On w-Automata and Temporal Logic

Preliminary Report

Shmuel Safra Moshe Y. Vardi
Weizmann Institute of Science IBM Almaden Research Center

Abstract

We study here the use of different representation for infinitary regular languages
in extended temporal logic. We focus on three different kinds of acceptance con-
ditions for finite automata on infinite words, due to Buchi, Streett, and Emerson
and Lei (EL), and we study their computational properties. Our finding is that
Bichi, Streett, and EL automata span a spectrum of succinctness. EL automata
are exponentially more succinct than Biichi automata, and complementation of EL
automata is doubly exponential. Streett automata are of intermediate complexity.
While translating from Streett automata to Biichi automata involves an expo-
nential blow-up, so does the translation from EL automata to Streett automata.
Furthermore, even though Streett automata are exponentially more succinct than
Biichi automata, complementation of Streett automata is only exponential. As a
result, we show that the decision problem for ETLy;,, where temporal connectives
are represented by EL automata, is EXPSPACE-complete, and the decision prob-
lem for ETLg, where temporal connectives are represented by Streett automata, is
PSPACE-complete.

1 Introduction

Since the proposal by Pnueli in 1977 [Pn77] to apply Temporal Logic (TL) to the speci-
fication and verification of concurrent programs, the role of TL as a feasible approach to
that task has been widely accepted [E89, Ga87, Kr87]. Over the last decade an extensive
research has been carried out concerning both practical and theoretical aspects of using
TL to specify and verify concurrent programs (see survey in [Pn86]). One of the conclu-
sions of this research is that the standard TL, which consists of the temporal connectives
nexttime and until is not expressive enough for its task.

The first to complain about the expressive power of TL was Wolper [Wo83] who
observed that temporal logic cannot express certain regular events (in fact, TL can express
precisely the star-free w-regular events [To81]). As was shown later, this makes TL
inadequate for compositional verification (as opposed to global verification) [LPZ85]. As



a remedy, Wolper suggested extending T'L with temporal connectives that correspond to
regular grammars. The extended TL, is called, naturally enough, E'TL. It was shown later
that the expressive power of ETL is sufficient and necessary to perform compositional
specification and verification [LPZ85, Pn85, Pn86].

ETL was further explored by Wolper et al. in [WVS83|, where the basic paradigm
of ETL was made explicit: every w-regular langauage L over an n-letter alphabet can
be viewed as an n-ary temporal connective (the restriction to w-regular language is for
practical reasons). To obtain a finitary syntax, a finitary representation for w-regular
languages must be chosen. This choice is the subject matter of this paper.

As in [WVS83] we focus on representation of w-regular languages by means of non-
deterministic finite-state automata. Unlike the class of regular languages, however,
there are several types of finite-state automata that defines the class of w-regular lan-
guage: Biichi automata [Bu62], Street automata [St82], which generalize Biichi automata,
and Emerson-Lei (abbr. EL) automata [EL87], which generalize Streett automata.'
While these automata have the same expressive power, they differ in their succinctness:
the nonemptiness problem is NL-complete for Biichi automata [VW88|, P-complete for
Streett automata [EL87], and NP-complete for EL automata [EL87]. Thus, it is clear that
the choice of representation has the potential of having a drastic effect on the complexity
of the decision problem for ETL.

Sistla et al. [SVW8T7] studied ETLpg, where temporal connectives are represented
by Biichi automata, and showed that the decision problem for this logic is PSPACE-
complete, just like the decision problem for TL [HR83, SC85].2> What we’d like here is to
get “more bang for the buck”. That is, we’d like to use the most succinct representation
for temporal connectives that is compatible with retaining the polynomial-space upper
bound on the complexity of the decision problem for the logic. To that end we study
the computational properties of w-automata. In particular we study the complexity of
translating one representation to another and the complexity of complementation (since
the class of w-regular automata is closed under complementation). We believe that this
investigation is of great interest in view of the emerging importance of w-automata to the
specification and verification of concurrent programs [AS85, AS87, CY88, MP87, Pa8l,
Va85, Va87, VW85, VW86|.

Our finding is that Bichi, Streett, and EL automata span a spectrum of succinctness.
We focus first on EL automata. We show that EL automata are exponentially more
succinct than Biichi automata. Translating from the former to the latter involves an
exponential blow-up. Furthermore, complementation of EL automata is doubly expo-
nential, while complementation for Biichi automata is only exponential [Sa88, SVW8&7].
As a result, we show that the decision problem for ETLg;, where temporal connectives
are represented by EL automata, is EXPSPACE-complete. This rules out the use of EL

!The class of Rabin automata [Ra69] also defines the class of of w-regular languages. This represen-
tation, however, is polynomially equivalent to the Biichi representation.
2ETLg is called ETL, in [WVS83, SVW87].



automata for the representation of temporal connectives.

