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Abstra
t

We study here the use of di�erent representation for in�nitary regular languages

in extended temporal logi
. We fo
us on three di�erent kinds of a

eptan
e 
on-

ditions for �nite automata on in�nite words, due to B�u
hi, Streett, and Emerson

and Lei (EL), and we study their 
omputational properties. Our �nding is that

B�u
hi, Streett, and EL automata span a spe
trum of su

in
tness. EL automata

are exponentially more su

in
t than B�u
hi automata, and 
omplementation of EL

automata is doubly exponential. Streett automata are of intermediate 
omplexity.

While translating from Streett automata to B�u
hi automata involves an expo-

nential blow-up, so does the translation from EL automata to Streett automata.

Furthermore, even though Streett automata are exponentially more su

in
t than

B�u
hi automata, 
omplementation of Streett automata is only exponential. As a

result, we show that the de
ision problem for ETL

EL

, where temporal 
onne
tives

are represented by EL automata, is EXPSPACE-
omplete, and the de
ision prob-

lem for ETL

S

, where temporal 
onne
tives are represented by Streett automata, is

PSPACE-
omplete.

1 Introdu
tion

Sin
e the proposal by Pnueli in 1977 [Pn77℄ to apply Temporal Logi
 (TL) to the spe
i-

�
ation and veri�
ation of 
on
urrent programs, the role of TL as a feasible approa
h to

that task has been widely a

epted [E89, Ga87, Kr87℄. Over the last de
ade an extensive

resear
h has been 
arried out 
on
erning both pra
ti
al and theoreti
al aspe
ts of using

TL to spe
ify and verify 
on
urrent programs (see survey in [Pn86℄). One of the 
on
lu-

sions of this resear
h is that the standard TL, whi
h 
onsists of the temporal 
onne
tives

nexttime and until is not expressive enough for its task.

The �rst to 
omplain about the expressive power of TL was Wolper [Wo83℄ who

observed that temporal logi
 
annot express 
ertain regular events (in fa
t, TL 
an express

pre
isely the star-free !-regular events [To81℄). As was shown later, this makes TL

inadequate for 
ompositional veri�
ation (as opposed to global veri�
ation) [LPZ85℄. As
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a remedy, Wolper suggested extending TL with temporal 
onne
tives that 
orrespond to

regular grammars. The extended TL, is 
alled, naturally enough, ETL. It was shown later

that the expressive power of ETL is suÆ
ient and ne
essary to perform 
ompositional

spe
i�
ation and veri�
ation [LPZ85, Pn85, Pn86℄.

ETL was further explored by Wolper et al. in [WVS83℄, where the basi
 paradigm

of ETL was made expli
it: every !-regular langauage L over an n-letter alphabet 
an

be viewed as an n-ary temporal 
onne
tive (the restri
tion to !-regular language is for

pra
ti
al reasons). To obtain a �nitary syntax, a �nitary representation for !-regular

languages must be 
hosen. This 
hoi
e is the subje
t matter of this paper.

As in [WVS83℄ we fo
us on representation of !-regular languages by means of non-

deterministi
 �nite-state automata. Unlike the 
lass of regular languages, however,

there are several types of �nite-state automata that de�nes the 
lass of !-regular lan-

guage: B�u
hi automata [Bu62℄, Street automata [St82℄, whi
h generalize B�u
hi automata,

and Emerson-Lei (abbr. EL) automata [EL87℄, whi
h generalize Streett automata.

1

While these automata have the same expressive power, they di�er in their su

in
tness:

the nonemptiness problem is NL-
omplete for B�u
hi automata [VW88℄, P-
omplete for

Streett automata [EL87℄, and NP-
omplete for EL automata [EL87℄. Thus, it is 
lear that

the 
hoi
e of representation has the potential of having a drasti
 e�e
t on the 
omplexity

of the de
ision problem for ETL.

Sistla et al. [SVW87℄ studied ETL

B

, where temporal 
onne
tives are represented

by B�u
hi automata, and showed that the de
ision problem for this logi
 is PSPACE-


omplete, just like the de
ision problem for TL [HR83, SC85℄.

