuccessful prefix
of the experiment).

e The checked systemdgeterministidn the sense that from each state it can move
with any given input to at most one successor state.

We do not assume that the size of the system is known precigsésyonly an upper
bound. In particular, we would like to study the effect of grassibility that the bound

on the number of statesmay be much bigger than the actual number of states. This
is the case when the number of states is only estimated. biipeathe system that

is being checked may be large and have multiple functiondevihe property may
concern a specific aspect of the system. Although the systemwahole may be
quite big, large parts of it may be irrelevant to the propeatyd the system may be
equivalent to a much smaller finite state machine as far askaigthe property is
concerned. In this case,should be taken to be an estimate on the logical complexity
(the control structure) of the system with respect to theprty at hand. Our methods

can be used also if no boundis available, by running the algorithms to the extent
that the available time and space resources allow; the gtemsiin this case depend
on the time spent.

Following the automata-theoretic approach to model-cimgck 2, 23], the (nega-
tion of the) checked property is directly given as, or tratetl into, a finite automaton
on infinite words, usually a Buchi automaton [3]. Then, btith system and (the
complement of) the checked property are represented usiognata. An example of
a system that is based on such principles is Spin [8, 10], evtier specification is
given by an automaton calledreever claimthat recognizes thbad (or disallowed
computations. In order to check whether the system undesideration satisfies the
checked property, we intersect the automaton represethi@gystem with the automa-
ton representing the disallowed computations. Any seqeiémthe intersection is a
counterexample for the checked property, while the absehemy counterexample
means that the property is satisfied.

The problem we study here is a variant of the above model ¢hggioblem. We
are given the automaton that represents the computatidraloaed by the checked
property. But the internal structure of the checked systemot revealed, and only
some experiments, as described above, are allowed on it, v&i want to check
whether the system satisfies the given property. We calpittiblemblack box check-
ing. To simplify the discussion, we will not deal here with maws with output.
Their treatment and the results are similar to the ones pteddere. We will present
on-the-fly algorithms that are aimed at quickly detectimpesin a checked system.

The choice of an appropriate computational model is centrétie issue of black
box checking. Unlike standard decision problems, the ingpuiot given here at the
beginning of the computation, but is learned through a secgief experiments. We
propose a computational model based on games with incoaipfermation, and use
this model to analyze the complexity of the problem.

Our methods combine techniques from model checking, cardace testing and
learning theory. All three areas have been actively purdaed number of years and
there is an extensive body of literature. Model checking leesn a vibrant area of
research for more than 15 years with the development of theryhand a number of
software tools. Most tools check properties of finite statedeils expressed in some
formal notation. One tool that is directed at the checkingaffware systems without
a model is VeriSoft [7]: itis aimed at checking state invatg&(assertions) of commu-
nicating processes, using partial order reduction metfadspace exploration. For a
recent book on model checking see [5].

The study of testing black box automata was initiated in Méclassical paper
from 1956 [15], where he defined and studied several probieohsding the machine
identification problem (infer the state transition diagrahan unknown black box au-
tomaton). He also posed the fault detection or conformassténg problem (checking
that the black box conforms to a specified design automafidiy. problem has been
studied in the subsequent years by many researchers, ioigtgiood bounds on the
lengths of the tests needed, as well as efficient algorithatscheck for conformance
for different types of automata (machines with a distinpirig sequence or with reset,
or in general without) [4, 9, 24, 25]. In the last 15 yearsy¢heas been a lot of work

on conformance testing in the protocols community, withrgdanumber of papers,
many of them based on the black box automaton testing moddlsn@thods. Early
surveys of the work in the 50’s and 60’s can be found in e.d., 2], and surveys of
the more recent results and related work on protocol test@mgbe found in [13, 20].
Finally, there is substantial work in the learning commuit the problem of learning
finite automata (i.e. machine identification) with the helmeeacher. Efficient algo-
rithms for learning different types of automata in this framork have been developed
in[2, 14, 19].

2 PRELIMINARIES
AUTOMATA THEORETIC MODEL-CHECKING

A Biichi automaton is a quintuples, Sy, X, 6, F'), where S is a finite set of states,
So C S are the initial states; is the finite alphabey C S x X x S is the transition
relation, andF" C S are the accepting states. A run over a wafd. ... € X¥

is an infinite sequence of statess.ss ..., with s; € Sy, such that for each >

0, (si,as,s:41) € 0. A run is acceptingif at least one accepting state occurs in
it infinitely many times. A word is accepted by a Buchi autéamaexactly when
there exists a run accepting it. Thenguagel(A) of a Buchi automato is the
set of words that it accepts. Two automata are equivalenhwlingy accept the same
language.