The more surprising result is that Streett automata are of intermediate complex-
ity. While translating from Streett automata to Biichi automata involves an exponential
blow-up, so does the translation from EL automata to Streett automata. Furthermore,
even though Streett automata are exponentially more succinct than Biichi automata,
complementation of Streett automata is only exponential. This result is rather unex-
pected; it involves a rather complicated construction and requires a fairly deep analysis
of acceptance by Streett automata. As a result, we show that the decision problem for
ETLs, where temporal connectives are represented by Streett automata, is PSPACE-
complete. Since Streett automata also enable us to directly encode very powerful notions
of fairness [FK84|, one is tempted to recommend the Streett representation for w-regular
temporal connectives. We will return to this point in our concluding remarks.

2 Basic Definitions
2.1 Finite Automata

We consider words over finite alphabets. A finite word over an alphabet ¥ is a member
of ¥*. An infinite word over an alphabet ¥ is a member of ¥¢. It will usually be clear
from the context whether we refer to finite or infinite words.

A table T is a tuple (X, S, Sy, p), where ¥ is a finite alphabet, S is a finite set of states,
Sy C S is a set of initial states, and p : S x ¥ — 2% is the transition function. A run of T

over an word w = apay ...a,_1 in X* from a state s to a state ¢ is a sequence sg, S1,. .., S,
in S* such that sy = s, s, = ¢ and s;41 € p(s;,a;) for all i, 0 < i < n. A run of T
over an word w = agaq ... in X is a sequence Sg, S1,... in S such that sqg € Sy, and

Siy1 € p(s;,a;) for all i > 0.
Acceptance of runs is defined in terms of their limit behavior. Let x = g, x1,... be
in X¥, for some finite set X. Then [im(x) is the set of elements that occur in x infinitely

often, i.e.,
lim(x) = {x| (Vi > 0)(3j > 4) such that z; = z}.

An acceptance condition for a table T = (X, 5, Sp, p) is a collection C' C 2% of sets of
states. A set S’ is accepting with respect to C if it is in C. A run s = s, sq,... is

accepting with respect to an acceptance condition C'if lim(s) is accepting with respect
to C.

A Muller automaton A is a pair (T, C') consisting of a table T' = (X, S, Sp, p) and an
acceptance condition C' C 2° for T. A word w € X¥ is accepted by A if T has a run s on
w that is accepting with respect to C. L,(A) is the set of all words in ¢ accepted by
A. An automaton A is nonempty if L, (A) is nonempty. A language L C X¢ is w-regular
it L = L,(A) for some Muller automaton A.

We can specify acceptance conditions for a table T = (X, S, Sy, p) more succinctly
by means of acceptance formulas, which are propositional formulas constructed using



the states in S as propositional variables. Let S’ be a subset of S, then x(S') is the
characteristic function of S’, which can be viewed as a truth assignment on S. A set S’
is accepting with respect to an acceptance formula f if x(S’) satisfies f.

Example 2.1: Let S = {p, ¢, 7}, and let f be the acceptance formula =pA (¢V ). Then,
the accepting set with respect to f are {¢}, {r}, and {¢,r}. That is, a run is accepting
with respect to f if p occurs only finite often in the run and either ¢ or r occurs infinitely
often in the run. i

An Emerson-Lei (EL) automaton A is a pair (7, f) consisting of a table 7" and an
acceptance formula f for T. Streett automata and Biichi automata are obtained by
restricting the class of acceptance formulas. A Biichi formula is simply a disjunction of
propositional variables. Equivalently, a Biichi condition is a set F' of states, and a set S’
is accepting if S’ N F # 0. A Streett formula is of the form A*_,(V L; — VU,), k > 0,
where L; and U; are sets of states. Equivalently, a Streett condition is a collection of pairs
of sets of states, and a set S’ is accepting if S’ N L; # () entails S’ N U; # () for every pair
(L;,U;). It is easy to see that Biichi condition is a special case of Streett condition.

The interest in Biichi and Streett conditions stems from the fact that they can be
viewed as normal forms, they both define the class of w-regular languages. More formally,
for every w-regular language L there exists a Biichi automaton A such that L = L, (A)
[Mc66]. Furthermore, for every w-regular language L there exists a deterministic Streett
automaton A’ such that L = L,(A’") [Mc66, St82] (note that deterministic Biichi au-
tomata are weaker than nondeterministic Biichi automata [Ch74]). Streett condition
is also of special interest because it is essentially the condition of generalized fairness

defined in [FK84] (see also [Fr86]).
2.2 Extended Temporal Logic

We consider a propositional temporal logic where the temporal connectives are defined
by w-regular languages [WVS83, Wo83, SVW87]. The formulas built from a set Prop of
atomic propositions. The set of formulas is defined inductively as follows:

e every proposition p € Prop is a formula.
e if ¢, and v are formulas, then —; and ; A 9 are formulas.

e If ¥ is the alphabet {a;,...,a,}, L C X% is an w-regular language, and v, ..., ¢,
are formulas, then L(tq,...,1,) is a formula.

The actual syntax for the logic depends on the representation of w-regular languages.
If we represent w-regular languages by Biichi automata, we get ETLp (called ETL, in



[WVS83, SVW8T7]). Analogously, if we represent w-regular languages by Streett automata
(resp., EL automata) we get ETLg (resp., ETLgr).?