2

What we'd like here is to

get \more bang for the bu
k". That is, we'd like to use the most su

in
t representation

for temporal 
onne
tives that is 
ompatible with retaining the polynomial-spa
e upper

bound on the 
omplexity of the de
ision problem for the logi
. To that end we study

the 
omputational properties of !-automata. In parti
ular we study the 
omplexity of

translating one representation to another and the 
omplexity of 
omplementation (sin
e

the 
lass of !-regular automata is 
losed under 
omplementation). We believe that this

investigation is of great interest in view of the emerging importan
e of !-automata to the

spe
i�
ation and veri�
ation of 
on
urrent programs [AS85, AS87, CY88, MP87, Pa81,

Va85, Va87, VW85, VW86℄.

Our �nding is that B�u
hi, Streett, and EL automata span a spe
trum of su

in
tness.

We fo
us �rst on EL automata. We show that EL automata are exponentially more

su

in
t than B�u
hi automata. Translating from the former to the latter involves an

exponential blow-up. Furthermore, 
omplementation of EL automata is doubly expo-

nential, while 
omplementation for B�u
hi automata is only exponential [Sa88, SVW87℄.

As a result, we show that the de
ision problem for ETL

EL

, where temporal 
onne
tives

are represented by EL automata, is EXPSPACE-
omplete. This rules out the use of EL

1

The 
lass of Rabin automata [Ra69℄ also de�nes the 
lass of of !-regular languages. This represen-

tation, however, is polynomially equivalent to the B�u
hi representation.

2

ETL

B

is 
alled ETL

r

in [WVS83, SVW87℄.
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automata for the representation of temporal 
onne
tives.

The more surprising result is that Streett automata are of intermediate 
omplex-

ity. While translating from Streett automata to B�u
hi automata involves an exponential

blow-up, so does the translation from EL automata to Streett automata. Furthermore,

even though Streett automata are exponentially more su

in
t than B�u
hi automata,


omplementation of Streett automata is only exponential. This result is rather unex-

pe
ted; it involves a rather 
ompli
ated 
onstru
tion and requires a fairly deep analysis

of a

eptan
e by Streett automata. As a result, we show that the de
ision problem for

ETL

S

, where temporal 
onne
tives are represented by Streett automata, is PSPACE-


omplete. Sin
e Streett automata also enable us to dire
tly en
ode very powerful notions

of fairness [FK84℄, one is tempted to re
ommend the Streett representation for !-regular

temporal 
onne
tives. We will return to this point in our 
on
luding remarks.

2 Basi
 De�nitions

2.1 Finite Automata

We 
onsider words over �nite alphabets. A �nite word over an alphabet � is a member

of �

�

. An in�nite word over an alphabet � is a member of �

!

. It will usually be 
lear

from the 
ontext whether we refer to �nite or in�nite words.

A table T is a tuple (�; S; S

0

; �), where � is a �nite alphabet, S is a �nite set of states,

S

0

� S is a set of initial states, and � : S��! 2

S

is the transition fun
tion. A run of T

over an word w = a

0

a

1

: : : a

n�1

in �

�

from a state s to a state t is a sequen
e s

0

; s

1

; : : : ; s

n

in S

�

su
h that s

0

= s, s

n

= t and s

i+1

2 �(s

i

; a

i

) for all i, 0 � i < n. A run of T

over an word w = a

0

a

1

: : : in �

!

is a sequen
e s

0

; s

1

; : : : in S

!

su
h that s

0

2 S

0

, and

s

i+1

2 �(s

i

; a

i

) for all i � 0.

A

eptan
e of runs is de�ned in terms of their limit behavior. Let x = x

0

; x

1

; : : : be

in X

!

, for some �nite set X. Then lim(x) is the set of elements that o

ur in x in�nitely

often, i.e.,

lim(x) = fx j (8i � 0)(9j � i) su
h that x

j

= xg:

An a

eptan
e 
ondition for a table T = (�; S; S

0

; �) is a 
olle
tion C � 2

S

of sets of

states. A set S

0

is a

epting with respe
t to C if it is in C. A run s = s

0

; s

1

; : : : is

a

epting with respe
t to an a

eptan
e 
ondition C if lim(s) is a

epting with respe
t

to C.