An implementatiorautomatonB = (S%, S8, ¥, 62, SP) has several restrictions.
We assume that the number of stat§§| is bounded by some value thatSZ is a
singleton{.}, and that"’? = S&, namely, all the states are accepting.

We can view an implementation machine in our model as a Mealghime: at each
statev and for each inpug, the machine outputs O if the transition is not enabled, and
then remains in the same state, and 1 if it is enabled. Fumibrer, we assume that the
implementation automaton is deterministic, i.e(sfa,t) € 6 and(s,a,t') € 67,
thent = t'.

For aspecificatiorautomaton? = (S¥, S %, 6 FF), we will denote the num-
ber of state$S¥’ | by m. Let the size of the alphabEt common to the implementation
and the specification, e As we mentioned in the introduction, we can easily extend
the framework of this paper, and the results to implememtathachines with arbi-
trary output (i.e., Mealy machines), and specification nreehthat describe the legal
input-output behaviors.

Theintersection(or produc) B x P is (S x S¥ S x SF,¥,6',SB x FFP),
where

5 = {((s,8), 0, (t,8))](s, 0, t) € 65 A (s, ') € 67,

Thus, the intersection contains (initial) states that aiespof (initial, respectively)
states of the individual automata. The transition relatelates such pairs following
the two transition relations. The accepting states arespelirose second component
is an accepting state @f. We have that’(B x P) = L(B) N L(P).

A reset is an additional symbol o, not included inZ, allowing a move from
any state to the initial state. Aexperimentis a finite sequence;as ... a1 €

(X U {reset})", such that there exists a sequence of states...s; of SZ, with
51 € SB, and foreach < j < k, either

1. a; =reset ands;j;, = ¢ (areset move), or
2. (sj,aj,s541) € 08 (an automaton move), or
3. thereis nd € SP such thats;, a;,t) € 6% ands;41 = s; (a disabled move).

GAMESOF INCOMPLETE INFORMATION

The computation model for experiments on black box autonsateot the standard
one, in which the input is known from the beginning of the catayion. Here, part of
the input is hidden, and its structure is studied througteexrments.

The relevant computational model is related to games ofimptete information [1,
18], where ard-player plays against @eterministic environmerftepresenting a de-
generate version of @-player). Each such game consists of a nondeterministic ma-
chine with finitely many configuratioR<”, containing the following disjoint subsets:
C; are theinitial configurations W+ and W~ are the positive and negative win-
ning configurations for th&-player, respectively. Intuitively, since we want to check
properties of systems$}) T corresponds to finding an error, afid~ corresponds to
concluding that there is no error.

Let L3 andLy be sets ofabelsfor the 3-player and the environment, respectively.
Then the sets of moves aiiés C C x Lz x C,andMy € C — Ly x C, respectively.
The3-player can have a choice of moves, thids is a relation, connecting the current
configuration with all possible pairs of move-labels anditesi successor configura-
tions. The moves of the environmehf, are deterministic, and thus are defined as a
function from the current configuration into the unique s#ion label and successor
configuration. No move can originate in a winning configumatiMoreover, any two
different moves from the same configuration must have diffetabels. The two play-
ers make moves in alternation, starting with thelayer, who makes the first move
from an initial configuration. Aplayis a sequence froiC' L3C Ly)*C, where each
adjacent triple ove€'(L3 U Ly)C conforms with a move of one of the players. A play
is winningif it ends with a winning configuration i’ = U W . There is no initial
configurations starting both a play that ends with a configoma in 77+ and a play
that ends with a configurations i —.

The incomplete information is stated by the partition of doafigurationg” into
equivalence classes calladormation sets The 3-player cannot distinguish between
configurationg:;; ande, that are in the same information set, denatgek c». There-
fore, the move functiod/z must allow moves with the same labels for all the config-
urations that are in the same equivalence class. Furtheriifior ~ ¢, thenc; € W+
(c1 € W, respectively) if and only it, € W (c2 € W, respectively).

A deterministic strategfor the 3-player is a functionts : Cx (Ly U {i nit })—
M3, such that

2Since the games that will be described later involve chapainautomaton and performing experiments
on it, we choose to distinguish betweenanfigurationof a game and atateof an automaton.

Figure 1: A combination lock automaton

1. If the3-player will keep playingsts(c,!) when it is his turn from configuration
¢ and after the environment has played a move labelediyitie sequence will
end with a configuration i+ U W .