We interpret ETL formulas over computations, which are infinite sequences of truth
assignments, i.e., functions 7 : w — 277 that assign truth values to the atomic proposi-
tions in each state. We now define satisfaction of formulas. Satisfaction of a formula )
at a position ¢ in a computation 7 is denoted 7,7 = f.

e for an atomic proposition p, we have 7,7 = p iff p € 7(i).
i ﬂ-ai ): 2/)1 /\Q/)Q iﬁ.ﬂ'ai ): 2/)1 and 7T,i ):¢2
o i iff m i [E .

e m,i = L(t,...,1¢,), where L C ¥¥ for ¥ = {a,...,a,}, if there is a word
w = a;,a;, ... in L such that for all k£ > 0 we have that 7,i+k = v;,.

We say that a computation 7 satisfies f, denoted = = f, if 7,0 = f. Every formula
¢ defines a set of computations Mod(p) = {m |7 E ¢}, i.e., the set of computations
that satisfy ¢. We will say that a formula is satisfiable if Mod(p) is nonempty. The
satisfiability problem is to determine, given a formula ¢, whether ¢ is satisfiable.

3 Translations among the Models

We know that Biichi, Streett, and EL automata all have the same expressive power; they
all define the class of w-regular languages. Thus, for every EL automaton A there exists
an equivalent Biichi automaton A', that is, L, (A) = L,(A’). What we are interested here
is in the size of A’ relative to the size of A, where the size of an automaton is the length
of its description in some standard encoding.

Proposition 3.1: Let A be an EL automaton of size n. Then there is an equivalent
Biichi automaton A' of size 200,

Proof: The proof is constructive. Let A = (2,5, Sy, p, f) be an EL automaton of size
n. Let \V*_, f; be the disjunctive normal form of f, where clearly 0 < k < 2". it is easy
to see that L,(A) = UL, L,(4;), where A; = (3,5, So, p, fi), for 1 < i < k. Now we
construct for each A; an equivalent Biichi automaton A’ of size O(n?). Finally, we take
the disjoint union of the A}’s to obtain A'. i

Since a Biichi automaton is in particular also a Streett automaton and Streett au-
tomaton is in particular also an EL automaton, Proposition 3.1 also gives us exponential
translations from EL automata to Streett automata and from Streett automata to Biichi
automata. We now show that these translations are inherently exponential.

3We note that Wolper et al. considered also the logics ETLy and ETL; where not all w-regular
connectives are allowed. They showed that these logics are nevertheless as expressive as ETLg [WVS83].



Proposition 3.2: For every n > 0 there is a language L, that can be accepted by
a (deterministic) Streett automaton of size O(n) but cannot be accepted by any Biichi
automaton with less than 2™ states.

Proof: Let ¥ be the ternary alphabet {0,1,2}. Every word w in ¥“ can be viewed
as a word in (X")¥, that is, as an infinite sequence of n-vectors over ¥. Let u =
(ag,...,a, 1) € X™. We say that i is 0-activated (resp., 1-activated) in u, for 0 < i < n,
if a; =0 (resp., a; = 1). Let w € ¥, then w = wpu; ..., where u; € X" for all j > 0. We
say that i is O-activated (resp., l-activated) in w, for 0 < i < n, if 7 is 0-activated (resp.,
l-activated) in u; for infinitely many j’s. L, is the set of words in X with a symmetric
activity record. Formally,

L, ={w € X% i is O-activated in w iff 7 is 1-activated in w for 0 < i < n}.

L, is accepted by a (deterministic) Streett automaton with O(n) states and an accep-
tance formula of length O(n). Let A, = (X, S, So, p, ), where S = {0, ..., n—1} x{0, 1, 2},
So = {(0,0)}, p((3,k),l) = (i + 1 mod n,l) for 0 < i <nand 0 < k,l <2, and [ is the

formula
n—1

A ((@,0) = (i,1)) A (5, 1) = (3, 0)).

i=0
The reader can verify that L, = L,(A,). On the other hand, in the full paper we shall
show that L, is not accepted by any Biichi automaton with less than 2" states. The
proof depends crucially on the fact that for any Biichi acceptance condition the set of
accepting sets is closed under extension. I

Proposition 3.3: For every n > 0 there is a language L,, that can be accepted by a (de-
terministic) EL automaton of size O(n) but cannot be accepted by any Streett automaton
with less than 2" states.

Proof: Let ¥ be the binary alphabet {0,1}. Every word w in 3¢ can be viewed as a
word in (X")¥, that is, as an infinite sequence of n-bit vectors. We take L, to consist of
the sequences that are almost everywhere identical. Formally,

L, ={w]|3u e (£")" and v € X" such that w = uv®”}.

L, is accepted by a (deterministic) EL automaton with O(n) states and an acceptance
formula of length O(n). Let A, = (%,S, So,p, f), where S = {0,....,n — 1} x {0,1},
So = {(0,0)}, p((i,k),1) = (i + 1 mod n,l) for 0 < i <mnand 0 < k,l <1, and f is the
formula

=((4,0) A (4,1)).