A Muller automaton A is a pair (T; C) 
onsisting of a table T = (�; S; S

0

; �) and an

a

eptan
e 
ondition C � 2

S

for T . A word w 2 �

!

is a

epted by A if T has a run s on

w that is a

epting with respe
t to C. L

!

(A) is the set of all words in �

!

a

epted by

A. An automaton A is nonempty if L

!

(A) is nonempty. A language L � �

!

is !-regular

if L = L

!

(A) for some Muller automaton A.

We 
an spe
ify a

eptan
e 
onditions for a table T = (�; S; S

0

; �) more su

in
tly

by means of a

eptan
e formulas, whi
h are propositional formulas 
onstru
ted using
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the states in S as propositional variables. Let S

0

be a subset of S, then �(S

0

) is the


hara
teristi
 fun
tion of S

0

, whi
h 
an be viewed as a truth assignment on S. A set S

0

is a

epting with respe
t to an a

eptan
e formula f if �(S

0

) satis�es f .

Example 2.1: Let S = fp; q; rg, and let f be the a

eptan
e formula :p^ (q_r). Then,

the a

epting set with respe
t to f are fqg, frg, and fq; rg. That is, a run is a

epting

with respe
t to f if p o

urs only �nite often in the run and either q or r o

urs in�nitely

often in the run.

An Emerson-Lei (EL) automaton A is a pair (T; f) 
onsisting of a table T and an

a

eptan
e formula f for T . Streett automata and B�u
hi automata are obtained by

restri
ting the 
lass of a

eptan
e formulas. A B�u
hi formula is simply a disjun
tion of

propositional variables. Equivalently, a B�u
hi 
ondition is a set F of states, and a set S

0

is a

epting if S

0

\ F 6= ;. A Streett formula is of the form

V

k

i=1

(

W

L

i

!

W

U

i

), k � 0,

where L

i

and U

i

are sets of states. Equivalently, a Streett 
ondition is a 
olle
tion of pairs

of sets of states, and a set S

0

is a

epting if S

0

\ L

i

6= ; entails S

0

\ U

i

6= ; for every pair

(L

i

; U

i

). It is easy to see that B�u
hi 
ondition is a spe
ial 
ase of Streett 
ondition.

The interest in B�u
hi and Streett 
onditions stems from the fa
t that they 
an be

viewed as normal forms, they both de�ne the 
lass of !-regular languages. More formally,

for every !-regular language L there exists a B�u
hi automaton A su
h that L = L

!

(A)

[M
66℄. Furthermore, for every !-regular language L there exists a deterministi
 Streett

automaton A

0

su
h that L = L

!

(A

0

) [M
66, St82℄ (note that deterministi
 B�u
hi au-

tomata are weaker than nondeterministi
 B�u
hi automata [Ch74℄). Streett 
ondition

is also of spe
ial interest be
ause it is essentially the 
ondition of generalized fairness

de�ned in [FK84℄ (see also [Fr86℄).

2.2 Extended Temporal Logi


We 
onsider a propositional temporal logi
 where the temporal 
onne
tives are de�ned

by !-regular languages [WVS83, Wo83, SVW87℄. The formulas built from a set Prop of

atomi
 propositions. The set of formulas is de�ned indu
tively as follows:

� every proposition p 2 Prop is a formula.

� if  

1

and  

2

are formulas, then : 

1

and  

1

^  

2

are formulas.

� If � is the alphabet fa

1

; : : : ; a

n

g, L � �

!

is an !-regular language, and  

1

; : : : ;  

n

are formulas, then L( 

1

; : : : ;  

n

) is a formula.

The a
tual syntax for the logi
 depends on the representation of !-regular languages.

If we represent !-regular languages by B�u
hi automata, we get ETL

B

(
alled ETL

r

in
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[WVS83, SVW87℄). Analogously, if we represent !-regular languages by Streett automata

(resp., EL automata) we get ETL

S

(resp., ETL

EL

).

3

We interpret ETL formulas over 
omputations, whi
h are in�nite sequen
es of truth

assignments, i.e., fun
tions � : ! ! 2

Prop

that assign truth values to the atomi
 proposi-

tions in ea
h state. We now de�ne satisfa
tion of formulas. Satisfa
tion of a formula  

at a position i in a 
omputation � is denoted �; i j= f .