2. Ife = ¢, then the labels owts(c, [) andsts(c, [) are the same.

The additional valué ni t is paired with initial configurations fror@; (since there is
no previous label for this configuration). path played according to a strategy is an
alternating sequence of configurations and labels, stantith an initial configuration.
A winning pathends with a winning configuration. We will define the deteristic
time complexityof a strategy as the length of the longest winning path in @egy
that ends with a configuration i+ u W —.

We also define aondeterministic strategysts : C' x (Ly U {i ni t }) — M5 for
the 3-player. Letc € C; be an arbitrary configuration such that there exists a play
from ¢ that ends with a configuration i *. Every play starting with: in which the
3-player keeps playing his turn according to the 5 strategy will end with a config-
uration inW . The second constraint that was imposed on the deternciststitegy
does not have a counterpart in the definition of the nondeétestit strategy. The in-
tuition is that in the nondeterministic case, 24player that is playing according to a
nondeterministic strategy can make guesses that canglistin between configura-
tions that are in the same information set.

COMBINATION LOCK AUTOMATA

The following set of automata [15, 24] plays a major role ioying lower bounds on
experiments with black box automata.cambination lockautomaton [15] is a finite
automaton such that there exists some complete order ofdtess,, s», . .. s, with
s; the initial state, and where the statg has no enabled transition. For each state
siy & < m, there is a transition labeled with somige X to s;,;. For all other letters
v € X\ {6;}, there is a transition labeled withfrom s; back to the initial state. Itis
called the combination automaton f6¢03- ... 3,,_1. Figure 1 depicts a combination
lock automaton fon = 5.

A sequence leading to a state without a successor (or evest&ieawhere not all
the letters are enabled) in a combination automaton must &auffix of lengtn — 1

thatisf,0: ... B,—1. (Thisis a necessary, but not a sufficient condition. Fongxa,
the automaton in Figure 1 does not reach a deadlock stateessiih of the sequence
818201820838, whenpy # 33, since the secong, only causes it to return to its initial
state.) Every path that does not contain the consecutiveesegs, 5> ... 3, 1 is
allowed (enabled) by the automaton.

3 BLACK BOX DEADLOCK DETECTION

In this section we describe a simpler problem related tokblaax checking. Given
a deterministic finite state syste®, with no more tham states, we want to check
whether this machine deadlocks, namely reaches a stateafloch no input is possi-
ble.

In this problem, part of the model is unknown and is learnedexiperiments, which
motivates modeling the problem as a game with incompletanétion. We will also
demonstrate that the deterministic and nondeterministiopiexity do not have the
same connections as in the standard model of computatidnsthased on Turing
Machines.

For each implementation automaton witlor less states, there exists a single initial
configuration. Each configuration @i in a play contains the same automaton as in the
initial configuration, the current state of this automatascontrolled by the moves of
the 3-player, and some information about the sequence of mows®glso far. The
current state of the automaton in an initial configuratioitgsnitial state. The moves
My of the environment are labeled byccess orf ai | . The labelindicates whether
the environment was successful or not in changing the sfatieecimplementation
automaton using the transition chosen according to the tdlilee last move of thél-
player. The moves of thé-player are the possible input symbols, areset followed
by a symbol (Areset is always successful.)

Projecting the labels of the moves of tAeplayer from a play¢, we obtain an
experiment over the implementation automaton in the initafiguration of¢. If the
configurations:; andc, are reachable using the prefixes of two playsandé&, that
correspond to the same experiment, taerns ¢;. The winning set¥ + contains only
configurations that include an automaton that has a deadRiackilarly, the winning
setlV ~ contains only configurations that include an automatonavuitta deadlock.

A NONDETERMINISTIC STRATEGY

Thed-player guesses in each move a label, forming a sequencegihlemaller than
n that brings the state of the selected machine from its Irst@te to some deadlock
state. He then checks that this state has no enabled toanssiti

Complexity: Nondeterministic tim&(n+p). The only information that is needed
to be keptin each configuration is a counter froto n—1 and a counter on the number
of labels checked from the final state.

A DETERMINISTIC STRATEGY

Thed-player checks systematically the possible sequences,lapgthn — 1, starting
from the initial state. (Of course, there is no need to chextfusnces that include
prefixes that have led to a failure.)

Complexity: Deterministic timeO(p™).

Theorem 1 The deterministic time complexity for black box deadloctect®on is
Q).