1

n
1=



The reader can verify that L, = L,(A,). On the other hand, in the full paper we shall
show that L, is not accepted by any Streett automaton with less than 2" states. The
proof depends crucially on the fact that for any Streett acceptance condition the set of
accepting sets is closed under union. 1

The bottom line of the results in this section is that EL automata are exponentially
more succinct than Streett automata, and the latter are exponentially more succinct than
Biichi automata. The two exponentials, however, do not combine, and EL automata are
only exponentially more succinct than Biichi automata. Interestingly, the difference in
the complexity of the nonemptiness problem (i.e., checking whether a given automaton
is nonempty) is less substantial; the nonemptiness problem is NL-complete for Biichi
automata [VW88|, P-complete for Streett automata [EL87], and NP-complete for EL
automata [EL87].

4 Complementation

Since the set of ETL formulas is closed under negation, it is clear that we have to deal
with the complementation of w-regular languages. Biichi has shown that the class of
w-regular languages is closed under complementation [Bu62]. That is, if L C 3¥ is an
w-regular language, then so is the complementary language ¥“ — L. Constructive proofs
of this property were given in [Mc66, Sa88, SVW87] in the context of Biichi automata.
The best bound was given in [Sa88]:

Proposition 4.1: Let A be an n-state Biichi automaton over an alphabet 3. Then there
is a Biichi automaton A" with 2°"1°8™) states such that L, (A') = ¥ — L, (A).

The above upper bound was proven optimal by Michel [Mi88].

A related issue is that of universality. An automaton A over an alphabet X is universal
if L,(A) = X¥. The universality problem, checking whether a given automaton is univer-
sal, is related to complementation, since L,(A) = 3¢ precisely when ¢ — L,(A) = 0.
The universality problem for Biichi automata was studied in [SVW87]:

Proposition 4.2: The universality problem for Bichi automata is PSPACE-complete.

Here we examine the issues of complementation and universality in the context of
Biichi, Streett, and EL automata. Our first result is that complementation of Biichi au-
tomata is exponential even if one is willing to use an EL automata for the complementary
language.

Proposition 4.3: There is an alphabet X such that for every n > 0 there is a language

L, with the property that L, can be accepted by a Biichi automaton of size O(n) but
Y¥ — L, cannot be accepted by any EL automaton with less than 2" states.
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Proof: Let ¥ be the alphabet {0, 1,2}, and let A = {0,1}. A word u € A" can be viewed
as an n-bit number. Let w = u;2us2. .., where u; € A" for all j > 1 (i,e w € (A"2)¥).
Then w is a sequence of n-bit numbers separated by 2’s. We say that w is an n-counter
if u;41 is the successor of u; (modulo 2") for all j > 1. We take X% — L,, to consist of all
n-counters. Formally,

L, ={w € ¥ | w is not an n — counter}.

In the full paper we shall show that L, is accepted by a Biichi automaton of size
O(n), but ¥ — L, is not accepted by any EL automaton with less than 2" states. I

We now turn to complementation of EL automata. A straightforward approach would
be to combine Propositions 3.1 and 4.1. That is, to complement an EL. automaton we
first convert it to an equivalent Biichi automaton, which we then complement.

Proposition 4.4: Let A be a EL automaton of size O(n) over an alphabet . Then
there is a Biichi automaton A" with 22°" states such that L,(A') = £ — L,(A).

Now we know that both the translation from EL automata to Biichi automata and
the complementation of Biichi automata are inherently exponential, by Propositions 3.2
and 4.3, but it does not follow from this that the complementation of EL automata is
inherently doubly exponential. It is conceivable that EL automata can be complemented
exponentially by some direct construction. Nevertheless, the following proposition shows
that this is not the case.

Proposition 4.5: There is an alphabet > such that for every n > 0 there is a language
L,, with the property that L,, can be accepted by an EL automaton of size O(n) but ¥ — L,
cannot be accepted by any EL automaton with less than 22" states.

Proof: Let ¥ be the alphabet {0,1,2,3}, and let A = {0,1}. A word u € A" can be
viewed as an n-bit number. Consider now a word v € (A"2A)?" i.e., v = uy24; . . . Ugn 2ign.
The sequence i;...79» can be viewed an a 2"-bit number. Suppose now that u; is 0"
and w41 is the successor of u; for 1 < j < 2". Then each u; can be viewed as an index
to the bit ¢;. Thus, we call v an indezed 2"-bit number. We say that an indexed 2"-bit
number v' = 4124} ... uyn2i. is the successor of v (modulo 2%") if the sequence # .. .45,
is the successor of the sequence # ..., (modulo 2%").

Let w = v13v23 ..., where v; is an indexed 2"-bit counter for all j > 1, i.e., w is a
sequence of indexed 2"-bit numbers separated by 3’s. We say that w is an 2"-counter if
there is some jy such that ;. is the successor of u; (modulo 22") for all j > j,. (Notice
that, unlike the definition of n-counters, we require proper counting “behavior” only in
the limit). We take ¥ — L,, to consist of all 2"-counters. Formally,

L, ={w € ¥¥|w is not a 2" — counter}.

