The Complexity of Relational Queries: A Personal Perspective

Moshe Y. Vardi

Rice University
http://www.cs.rice.edu/~vardi

Relational Query Theory in 1980

- Codd, 1972: FO=RA
- Chandra&Merlin, 1977: basic theory of conjunctive queries
- Aho&Ullman, 1979: RA is not expressive enough, fixpoint (recursion) needed
- Chandra&Harel, 1979: computable queries
- Chandra&Harel, 1980: structure and complexity of Relational Queries – hierarchy of relational query languages
 - FO < FP < SO

V., 1980: "The theory of relational queries is fully developed."

Complexity of Relational Queries

Observation: Mismatch in Chandra&Harel, 1979

- First-order queries are complete for the polynomial hierarchy ("above" NP!)
- Fixpoint queries are in PTIME.

V., 1981: "Perhaps the theory of relational queries is not fully developed".

• *Required*: complexity theory for relational queries.

Failure of Standard Complexity Theory

Standard Complexity Analysis – *Scaling Behavior*:

• Focus on decision (yes/no) problems to eliminate dependence on output size.

• Measure how run time/memory usage grows as function of input size

Database Context:

• Focus on Boolean (yes/no) quries to eliminate dependence on output size.

• Input size: database size plus query size.

Difficulty:

• Typical input size is $10^9 + 100$

• Which size is more challenging? $2 \cdot 10^9 + 100$ or $10^9 + 200?$

Intuition: Database size and query size play very different roles! This is not reflected in standard complexity theory.

Relational Complexity Theory – 1982

Basic Principle: Separate the influences of data and query on complexity

- Influence of Query: Fix data
- Influence of Data: Fix query

Real-Life Motivation:

• Census Data Analysis: Data fixed for 10 years, multiple queries

• *Technical Trading*: price-arbitrage fixed query, data changes momentarily.

Relational Complexity Theory –1982

A Tale of Two Complexities:

• Query Complexity of L: Fix \mathbf{B}

 $\{Q \in L : Q(\mathbf{B}) \text{ is nonempty}\}$

• Data Complexity of L: Fix $Q \in L$

 $\{\mathbf{B}: Q(\mathbf{B}) \text{ is nonempty}\}\$

Observation:

• Data complexity is insensitive to syntax of queries, as queries are fixed.

• Query complexity is highly sensitive to syntax of queries (e.g., $R \times R \times R \times R \times R \times R \times R \times R$ vs. R^{111}).

Conclusion: Change "Query Complexity" to "Expression Complexity".

Data vs Expression Complexity

Basic phenomenon: exponential gap!

Query Lang.	Data Comp.	Expression Comp.
FO	LOGSPACE	PSPACE
FP	PTIME	EXPTIME
∃SO	NP	NEXPTIME
PFP	PSPACE	EXPSPACE

Theory Justifies Intuition: Characteristics of queries matter much more than size of data!

Relational Complexity Theory – 1995

Question: Why is expression complexity so high?

Intuitive Answer: Large intermediate results!

• For example: $R_1 \bowtie R_2 \bowtie R_3 \bowtie R_4 \bowtie R_5$ can be empty, even when $R_1 \bowtie R_2 \bowtie R_3$ is very large.

Question: Can we formalize this intuition?

Answer: Variable-confined queries

Example: Compare

- $\pi_{A,B,C}(R_1 \bowtie R_2)$ to
- $\pi_{A,B}(R_1) \bowtie \pi_{A,C}(R_2)$

Observations:

• Pushing projections in RA corresponds to variable re-use in FO.

• Bounding width of intermediate relations corresponds to bounding number of variables.

Variable-Confined Queries

Definition: L^k consists of formulas of logic L with at most k variables.

Example: Formula in FO²

• $(\exists x)((\exists y)(R(x,y) \land (\exists x)R(y,x)) - \text{exists path of length 2.}$

Key Result: Variable-confined queries have lower expression complexity!

Query Lang.	Data Compl.	Expression Comp.	VC Expr. Comp.
FO	LOGSPACE	PSPACE	PTIME
FP	PTIME	EXPTIME	$NP\capco-NP$
∃SO	NP	NEXPTIME	NP
PFP	PSPACE	EXPSPACE	PSPACE

Conclusion: Expnential gaps shrinks or vanishes for variable-confined queries.

Question: Find smallest k such that given query Q in is L^k .

Answer: Undecidable!

Conjunctive Queries

Conjunctive Query: First-order logic without \forall, \lor, \neg ; written as a rule

$$Q(X_1, \ldots, X_n) := R(X_3, Y_2, X_4), \ldots, S(X_2, Y_3)$$

Significance: most common SQL queries (*Select-Project-Join*)

Example:

GrandParent(X,Y) : - Parent(X,Z), Parent(Z,Y)

Equivalently:

$$(\exists Z)(Parent(X,Z) \land Parent(Z,Y))$$

Complexity of Conjunctive Queries

Chandra&Merlin, 1977: Expression complexity of CQ is NP-complete.

Precise Complexity Analysis: $||B|^{||Q||}$.

Yannakakis, 1995: $||B||^{||Q||}$ is much worse than $c^{||Q||} \cdot ||B|^d$ for fixed c, d, which is fixed-parameter tractable (FPT) – parameterized complexity analysis

Papadimitriou&Yannakakis, 1997: CQ evaluation is W[1]-complete – unlikely to be FPT.

Variable-Confined CQ

V., 1995: $CQ^k - CQ$ using at most k variables.

• If Q is in CQ^k then query can be evaluated over database B in time $||Q|| \cdots ||B||^d$ - FPT!

Example: Contrast

$$(\exists x, y, z)((R(x, y) \land R(y, z))$$

and

$$(\exists x)((\exists y)(R(x,y) \land (\exists x)R(y,x)))$$

Conclusion: The critical parameter is number of variables, not size of query!

Question: Characterize smallest k such that a given conjunctive query Q is in CQ^k .

CQs and Treewidth

Treewidth: basic concept in graph theory

- A tree has treewidth 1.
- A cycle has treewith 2.
- An $m \times m$ grid has treewidth m.

Query Graph: graph of a conjunctive query

- Nodes: variables
- *Edges*: connect nodes that co-occur in an atom

Definition: treewidth(Q) is treewidth(graph(Q)).

Kolaitis&V., 1998: Q is in CQ^k iff treewidth(Q) < k.

Corollary: Bounded treewidth CQs are fixed-parameter tractable.

Grohe, Schwentick&Segoufin, 2000: Optimal! Gottlob, Leone&Scarcelloo, 1999: Not optimal!

Theory and Practice

Question: Can theory be used to optimize CQs? **Partial Answer**: Not easily!

• Finding treewidth of a graph is NP-hard!

CQ Evaluation

Hard problem for databases: evaluation of large conjunctive queries

- Corresponds to evaluating a sequence of joins and projections.
- Many possible evaluation orders possible
- Query optimizer has to search a very large space

An Alternative Approach: (McMahan&V., 2004)

• Consider the problem as a constraint-satisfaction problem (CSP).

- Apply CSP heuristics for constraint propagation.
- Focus on minizing the size of intermediate relations.

• Essentialy, minimize number of variables heuristically.

Question: Does it work?

Experimental Results

Answer: Exponential improvement for large CQs.

In Conclusion

Role of Theory:

- Clarify conceptual framework
- Suggest experimental possibilties

Paradigmatic Example: Relational model

Thank You!