Proof. Suppose that the initial configuration includes an impletagon automaton
B with n, states that allows any input from any state. Consider alplayed using a
deterministic strategy for th@-player. Assume that has less thap™—! moves of the
J-player, and terminates with a winning configuratignin W —. Then at least one
sequenced 3» ... 3,1 does not appear consecutively in the experiment associated
with &, If instead of the above automatd@h the environment would have chosen a
combination lock automaton fgt 3- . . . 5,_1, the deterministic strategy would have
resulted in a prefix of a play that has the same labefs Al®w we would have reached
a configuratione’ such thate,, ~ ¢'. Further,c, is associated with an automaton
without deadlocks, while’ is associated with an automaton with deadlocks. This
contradicts the assumption thgt € W . d

In the standard complexity model, it is not known whether oae obtain a poly-
nomial deterministic algorithm from a nondeterministidypwmial algorithm. Here,
the (tight) lower deterministic bound is exponentiallygar than the nondeterministic
complexity. This justifies the use of games with incomplaferiimation as an alterna-
tive for the common computational model of Turing machihes.

4 CHECKING PROPERTIES OF BLACK BOX FlI-
NITE STATE MACHINES

We address now the problem of black box checking. Namelergi specification
Buchi automator with m states, and a black box implementation automatamith
no more tham states, over a mutual alphat&twith p letters, we want to check if
there is a sequence accepted by bBtland B. The automator® accepts thédad
computations, i.e., those that aret allowed Thus, if the property is given originally
e.g., using a linear temporal logic (LTL) [17] propettythenP is the automaton cor-
responding to~p. For an efficient translation from LTL to automata, see ¢6j.,The
following simple theorem demonstrates that the currenbiem is at least exponential
in time in the size of the automatdh

Theorem 2 The deterministic time complexity of black box checkirf@(ig*—*).

3 Another observation, connected with theace complexitgf this model, which was not defined for-
mally in this paper, is that the common space efficient gsatd binary search cannot be used here.

Proof. Similar to the proof of Theorem 1, we construct variants ofoanbination
lock automata. The deadlock state is replaced now with damiflabeled byy. The
symbol~ is disabled in the initial state. This removes at most halthef possible
combinations (in the case where= 2), so the complexity changes only by a constant
factor. The property automataf consists of two stategp which is an initial state,
andt; which is an accepting state. There is a self loop figrto itself on each label
from X, and from¢; to itself on+y. There is also an edge labeled #yfrom ¢, to

t1. Thus, the intersection is nonempty exactly if a state carebehed in the black
box automaton, wherg” can be executed. The only such state of a combination lock
black box is the state at the end of the path prescribed bydimbination. a

4.1 AN OFF-LINE STRATEGY

A straightforward way to perform black box checking is todnfirst the structure
of the black box system, and then to apply model checkingrigcies to its newly
revealed structure. The machine identification problem gedl studied problem.
Typically, it is applied to automata that produce outputhei at the states (Moore
machines) or at the transitions (Mealy machines). As we ioeetl, an implementa-
tion machine in our model can be viewed as a Mealy machinerevhetput O on a
transition means that it is not enabled and output 1 meand is@nabled:

It is well known that if two machines with states are not equivalent, then there
is an input of length at mostn. — 1 that distinguishes them. This implies that any
machine with at most states is completely characterized by its output on all inpu
strings of lengti2rn, — 1. That is, a black box is uniquely determined by applying alll
suchp?™~! input strings. Ap-ary tree of deptt2n — 1 can be constructed from the
responses of the black box, and it can be minimized to proth&einimal machine
M consistent with these outputs [22]. Then we can use modealkalg to check
whetherM satisfies the given properfy. The length of the test sequence (or in terms
of games with incomplete information, the length of the esponding play), which
gives us the time complexity, i©(np?>"~—1). If implemented in the straightforward
way, the space complexity is also exponential (to recordréne all the input strings
and their output), but the minimization can be done incresagnn polynomial space.
The time for the model checking is comparatively sm@l{prmn) wherem is the size
of the property automatoR (which is typically very small).