8



In the full paper we shall show that L,, is accepted by an EL automaton of size O(n),
but ¥ — L, is not accepted by any EL automaton with less than 22" states. I

The ideas underlying Propositions 4.4 and 4.5 can be extended to deal with for the
universality problem for EL automata.

Proposition 4.6: The universality problem for EL automata is EXPSPACE-complete.

Finally, we turn to Streett automata. Clearly, they can be complemented by a doubly
exponential construction, but the lower bound of Proposition 4.5 seem to need the full
power of EL automata. It turns out that there is an exponential complementation for
Streett automata. This is a fairly deep result to which we dedicate the rest of this section.

For a word w we denote by wli, j] the word w;, w;;1,...,wj_1. We say that a run
S = Sg, S1,- .., S, Visits a state s if there exists an ¢ such that s; = s.

Let T = (%, S, Sp, p) be a table. We extend p to take as arguments sets of states and
finite words as follows: p(V,A) =V, and p(V,wa) = {t|t € p(s,a) for some s € p(V,w)}.

A history graph G = (V, E) for T is an edge-labelled directed graph over a subset of the
states V' C S, where each edge is labelled by a collection of sets of states, E: V xV — 227,
A history graph is intended to describe all possible runs of 1" over some finite words. A
history graph G = (V| E) corresponds to a finite word w € ¥* if p(V,w) = V and
H € E(s,t) if and only if there is a T-run from s to t over w visiting exactly the set
H. A history graph G = (V| E) is idempotent if for any (not necessarily distinct) states
r,s,t €V, if H € E(r,s) and Hy € E(s,t) then H; U Hy € E(r,t).

History graphs can also describe runs over infinite words. A history graph G = (V, E)
corresponds to an infinite word w € ¢ if there is an increasing sequence 0 < g < iy < ...
such that p(Sy, w|0,4y]) =V and G corresponds to wli;, i;41] for all j > 0.

Lemma 4.7: For each word w there exists an idempotent history graph that corresponds
to w.

Proof: Given a word w € X“, we assign to each pair of integers (i,7), ¢ < j, a triple
(Vi, V;, Ey;) such that V; = p(So, w[0,4]), V; = p(So, w[0, j]), and Ey;: Vi x V; — 2% is such
that H € E(s,t) iff there is a T-run from s to ¢ over w[i, j] visiting exactly the set H. By
the Infinite Ramsey Theorem, there exists a history graph, G = (V, E), and an infinite
set X C N such that for every i € X, p(Sp, w[0,:]) =V, and for every i,j € X, i < j,
we have that G corresponds to w(i, j]. Thus, G corresponds to w, and is idempotent.

Now let A be an EL automaton (7}, f). A history graph G = (V, E) for T is nonac-
cepting with respect to f if for each s € V, and for each history set H € E(s,s), H is a
nonaccepting.

Lemma 4.8: A word w is not accepted by A iff there exists a nonaccepting idempotent
history graph that corresponds to w.



Proof: Note that there may be different history graphs that correspond to a word w.
Nevertheless, we can show that they are all either accepting or nonaccepting.

Assume there exists a nonaccepting idempotent history graph G = (V| E) that corre-
sponds to w via the sequence iy, i, .... Consider any 7-run s over w such that lim(s) = H.
Since V' is finite, there is a state s € V' such that s = s;, for infinitely many j’s. By the
idempotence condition H € E(s, s), and because G is nonaccepting, H is nonaccepting.

In the other direction, assume that there is no nonaccepting idempotent history graph
that corresponds to w. Then, by Lemma 4.7, there is an accepting idempotent history
graph G = (V| E) corresponding to w. That is, there is some s € V and an accepting set
H € E(s,s). That means that s € p(Sy, w0, 1io]), and for every j > 0, there is a T-run
from s to s over w(i;, i;41] visiting exactly the set H. It follows that there is an accepting
T-run over w. 1

We could use history graphs for complementation, but unfortunately history graphs
are of exponential size, which means that a construction that uses history graphs directly
would be doubly exponential. What we need is to encode the information captured in
a history graph in a more efficient way. This is possible if A is a Streett automaton,
which means that f is a Streett formula A¥ [ (V L; — VU;). Let A = {1,...,k}. A pair
assignment for a set V' of states is a function v : V' — A* that assigns to every state in V'
a sequence of distinct indices of pairs. Note that the length of «(s) is bounded by & for
all s € V. The pair assignment « is a pair assignment for a history graph G = (V, E) if «
is an assignment on V" and for each s € V, where a(s) =iy, ..., 4, and every H € E(s, s)
there exists a j, 1 < j <[ such that

[ ] HOLZ]%Qand

e HNU;, = (0 for every j' < 7.

Lemma 4.9: An idempotent history graph G is nonaccepting if and only if it has a pair
assignment.