� for an atomi
 proposition p, we have �; i j= p i� p 2 �(i).

� �; i j=  

1

^  

2

i� �; i j=  

1

and �; i j=  

2

.

� �; i j= : i� �; i 6j=  .

� �; i j= L( 

1

; : : : ;  

n

), where L � �

!

, for � = fa

1

; : : : ; a

n

g, if there is a word

w = a

j

0

a

j

1

: : : in L su
h that for all k � 0 we have that �; i+ k j=  

j

k

.

We say that a 
omputation � satis�es f , denoted � j= f , if �; 0 j= f . Every formula

' de�nes a set of 
omputations Mod(') = f� j � j= 'g, i.e., the set of 
omputations

that satisfy '. We will say that a formula is satis�able if Mod(') is nonempty. The

satis�ability problem is to determine, given a formula ', whether ' is satis�able.

3 Translations among the Models

We know that B�u
hi, Streett, and EL automata all have the same expressive power; they

all de�ne the 
lass of !-regular languages. Thus, for every EL automaton A there exists

an equivalent B�u
hi automaton A

0

, that is, L

!

(A) = L

!

(A

0

). What we are interested here

is in the size of A

0

relative to the size of A, where the size of an automaton is the length

of its des
ription in some standard en
oding.

Proposition 3.1: Let A be an EL automaton of size n. Then there is an equivalent

B�u
hi automaton A

0

of size 2

O(n)

.

Proof: The proof is 
onstru
tive. Let A = (�; S; S

0

; �; f) be an EL automaton of size

n. Let

W

k

i=1

f

i

be the disjun
tive normal form of f , where 
learly 0 � k � 2

n

. it is easy

to see that L

!

(A) =

S

k

i=1

L

!

(A

i

), where A

i

= (�; S; S

0

; �; f

i

), for 1 � i � k. Now we


onstru
t for ea
h A

i

an equivalent B�u
hi automaton A

0

i

of size O(n

2

). Finally, we take

the disjoint union of the A

0

i

's to obtain A

0

.

Sin
e a B�u
hi automaton is in parti
ular also a Streett automaton and Streett au-

tomaton is in parti
ular also an EL automaton, Proposition 3.1 also gives us exponential

translations from EL automata to Streett automata and from Streett automata to B�u
hi

automata. We now show that these translations are inherently exponential.

3

We note that Wolper et al. 
onsidered also the logi
s ETL

f

and ETL

l

where not all !-regular


onne
tives are allowed. They showed that these logi
s are nevertheless as expressive as ETL

B

[WVS83℄.
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Proposition 3.2 : For every n > 0 there is a language L

n

that 
an be a

epted by

a (deterministi
) Streett automaton of size O(n) but 
annot be a

epted by any B�u
hi

automaton with less than 2

n

states.

Proof: Let � be the ternary alphabet f0; 1; 2g. Every word w in �

!


an be viewed

as a word in (�

n

)

!

, that is, as an in�nite sequen
e of n-ve
tors over �. Let u =

ha

0

; : : : ; a

n�1

i 2 �

n

. We say that i is 0-a
tivated (resp., 1-a
tivated) in u, for 0 � i < n,

if a

i

= 0 (resp., a

i

= 1). Let w 2 �

!

, then w = u

0

u

1

: : :, where u

j

2 �

n

for all j � 0. We

say that i is 0-a
tivated (resp., 1-a
tivated) in w, for 0 � i < n, if i is 0-a
tivated (resp.,

1-a
tivated) in u

j

for in�nitely many j's. L

n

is the set of words in �

!

with a symmetri


a
tivity re
ord. Formally,

L

n

= fw 2 �

!

j i is 0-a
tivated in w i� i is 1-a
tivated in w for 0 � i < ng:

L

n

is a

epted by a (deterministi
) Streett automaton with O(n) states and an a

ep-

tan
e formula of length O(n). Let A

n

= (�; S; S

0

; �; f), where S = f0; :::; n�1g�f0; 1; 2g,

S

0

= f(0; 0)g, �((i; k); l) = (i + 1 mod n; l) for 0 � i < n and 0 � k; l � 2, and f is the

formula

n�1

^

i=0

((i; 0)! (i; 1)) ^ ((i; 1)! (i; 0)):

The reader 
an verify that L

n

= L

!