The complexity of this method is not that far off the lower bdyand in the worst
case one may indeed need to identify in effect the black bahima in order to check
a property. However, intuitively it is clear that in many easthis method can be
wasteful in that it does not take advantage of the propergvtsd doing a complete
identification. For example, suppose that the property & fome error indication
labely never occurs. The property automatBnrepresenting the bad computations is

4By this convention, the output provides some partial infation also on the next state, namely if the
output is 0 then we know that the state does not change. Thistisnportant for what follows (i.e. all
the methods apply to any Mealy machine) but it can be used tthdimus optimizations on the tests. For
example, if we apply inpui and it is not enabled, then it is pointless to try agaimtil an enabled transition
has been performed.

in this case a simple 2 state automaton. Obviously in thisgka, there is no reason
to wait until we reconstruct the full black box automatondrefwe check the property.
The sensible thing to do would be to check the assertion {fiyeto see ify is enabled
in the current state) as we go along during the test, and ét# giolated at some point,
then an error has been found and the check is complete.

In general, it would be obviously beneficial to use the propautomaton on the
fly to detect errors as early as possible and prune the tesablNpif the estimate on
the number of states is much higher than the actual numbeffefent states, or if it
is accurate, but there is still a ‘small’ counterexampke, ihere is a small set of states
that exhibits the faulty behavior, we would like to be abldita the error without
searching the whole space, if possible. This is not alwaysaay, especially in the
case of properties that depend on the infinite behavior o§ylséem, that is, in cases
where the property automaton is a genuine Biichi autom&tenwill investigate such
methods in the following sections.

4.2 AN ON-THE-FLY STRATEGY

We will present now a strategy that can terminate quickly mvite actual size of the
automaton is much smaller than and an error is present (i.e., the intersectioBof
andP is nonempty).

A NONDETERMINISTIC STRATEGY

As before, we start with a nondeterministic version, in ottedemonstrate the prin-
ciple behind the on-the-fly black box checking.

According to the strategy, theplayer guesses a paitof the automatot®, starting
from an initial state, that can be partitioned into two subpa; ando,, Each of which
is of length smaller or equal tavn. Both subpaths end with the same accepting state
t of P. Furthermore, the blackbox automaton must allow executiegransitions of
oy oyt after areset.

Correctness: Consider the unknown end state of the intersection autamfato
each iteration obr, in the experiment; a;‘“. Then at least one component state
s of B must occur twice with the same accepting component stafeP (as there
are no more than states in the intersection that have the same compaphemnhus,
the patho must include a cycle through an accepting state, which gueea that an
infinite accepting run exists in the intersection. Convigrseis easy to see that if the
intersection ofB and P is nonempty, such a guess exists.

Complexity: Nondeterministic time)(n?m).

A DETERMINISTIC STRATEGY

The strategy finds a path as in the nondeterministic cas@) bigystematic way. Now,
a search for two paths of length boundedby is performed. The first patty,, when
input to the automatoR needs to terminate with an accepting stat€he second path
o2, When starting in stateof P, needs to terminate withas well. For each such pair,
we apply the second pathmore times. That is, we try to execute the p@il(]az)”“.

If we succeed, this means that there is a cycle in the intéosethrough a state with

at (which is accepting) as thB component, since there are at mostays to pair up

t with a state ofB. In this case, there is an infinite accepting path in the setetion.
Complexity: Deterministic timeO(n? p>™* m). This is because there apé™"

choices of such paths. Each is of length boundeghlpy and we repeat it + 1 times.
The following comments should be noted:

e Unlike the off-line strategy, the complexity of this strgyedepends on the num-
ber of statesn of P. Typically howevenn is small, or even fixed, when talking
about a fixed property.

e For properties that can be specified by automata on finitegstr{i.e., depend
essentially on finite computations), we need to search anlthie first stringr;
and the complexity i) (n p™" m).

e When searching for the strings , o2, we need only consider strings that can
be extended to accepting strings of the property automafamthermore, we
can start by limiting the length of the subpaths that we engpnd gradually
increase that length as we proceed in the search. In thisifséyg actual size
of the the automato® is much smaller than, and an error occurs, it can be
found much earlier than in the exhaustive strategy, as redabove.

4.3 A STRATEGY BASED ON LEARNING AND TESTING

We show now that the facten in the exponent can actually be removed. We provide
below a strategy with complexity whose exponential ter®{$"). Furthermore, if
the black box has an error, the time complexity will be expdiz only in the actual
size of the minimized version of the black box automaton.

In this algorithm, we will use an algorithm for conformanesting of a known
finite automaton with a black box automaton by Vasilevskil &how [4, 24]. We
will not repeat this algorithm here, but will use the resulat its time complexity is
O(I? np™~t*1), wheren is the assumed size of the black box automatos, n is
the actual size, angdis the alphabet size. Intuitively, the algorithm has to ¢hige
states and transition relation of the black box automatod that no error that follows
a ‘combination lock’ occurs from any one of its node.