Proof: The condition is clearly sufficient. To prove necessity, suppose that G = (V, E) is
an idempotent nonaccepting history graph and s € V. We define a sequence of 7q,..., i
of pair indices, a sequence Hy,..., Hy of elements of E(s,s), and sequences Hy, ..., Hy
and Hj, ..., H), of subsets of E(s,s) such that

1. IfHEHi].,1§j§l,thenHﬂLi].#@andHﬂUij,:@forlgj’gj.
2. HHeH;,1<j<[ then HNL;, =0and HNU;, =0 for 1 <j' <j.
3. For 1 < j <, we have that H; = {H € H)_, | HN L;; # 0}.

4. For 0 < j <, we have that H) = E(s, s) — U’_, H;.
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5. For 0 < j <[, we have that H; is closed under union.

We first take Hy to be the empty set and we take Hj, to be E(s, s). It is easy to verify
that the inductive properties hold.

Inductively, suppose that we have already defined iy,...,%, Hy,..., H;, Hy,..., Hy,
and Hf,,...,H}, [ > 0.

Consider now the collection Hj. If H' = (), then E(s,s) = ;:1 H;, so we can take
a(s) to be iy,...,i, and we are done. Assume now that Hj # (). We know that H]
is closed under union. Let H;,; = Usen, H. By induction, H;;; € H; C E(s,s), so
H, 4, is nonaccepting. It follows that for some index j we have that H,.y N L; # () and
Hl+1r\|U]’ == @ Let il-l-l == j, let HH—I == {H S HE | Hr\IL] 7£ (Z)}, and let H2+1 = HE_HH-I'
We leave it to the reader to verify that the inductive properties holds. B

We are now in position to define a more compact version of the history graph. The
idea is to replace the sets labelling the edges by indices of pairs with which these sets
“interact”. Let A" = {1,...,k,k + 1}. A pair graph G = (V,F) for A with respect
to a pair assignment o on V' is is a labelled directed graph over the set V' C S, where
F : V3 — 287 labels every triple of states with a set of pairs of indices such that if
(i,7) € F(r,s,t) then 1 <14,j <| a(t) | +1. Put differently, the label of every edge is a
mapping from V to 24" Note that the size of the pair graph is bounded by n®, where n
is the size of A.

A pair graph G = (V| F) with respect to a pair assigment « corresponds to a finite
word w € X* if p(V,w) =V and (i,5) € F(r,s,t) where a(t) = 1y,..., 1, if and only if
there is an 7-run from 7 to s over w that

e visits no state in L;, for i/ < ¢, and visits no state in Ui, for j' < 7,
e visits a state in Ly, if ¢ < m, and visit a state in Uy, if j < m.

A pair graph G = (V, F') with respect to a pair assigment « corresponds to an infinite word
w € ¥¥ if there is an increasing sequence 0 < iy < i; < ... such that p(Sy, w[0,4]) =V
and G corresponds to w(i;, ij41] for all j > 0.

We now have to redefine idempotence and nonacceptance for pair graphs. A pair
graph G = (V, F) with respect to a pair assignment « is idempotent if for any (not
necessarily distinct) states r,s,t,u € V, if (i1, 1) € F(r,s,u) and (i, jo) € F(s,t,u),
then (min(iy,i2), min(ji, j2)) € F(r,t,u). A pair graph G = (V, F') with respect to a pair
assignment « is nonaccepting if for each s € V' and index pair (7, j) € F(s, s, s), we have
that 7 < j.

Lemma 4.10: A word w is not accepted by A if and only if there exists a pair assignment
a and nonaccepting idempotent pair graph with respect to « that corresponds to w.
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Proof: If w is not accepted by A, then, by Lemma 4.8, there is a nonaccepting idempotent
history graph G = (V, E') that corresponds to w. By Lemma 4.9, this history graph has
a pair assignment a. We now define a pair graph G" = (V, F') with respect to a. Let
r,s,t €V, and let a(t) =1,...,l;. Then we have that (i,j) € F(r,s,t) if there is a set
H € E(r,s) such that

° HﬁLli,:Q)fori’<iandHﬂUlj,:Q)forj’<j,

e HN Ly, #0,ifi <m,and HN Uy, if j < m.

It can be shown that G’ is idempotent, nonaccepting, and corresponds to w.

Assume that there exist a pair assignment o and a nonaccepting idempotent pair
graph G = (V| F') with respect to « such that G corresponds to w via the sequence
mg, mq, .... Consider any T-run s over w such that lim(s) = H. Since V is finite, there
is a state s € V such that s = s, for infinitely many j’s. Let a(s) = [1,...,lx. By
idempotence, there is a pair (7, j) € F(s, s,s) such that

o HN L, :®fori’<iandHﬂUlj, = for j' < 7,
o HN Ly, #0,ifi <m,and HN Uy, if j < m.
Since (G is nonaccepting, we have that ¢ < j. It follows that H is nonaccepting. 1

We are now in position to provide an exponential complementation construction for
Streett automata.

Theorem 4.11: Let A be a Streett automaton of size n over an alphabet X, then is a
Biichi automaton A’ with 2 states such that L,(A') = X — L, (A).