(A

n

). On the other hand, in the full paper we shall

show that L

n

is not a

epted by any B�u
hi automaton with less than 2

n

states. The

proof depends 
ru
ially on the fa
t that for any B�u
hi a

eptan
e 
ondition the set of

a

epting sets is 
losed under extension.

Proposition 3.3: For every n > 0 there is a language L

n

that 
an be a

epted by a (de-

terministi
) EL automaton of size O(n) but 
annot be a

epted by any Streett automaton

with less than 2

n

states.

Proof: Let � be the binary alphabet f0; 1g. Every word w in �

!


an be viewed as a

word in (�

n

)

!

, that is, as an in�nite sequen
e of n-bit ve
tors. We take L

n

to 
onsist of

the sequen
es that are almost everywhere identi
al. Formally,

L

n

= fw j 9u 2 (�

n

)

�

and v 2 �

n

su
h that w = uv

!

g:

L

n

is a

epted by a (deterministi
) EL automaton with O(n) states and an a

eptan
e

formula of length O(n). Let A

n

= (�; S; S

0

; �; f), where S = f0; :::; n � 1g � f0; 1g,

S

0

= f(0; 0)g, �((i; k); l) = (i + 1 mod n; l) for 0 � i < n and 0 � k; l � 1, and f is the

formula

n

^

i=1

:((i; 0) ^ (i; 1)):

6



The reader 
an verify that L

n

= L

!

(A

n

). On the other hand, in the full paper we shall

show that L

n

is not a

epted by any Streett automaton with less than 2

n

states. The

proof depends 
ru
ially on the fa
t that for any Streett a

eptan
e 
ondition the set of

a

epting sets is 
losed under union.

The bottom line of the results in this se
tion is that EL automata are exponentially

more su

in
t than Streett automata, and the latter are exponentially more su

in
t than

B�u
hi automata. The two exponentials, however, do not 
ombine, and EL automata are

only exponentially more su

in
t than B�u
hi automata. Interestingly, the di�eren
e in

the 
omplexity of the nonemptiness problem (i.e., 
he
king whether a given automaton

is nonempty) is less substantial; the nonemptiness problem is NL-
omplete for B�u
hi

automata [VW88℄, P-
omplete for Streett automata [EL87℄, and NP-
omplete for EL

automata [EL87℄.

4 Complementation

Sin
e the set of ETL formulas is 
losed under negation, it is 
lear that we have to deal

with the 
omplementation of !-regular languages. B�u
hi has shown that the 
lass of

!-regular languages is 
losed under 
omplementation [Bu62℄. That is, if L � �

!

is an

!-regular language, then so is the 
omplementary language �

!

�L. Constru
tive proofs

of this property were given in [M
66, Sa88, SVW87℄ in the 
ontext of B�u
hi automata.

The best bound was given in [Sa88℄:

Proposition 4.1: Let A be an n-state B�u
hi automaton over an alphabet �. Then there

is a B�u
hi automaton A

0

with 2

O(n logn)

states su
h that L

!

(A

0

) = �

!

� L

!

(A).

The above upper bound was proven optimal by Mi
hel [Mi88℄.

A related issue is that of universality. An automaton A over an alphabet � is universal

if L

!

(A) = �

!

. The universality problem, 
he
king whether a given automaton is univer-

sal, is related to 
omplementation, sin
e L

!

(A) = �

!

pre
isely when �

!

� L

!

(A) = ;.

The universality problem for B�u
hi automata was studied in [SVW87℄:

Proposition 4.2: The universality problem for B�u
hi automata is PSPACE-
omplete.

Here we examine the issues of 
omplementation and universality in the 
ontext of

B�u
hi, Streett, and EL automata. Our �rst result is that 
omplementation of B�u
hi au-

tomata is exponential even if one is willing to use an EL automata for the 
omplementary

language.