Another procedure that we use in our strategy is an algorittiriearning au-
tomata withreset using membership tests and questions to an oracle (a tgdmher
Angluin [2]. In the learning algorithm, the teacher answeggiivalence tests to a
proposed machine and provides a counterexample in caseadiiralence. We will
replace the teacher with experiments on the black box autim8&tarting from a triv-
ial automaton, Angluin’s algorithm generates succesgil@ber candidate automata
M;, fori =1,2,... (the number of states in each conjectured automaton is monot
ically increasing). It asks the teacher for equivalenceqgifivalence does not hold, it
uses a counterexample provided by the teacher, queries mmmeestrings, and then
generates the next conjectured automaton with more statékit reaches the correct
number of states. At this point the conjectured automatdimesorrect one.

We modify Angluin’s algorithm as follows. Our modificatiomm use two kinds of
counterexamples, provided by the teacher:

1. Asimplecounterexample of the form € ¥*, meaning tha# belongs to one of
the checked automata, but not the other.

2. A pair of wordso;, 02 € ¥* such thatr; o belongs to one of the checked
automata, but not the other.

We construct a sequence of automafa, M-, ... that attempt to converge into
the black box automato®. Membership queries are just experiments on the black
box B. For equivalence queries, suppose we have a conjecturechatani/; for the
black box. First, we check il/; generates a word accepted also by the specification
automatonP, namely if L(M;) N L(P) # . If the intersection is not empty, it must
contain an ultimately periodic word of the form oy [21]. We inputreset oy 05 to
the black boxB. If this experiment succeeds, then there is an erraf@®) N L(P)
containso; oy and thus is not empty. If it fails, then this gives a countaraple for
the equivalence aB with M;. We use this in Angluin’s algorithm to generate the next
candidate automaton with more states.

If M; does not generate any word acceptedywwe check whethek/; conforms
with B. Letk be the number of states af;. We start the conformance test between
M; and B assumingB hask states and apply the Vasilevskii-Chow algorithm. If the
conformance test fails, we use the counterexample in Angllgarning algorithm to
generaté/; . If the conformance test succeeds, we repeat it with, k+2, ..., n.

If n is reached, we declare that the black box satisfies the ctigukeerty.

This strategy is described in Figure 2. The procedure ¥&l(1M;, k) calls the
Vasilevskii and Chow algorithm for conformance testihfj with the black box au-
tomatonB, assuming thaB has no more thak states.V C returns {rue,—) if the
conformance test succeeds. If it fails, it returfail(c), whereo is a word that is in
one of the automat& or M; but not the other. The procedurdsVGLUIN accepts
the previous attempted automaton, and a counterexamplegnns a new attempted
automaton. In the first call td NGLUIN in the strategy, it is executed with an empty
automaton, and the second parameter (the counterexarsm@pred.

Complexity: Suppose that the minimum equivalent automatfyrof the black box
hasl states. If the black box has an error, then the strategy willipce the automaton
M; in time O(I® p'), and declare the error. This is because some earlier congett
automaton may have an empty intersection viitlin which case the strategy will need
to do conformance testing until a string that distinguistiesconjectured automaton
from B is found.

If the black box satisfies the property, then the strategy géherateM; in time
O(I? p'), but then it will have to spen@ (I p»~!*+1) more time to verify that the black
box is indeed equivalent td/; (by conformance checking/; with B). It should be
noted that the complexity of doing the exhaustive checkrgng) to distinguish the
conjectured automaton frol® is dominating over the complexity of the other tests
prescribed by the above strategy. Moreover, sif¢g™ + p"~!) = O(p"), we need
to consider only the last exhaustive check. Thus, we havéotlosving theorem.

Theorem 3 Black box checking, for a black box automatBrwith [states, wheré
is unknown but is smaller than some boundand a property automatof with m
states can be done in time

My: =ANGLUIN (empty, —);
1 =1,
learn: X:=M; x P;
if £(X)=0 then
k: =nurmber of states of M;
| oop
(conforns, o):=VC(M;k),
k:=k+1
until k>n or -—conforns;
if conforms then WN(+);
el se
let o1, oy be s.t. o0y € L(X);
if B allows reseto;of then WN(-)
el se o:=prefix of o010} not allowed by B;
M;y1: =ANGLUIN (M;, 0);
ii =i+ 1;
goto | earn;

Figure 2: A strategy using learning

e O(I3p' + I?mn), when there is an error (i.e., the intersection Bfand P is
nonempty), and

e O(I3p' + I3 pn~!*+1 4 [2mn), when there is no error.