Proof: A’ first guesses a pair assignment « and a nonaccepting idempotent pair graph
with respect to «. It then reads w and nondeterministically verifies that the pair graph
corresponds to w. I

Michel’s 2°(*1¢™) Jower bound for complementation of Buchi automata [Mi88] can
be extended to Streett automata. This leaves a marked gap between the upper and the
lower bounds.

Finally, we use our complementation construction to deal with universality of Streett
automata.

Proposition 4.12: The universality problem for Streett automata is PSPACE-complete.

12



5 Extended Temporal Logic

Having studied the computational properties of Biichi, Streett, and EL automata, we
turn our attention back to ETL. As we have mentioned earlier, the satisfiability problem
for ETLg is PSPACE-complete. The question is whether we can use more succinct
representation for the temporal connectives while retaining the polynomial-space upper
bound.

Our approach is based on the automata-theoretic paradigm expounded in [WVS83,
SVW8T7|. The basis of that paradigm is that computations can be viewed as words
over the alphabet 2777 and ETL formulas always define w-regular sets of computations.
Thus, with every ETL formula ¢ we can associated a Biichi automaton A, such that
Mod(p) = L,(A,), i.e., the set of computations defined by ¢ is precisely the language
accepted by A,. To check whether ¢ is satisfiable we just have to check whether A,
is nonempty.* The crucial question is how big is the automaton A,; since negation
corresponds to complementation and complementation involves at least an exponential
blow up, one might suspect that the size of A, might be nonelementary in the length
of ¢. Fortunately, for ETLp formulas, it was shown in [SVW87] that the size A, is
exponential in the length of ¢, from which a polynomial-space decision procedure is
obtained. There are two major components to that construction. The first is running
unboundedly many automata in parallel under central control, and the second is using
the power of nondeterminism so complementation has to be applied only once.

We now turn our attention to EL automata.

Proposition 5.1: Let ¢ be an ETLgy formula of length n. Then there is a Buchi
automaton A, of size 22°" such that Mod(y) = L,(A,). Furthermore, for every n >0
there is an ETLgy, formula ¢, of length O(n) such that Mod(y) is not accepted by any
EL automaton with less than 2°".

Proof: The upper bound follows from Proposition 3.1 and the lower bound follows from
Proposition 4.5. 1

Using Propositions 4.6 and 5.1 we can charaterize the complexity of ETLgy.
Theorem 5.2: The satisfiability problem for ETLgy, is EXPSPACE-complete.
The good news is that ETLg is more tractable.

Proposition 5.3: Let ¢ be an ETLs formula of length n. Then there is a Biichi au-
tomaton A, of size 2°0°) such that Mod(p) = L,(A,). Furthermore, for every n > 0
there is an ETLg formula ¢, of length O(n) such that Mod(p) is not accepted by any
EL automaton with less than 2™.

“The translation of a formula ¢ to an equivalent automaton A, has several other applications to
program synthesis and verification. See [AS85, AS87, CY88, MP87, Va85, Va87, VW85, VW86].

13



Proof: The lower bound follows from Proposition 4.3. The upper bound requires an ex-
tension of the ideas in [SVW87]. For complementation we use the construction described
in Section 4. In addition we have to show that we can run Streett automata in parallel
and convert the result to a Biichi automaton with a single exponential blow-up. I

We finally get the desired complexity result by combining Propositions 5.3 and 4.12.

Theorem 5.4: The satisfiability problem for ETLg is PSPACE-complete.

6 Concluding Remarks

Our investigation yielded the surprising result that even though Streett automata are
exponentially more succinct that Bilichi automata, one can use them to represent w-
regular languages in E'TL while retaining the polynomial-space complexity of the decision
procedure. We should note, however, that the decision procedure for ETLg runs in time
20(nlogn) 1988 ' SVW8T], while our decision procedure for ETLg runs in time 20(*)  The
practical difference between these running times is significant enough to put a question
mark on the practicality of ETLg.

In conclusion we note that there is another yardstick of complexity for w-automata
that we have not considered here and that is the complexity of determinization. While it
is known that Biichi automata can be determinized with an exponential blow-up [Sa88],
it follows from Proposition 4.5 that determinization of EL automata requires a doubly
exponential blow-up. The complexity of determinizing Streett automata is currently
unknown.

Acknowledgements. We’d like to thank A. Pnueli and R. Heiman for very helpful dis-
cussions. In particular, A. Pnueli helped us to significantly simplify the complementation
construction for Streett automata.

References

[AS85] Alpern, B., Schneider, F.B.: Verifying temporal properties without using
temporal logic. Technical Report TR—-85-723, Cornell University, Dec. 1985.

[AS87] Alpern, B., Schneider, F.B.: Proving Boolean combinations of deterministic
properties. Proc. 2nd IEEE Symp. on Logic in Computer Science, Ithaca,
1987, pp. 131-137.

[Bu62] Biichi, J.R.: On a decision method in restricted second-order arithmetics.
Proc. Int’l Congr. on Logic, Method. and Phil. of Sci. 1960, Stanford Uni-
versity Press, 1962, pp. 1-12.