Proposition 4.3: There is an alphabet � su
h that for every n > 0 there is a language

L

n

with the property that L

n


an be a

epted by a B�u
hi automaton of size O(n) but

�

!

� L

n


annot be a

epted by any EL automaton with less than 2

n

states.
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Proof: Let � be the alphabet f0; 1; 2g, and let � = f0; 1g. A word u 2 �

n


an be viewed

as an n-bit number. Let w = u

1

2u

2

2 : : :, where u

j

2 �

n

for all j � 1 (i,e w 2 (�

n

2)

!

).

Then w is a sequen
e of n-bit numbers separated by 2's. We say that w is an n-
ounter

if u

j+1

is the su

essor of u

j

(modulo 2

n

) for all j � 1. We take �

!

�L

n

to 
onsist of all

n-
ounters. Formally,

L

n

= fw 2 �

!

jw is not an n� 
ounterg:

In the full paper we shall show that L

n

is a

epted by a B�u
hi automaton of size

O(n), but �

!

� L

n

is not a

epted by any EL automaton with less than 2

n

states.

We now turn to 
omplementation of EL automata. A straightforward approa
h would

be to 
ombine Propositions 3.1 and 4.1. That is, to 
omplement an EL automaton we

�rst 
onvert it to an equivalent B�u
hi automaton, whi
h we then 
omplement.

Proposition 4.4: Let A be a EL automaton of size O(n) over an alphabet �. Then

there is a B�u
hi automaton A

0

with 2

2

O(n)

states su
h that L

!

(A

0

) = �

!

� L

!

(A).

Now we know that both the translation from EL automata to B�u
hi automata and

the 
omplementation of B�u
hi automata are inherently exponential, by Propositions 3.2

and 4.3, but it does not follow from this that the 
omplementation of EL automata is

inherently doubly exponential. It is 
on
eivable that EL automata 
an be 
omplemented

exponentially by some dire
t 
onstru
tion. Nevertheless, the following proposition shows

that this is not the 
ase.

Proposition 4.5: There is an alphabet � su
h that for every n > 0 there is a language

L

n

with the property that L

n


an be a

epted by an EL automaton of size O(n) but �

!

�L

n


annot be a

epted by any EL automaton with less than 2

2

n

states.

Proof: Let � be the alphabet f0; 1; 2; 3g, and let � = f0; 1g. A word u 2 �

n


an be

viewed as an n-bit number. Consider now a word v 2 (�

n

2�)

2

n

, i.e., v = u

1

2i

1

: : : u

2

n

2i

2

n

.

The sequen
e i

1

: : : i

2

n


an be viewed an a 2

n

-bit number. Suppose now that u

1

is 0

n

and u

j+1

is the su

essor of u

j

for 1 � j < 2

n

. Then ea
h u

j


an be viewed as an index

to the bit i

j

. Thus, we 
all v an indexed 2

n

-bit number. We say that an indexed 2

n

-bit

number v

0

= u

1

2i

0

1

: : : u

2

n

2i

0

2

n

is the su

essor of v (modulo 2

2

n

) if the sequen
e i

0

1

: : : i

0

2

n

is the su

essor of the sequen
e i

0

1

: : : i

0

2

n

(modulo 2

2

n

).

Let w = v

1

3v

2

3 : : :, where v

j

is an indexed 2

n

-bit 
ounter for all j � 1, i.e., w is a

sequen
e of indexed 2

n

-bit numbers separated by 3's. We say that w is an 2

n

-
ounter if

there is some j

0

su
h that u

j+1

is the su

essor of u

j

(modulo 2

2

n

) for all j � j

0

. (Noti
e

that, unlike the de�nition of n-
ounters, we require proper 
ounting \behavior" only in

the limit). We take �

!

� L

n

to 
onsist of all 2

n

-
ounters. Formally,

L

n

= fw 2 �

!

jw is not a 2

n

� 
ounterg:

8



In the full paper we shall show that L

n

is a

epted by an EL automaton of size O(n),

but �

!

� L

n

is not a

epted by any EL automaton with less than 2

2

n

states.

The ideas underlying Propositions 4.4 and 4.5 
an be extended to deal with for the

universality problem for EL automata.

Proposition 4.6: The universality problem for EL automata is EXPSPACE-
omplete.