If we do not have a bound on the number of states of the automaf®nwe can
run the algorithm as long as time permits. Consider first gery characterized by
an automaton on finite strings (such as deadlock freedom thued safety properties).

If we ever encounter an error, i.e. find a strimgaccepted by both the black box and
the property automatof?, then it is a true error and we can stop the test. If there is
an error andB has sizd (or the smallest counterexample has lenthve are sure to
find the error within timeO(1® p! + 12m). Conversely, if after the allocated time no
error has been found, then this means that either the blacksbaorrect, or else the
smallest possible counterexample and the size of the blaxkrust exceed a certain
bound, which depends on the time spent on the test.

Suppose that we have a genuine Biichi automaton that deparidfnite behav-
iors. Suppose that at some point the conjectured black btxveatonA/; has a
nonempty intersection with the property automa#®nand leto; o4 be a string in
the intersection. If the conjectured automatdnhas! states at this point ant has
m States, then the strings, o, have length at mogin. We can inputeseto; to the
black box followed by repeated applicationscafuntil either the black box does not
accept it or we run out of time. In the first case, we have fourdast one new state
and we continue the algorithm as before. In the second daakist if we run out of
time after executing repetitions ofo,, then we can conclude that either there is an
error, or the size of the implementation machine exceeds

Finally, if the conjectured automaton has an empty intdiseavith the property
automaton then we perform conformance testing for increggilarger values of the
boundr on the black box. At the end we can place again a lower bountesite of
the black box or conclude that it is otherwise correct.

Let us comment finally on the exponential lower bound derivech the combina-
tion lock automata. Obviously these are rather patholdgiaarst case examples. The
‘average’ automata are much better behaved and do not egfikbbhasty performance
bottleneck. This can be formalized by considering a prdistigi model for machines
with output. Formally, there has been extensive work stuglyhe properties of ran-
dom machines [22]. The usual model of a random Mealy machirdesiates is defined
as follows. For each state and input symbol choose the reetahd output uniformly
at random. For the average machine, polynomial time willisefto find an error. In
the following statement, ‘almost all machines’ means thatgrobability tends to 1 as
the size goes to infinity.

Theorem 4 For almost all black box machines wittstates, if an error is present, it
will be found after a test of lengt® (Iplog? [+ I>nm).

This can be shown using the following two nice propertieslofast all random
machines: (1) if a state can reach another stagéthen it can reach it irD(log, !)
steps; (2) any two states can be distinguished by inputgstrof lengthlog,, log,, [
[22]. Of course, if there is no error and we want to make suat te do not have
any other automaton at hand with at masttates, then we still would need to do the
conformance testing (at a cost exponential in the diffeeene!l) in order to be certain
of the correctness.

5 CONCLUSIONS

We defined the problem of black box checking, showed lowemndswand provided
three strategies for solving the problem. The lower bound@lirorem 2 implies that
the complexity of black box checking is exponential in théreated size of the un-
known automaton. For comparison, checking the emptinesheofntersection of
the same automata (now both structures are given) istiad$éPACEcomplete. In
conformance testing, one checks whether a given known aiwm® of length! is
equivalent to a black box automatéhof length bounded by some > [. Vasilevskii
and Chow [24, 4] showed a lower and upper boun@ @ np™—!+1) for conformance
testing with reliableresets. Whenn = [, namely theactual size of the black box
automaton is known, this is a much more tractable compleiiy that of black box
checking. Thus, if a model (abstract design) is availablieasible to construct, then
a good strategy for the developer of a system is to separdtedyconformance test of
an abstract design against the system, and then model dfedks$ign with respect to
various properties. However, when a model is not available can be considerably
bigger than this approach does not help.

Itis quite clear that the off-line strategy is suboptimaitatoes not take advantage
of the property at hand. On the other hand, the on-the-flyegiras, while still ex-
ponential, may work in practice in some important cases. €xse is when an error

exists and the estimateis much higher than the actual size of the checked system
or the size of a portion of the system that provides a courséenple. Another case is
when the specification automatdhlimits the possible bad executions considerably.
An example for a “helpful” specification will be th#t specifies sequences of the form
a*(8 + 7). An example of an “unhelpful specification” % *«, whereX allows any
letter of ¥ excepta.

The last strategy, based on learning, uses the progextsile trying to learn the
structure of B. Thus, an error may be found before completing the constnucif
a minimized automaton equivalent 1. It is also possible that no explicit bound is
given on the size of the black box automaton. In this case,ameuse the strategy as
long as we are willing to spend time.