[Ch74] Choueka, Y.: Theories of automata on w—tapes — a simplified approach. J.
Computer and System Science 8(1974), pp. 117-141.

14



[CYSS]

[ELST]

[E89]

[FK84|

[Fr86]

[Ga87]

[HR83]

[Kr87]

[LPZ85]

[Mc66]

[Mi88]

[MP87]

[Pa8l]

[Pn77]

Courcoubetis, C., Yannakakis, M.: Verifying temporal properties of finite-
state probabilistic programs. Proc. 29th IEEE Symp. on Foundation of Com-
puter Science, Oct. 1988, pp. 338-345.

Emerson, E.A., C.L. Lei: Modalities for model checking - branching time
strikes back.

Emerson, E.A.: Temporal and Modal Logic. Handbook of Theoretical Com-
puter Science, eds. J. van Leeuwen et. al., North-Holland Pub., in press,
1987.

Francez, N., Kozen, D.: Generalized fair termination. Proc. 11th ACM
Symp. on Principles of Programming Languages, Salt Lake City, 1984.

Francez, N.: Fairness. Text and Monographs in Computer Science, Springer—
Verlag, 1986.

Galton, A.: Temporal logics and their applications. Academic Press, 1987.

Halpern, J.Y., Reif, J.H.: The propositional dynamic logic of deterministic
well-structured programs. Theoretical Computer Science 27(1983), pp. 127—
165.

Kroger, F.: Temporal logics of programs. EATCS Monographs on Theoretical
Computer Science, Springer—Verlag, 1987.

Lichtenstein, O., Pnueli, A., Zuck L.: The glory of the past. Proc. Work-
shop on Logics of Programs, Brooklyn, Springer-Verlag, Lecture Notes in
Computer Science 193, 1985, pp. 97-107.

McNaughton, R.: Testing and generating infinite sequences by a finite au-
tomaton. Information and Control 9(1966), pp. 521-530.

Michel, M.: Complementation is more difficult with automata on infinite
words. Manuscript, 1988.

Manna, Z., Pnueli, A.: Specification and verification of concurrent programs
by V—-automata. Proc. 14 ACM Symp. on Principles of Programming Lan-
guages, Munich, Jan. 1987, pp. 1-12.

Park, D.: Concurrency and automata on infinite sequences. Proc. 5th GI
Conf. on Theoretical Computer Science, 1981, Springer—Verlag, LNCS 104,
pp. 167-183.

Pnueli, A.: The temporal logic of programs. Proc. 18th Symp. on Founda-
tions of Computer Science, 1977, pp. 46-57.

15



[Pns5)

[Pns6]

[Ra69]

[Sa88]

[SC85)

[St82]

[SVWS8T]

[To81]

[Va85]

[Va87]

[VWS85]

[VWS6]

[VWSS]

Pnueli, A: In transition from global to modular reasoning about programs.
Logics and Models of Concurrent Systems, ed. K.R. Apt, Springer-Verlag,
1985, pp. 123-144.

Pnueli, A: Applications of temporal logic to the specification and verifica-
tion of reactive systems - a survey of current trends. Current Trends in
Concurrency, eds. J.W. de Bakker et al., Springer-Verlag, Lecture Notes in
Computer Science 224, 1986, pp. 510-584.

Rabin, M.O.: Decidability of second-order theories and automata on infinite
trees. Trans. AMS 141(1969), pp. 1-35.

Safra, S.: On the complexity of w-automata. Proc. 29th IEEE Symp. on
Foundation of Computer Science, Oct. 1988, pp. 319-327.

Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal
logics. J. ACM 32(1985), pp. 733-7409.

Streett, R.S.: Propositional dynamic logic of looping and converse is ele-
mentarily decidable. Information and Control, 54(1982), pp. 121-141.

Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for
Biichi automata with applications to temporal logic. Theoretical Computer
Science 49(1987), pp. 217-237.

Thomas, W.: A combinatorial approach to the theory of w-automata. In-
formation and Control 48(1981), pp. 261-283.

Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state
programs. Proc. 26th IEEE Symp. on Foundations of Computer Science,
Portland, 1985, pp. 327-338.

Vardi, M.Y.: Verification of concurrent programs — the automata-theoretic
framework. Proc. 2nd IEEE Symp. on Logic in Computer Science, Ithaca,
1987, pp. 167-176.

Vardi, M.Y., Wolper, P.: Applications of temporal logic - an automata-
theoretic perspective. Stanford University, CSLI, 1985.

Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic pro-
gram verification. Proc. IEEE Symp. on Logic in Computer Science, Cam-
bridge, 1986, pp. 332-344.

Vardi, M.Y., Wolper, P.: Reasoning about infinite computation paths. IBM
Research Report RJ 6209, April 1988.

16



[Wo83] Wolper, P.: Temporal logic can be more expressive. Information and Control
56(1983), pp. 72-99.

[WVS83]  Wolper, P.L., Vardi, M.Y., Sistla, A.P.: Reasoning about infinite compu-
tation paths. Proc. 2/th IEEE Symp. on Foundation of Computer Science,
Tuscon, 1983, pp. 185-194.

17