Finally, we turn to Streett automata. Clearly, they 
an be 
omplemented by a doubly

exponential 
onstru
tion, but the lower bound of Proposition 4.5 seem to need the full

power of EL automata. It turns out that there is an exponential 
omplementation for

Streett automata. This is a fairly deep result to whi
h we dedi
ate the rest of this se
tion.

For a word w we denote by w[i; j℄ the word w

i

; w

i+1

; :::; w

j�1

. We say that a run

s = s

0

; s

1

; : : : ; s

n

visits a state s if there exists an i su
h that s

i

= s.

Let T = (�; S; S

0

; �) be a table. We extend � to take as arguments sets of states and

�nite words as follows: �(V; �) = V , and �(V; wa) = ft j t 2 �(s; a) for some s 2 �(V; w)g.

A history graphG = hV;Ei for T is an edge-labelled dire
ted graph over a subset of the

states V � S, where ea
h edge is labelled by a 
olle
tion of sets of states, E:V �V ! 2

2

S

.

A history graph is intended to des
ribe all possible runs of T over some �nite words. A

history graph G = hV;Ei 
orresponds to a �nite word w 2 �

�

if �(V; w) = V and

H 2 E(s; t) if and only if there is a T -run from s to t over w visiting exa
tly the set

H. A history graph G = hV;Ei is idempotent if for any (not ne
essarily distin
t) states

r; s; t 2 V , if H

1

2 E(r; s) and H

2

2 E(s; t) then H

1

[H

2

2 E(r; t).

History graphs 
an also des
ribe runs over in�nite words. A history graph G = hV;Ei


orresponds to an in�nite word w 2 �

!

if there is an in
reasing sequen
e 0 � i

0

< i

1

< : : :

su
h that �(S

0

; w[0; i

0

℄) = V and G 
orresponds to w[i

j

; i

j+1

℄ for all j � 0.

Lemma 4.7: For ea
h word w there exists an idempotent history graph that 
orresponds

to w.

Proof: Given a word w 2 �

!

, we assign to ea
h pair of integers (i; j), i < j, a triple

hV

i

; V

j

; E

ij

i su
h that V

i

= �(S

0

; w[0; i℄), V

j

= �(S

0

; w[0; j℄), and E

ij

:V

i

�V

j

! 2

2

S

is su
h

that H 2 E(s; t) i� there is a T -run from s to t over w[i; j℄ visiting exa
tly the set H. By

the In�nite Ramsey Theorem, there exists a history graph, G = hV;Ei, and an in�nite

set X � N su
h that for every i 2 X, �(S

0

; w[0; i℄) = V , and for every i; j 2 X, i < j,

we have that G 
orresponds to w[i; j℄. Thus, G 
orresponds to w, and is idempotent.

Now let A be an EL automaton (T; f). A history graph G = hV;Ei for T is nona
-


epting with respe
t to f if for ea
h s 2 V , and for ea
h history set H 2 E(s; s), H is a

nona

epting.

Lemma 4.8: A word w is not a

epted by A i� there exists a nona

epting idempotent

history graph that 
orresponds to w.

9



Proof: Note that there may be di�erent history graphs that 
orrespond to a word w.

Nevertheless, we 
an show that they are all either a

epting or nona

epting.

Assume there exists a nona

epting idempotent history graph G = hV;Ei that 
orre-

sponds to w via the sequen
e i

0

; i

1

; :::. Consider any T -run s over w su
h that lim(s) = H.

Sin
e V is �nite, there is a state s 2 V su
h that s = s

i

j

for in�nitely many j's. By the

idempoten
e 
ondition H 2 E(s; s), and be
ause G is nona

epting, H is nona

epting.

In the other dire
tion, assume that there is no nona

epting idempotent history graph

that 
orresponds to w. Then, by Lemma 4.7, there is an a

epting idempotent history

graph G = hV;Ei 
orresponding to w. That is, there is some s 2 V and an a

epting set

H 2 E(s; s). That means that s 2 �(S

0

; w[0; i

0

℄), and for every j � 0, there is a T -run

from s to s over w[i

j

; i

j+1

℄ visiting exa
tly the set H. It follows that there is an a

epting

T -run over w.