There is a number of issues in black box checking that de$erther investigation.
Some open problems are finding strategies for partiallyifipdcautomata, or known
automata where the actual implementation deviates frorkribesn design in no more
thank changes (‘implementation errors’). Another problem isévelop an algorithm
for black box checking when reliableset moves are not available. It is possible that
similar techniques can be used by combining the learningrdiign of [19] with the
conformance testing algorithm of [25] for machines withmset.

References

[1] R. Alur, C. Courcoubetis, M. Yannakakis, Distinguispitests for nondeter-
ministic and probablistic machines, Symposium on Theor@aiputer Sci-
ence, 1995, ACM, 363-372.

[2] D. Angluin, Learning Regular Sets from Queries and Cevetamples, In-
formation and Computation, 75, 87-106 (1978).

[3] J. R. Bichi, On a decision method in restricted secom@parithmetic, Pro-
ceedings of International Congress on Logic, Methodolagl/Rhilosophy of
Science, Palo Alto, CA, USA, 1960, 1-11.

[4] T. S. Chow, Testing software design modeled by finiteestaachines, IEEE
transactions on software engineering, SE-4, 3, 1978, 19B-1

[5] E.M. Clarke, O. Grumberg, D. Peled, Model Checking, MIfe$S, to appear
1999.

[6] R. Gerth, D. Peled, M. Vardi, P. Wolper, Simple on-thedlytomatic verifica-
tion of linear temporal logic, Protocol Specification Tagtiand Verification,
1995, Chapman & Hall, 3—18, Warsaw, Poland.

[7]1 P. Godefroid, Model checking for programming languageig VeriSoft,
Proc. 24th ACM Symp. on Progr. Lang. and Sys., 174-186, 1996.

[8] G. J. Holzmann, The model checker SPIN, IEEE transastiom Software
Engineering, 23(5):279-295.

[9] F. C. Hennie, Fault detecting experiments for sequétrauits, Proc. 5th
Ann. Symp. Switching Circuit Theory and Logical Design, 950, 1964.

[10] G. J. Holzmann, D. Peled, The State of Spin, 8th Intéonal Conference on
Computer Aided Verification, Springer Verlag, LNCS, 110853389, 1996,
New Brunswick, NJ, USA.

[11] Z. Kohavi, Switching and Finite Automata Theory, 19%&Graw Hill.

[12] R. P. Kurshan, Computer-Aided Verification of Coording Processes : The
Automata-Theoretic Approach, Princeton University Pré8995.

[13] D. Lee, M. Yannakakis, Principles and methods of tegfinite state machines
- a survey, Proceedings of the IEEE, 84(8), 1090-1126, 1996.

[14] O. Maler, A. Pnueli, On the learnability of infinitarygalar sets, Information
and Computation 118 (1995), 316-326.

[15] E. F. Moore, Gedanken-experiments on sequential mashAutomata Stud-
ies, Princeton University Press, 1956, 129-153.

[16] G. J. Myers, The Art of Software Testing, Wiley Interiuatal, 1979.

[17] A. Pnueli, The temporal logic of programs, b8 EEE symposium on Foun-
dation of Computer Science, 1977, 46-57.

[18] J.H. Reif, The complexity of two-player games of incdetp information,
Journal of computer and system sciences, 29, 1984, 274-301.

[19] R. L. Rivest, R. E. Schapire, Inference of finite autoanasing homing se-
guences, Information and Computation 103, 299-347, 1993.

[20] D. P. Sidhu, T. K. Leung, Formal methods for protocotites a detailed
study, IEEE Trans. Sw Eng., 15, 413-426, 1989.

[21] W. Thomas, Automata on infinite objects, Handbook ofdiie¢tical Computer
Science, MIT Press, J. van Leeuwen (Ed.), 135-192.

[22] B. A. Trakhtenbrot, Y. M. Barzdin, Finite Automata: Bahor and Synthesis,
North Holland, 1973.

[23] M. Y. Vardi, P. Wolper, An automata-theoretic approaochautomatic pro-
gram verification, Proceedings of the First Symposium onit ogComputer
Science, Cambridge, UK, 322-331.

[24] M. P. Vasilevskii, Failure diagnosis of automata, Kife¢ika, no 4, 1973, 98—
108.

[25] M. Yannakakis, D. Lee, Testing finite state machinesltfdetection, J. Com-
puter and Syst. Sci., 50, 209-227, 1995.