We 
ould use history graphs for 
omplementation, but unfortunately history graphs

are of exponential size, whi
h means that a 
onstru
tion that uses history graphs dire
tly

would be doubly exponential. What we need is to en
ode the information 
aptured in

a history graph in a more eÆ
ient way. This is possible if A is a Streett automaton,

whi
h means that f is a Streett formula

V

k

i=1

(

W

L

i

!

W

U

i

). Let � = f1; : : : ; kg. A pair

assignment for a set V of states is a fun
tion � : V ! �

�

that assigns to every state in V

a sequen
e of distin
t indi
es of pairs. Note that the length of �(s) is bounded by k for

all s 2 V . The pair assignment � is a pair assignment for a history graph G = hV;Ei if �

is an assignment on V and for ea
h s 2 V , where �(s) = i

1

; :::; i

l

, and every H 2 E(s; s)

there exists a j, 1 � j � l su
h that

� H \ L

i

j

6= ; and

� H \ U

i

j

0

= ; for every j

0

� j.

Lemma 4.9: An idempotent history graph G is nona

epting if and only if it has a pair

assignment.

Proof: The 
ondition is 
learly suÆ
ient. To prove ne
essity, suppose that G = hV;Ei is

an idempotent nona

epting history graph and s 2 V . We de�ne a sequen
e of i

1

; : : : ; i

k

of pair indi
es, a sequen
e H

1

; : : : ; H

k

of elements of E(s; s), and sequen
es H

0

; : : : ;H

k

and H

0

0

; : : : ;H

0

k

of subsets of E(s; s) su
h that

1. If H 2 H

i

j

, 1 � j � l, then H \ L

i

j

6= ; and H \ U

i

j

0

= ; for 1 � j

0

� j.

2. If H 2 H

0

i

j

, 1 � j � l, then H \ L

i

j

0

= ; and H \ U

i

j

0

= ; for 1 � j

0

� j.

3. For 1 � j � l, we have that H

j

= fH 2 H

0

j�1

jH \ L

i

j

6= ;g.

4. For 0 � j � l, we have that H

0

j

= E(s; s)�

S

l

j=0

H

j

.
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5. For 0 � j � l, we have that H

0

j

is 
losed under union.

We �rst take H

0

to be the empty set and we take H

0

0

to be E(s; s). It is easy to verify

that the indu
tive properties hold.

Indu
tively, suppose that we have already de�ned i

1

; : : : ; i

l

, H

1

; : : : ; H

l

, H

0

; : : : ;H

l

,

and H

0

0

; : : : ;H

0

l

, l � 0.

Consider now the 
olle
tion H

0

l

. If H

0

= ;, then E(s; s) =

S

l

j=1

H

j

, so we 
an take

�(s) to be i

1

; : : : ; i

l

, and we are done. Assume now that H

0

l

6= ;. We know that H

0

l

is 
losed under union. Let H

l+1

=

S

H2H

0

l

H. By indu
tion, H

l+1

2 H

0

l

� E(s; s), so

H

l+1

is nona

epting. It follows that for some index j we have that H

l+1

\ L

j

6= ; and

H

l+1

\U

j

= ;. Let i

l+1

= j, letH

l+1

= fH 2 H

0

l

jH\L

j

6= ;g, and letH

0

l+1

= H

0

l

�H

l+1

.

We leave it to the reader to verify that the indu
tive properties holds.

We are now in position to de�ne a more 
ompa
t version of the history graph. The

idea is to repla
e the sets labelling the edges by indi
es of pairs with whi
h these sets

\intera
t". Let �

0

= f1; : : : ; k; k + 1g. A pair graph G = hV; F i for A with respe
t

to a pair assignment � on V is is a labelled dire
ted graph over the set V � S, where

F : V

3

! 2

�

0

2

labels every triple of states with a set of pairs of indi
es su
h that if

(i; j) 2 F (r; s; t) then 1 � i; j �j �(t) j +1. Put di�erently, the label of every edge is a

mapping from V to 2

�

0

2

. Note that the size of the pair graph is bounded by n

5

, where n

is the size of A.

A pair graph G = hV; F i with respe
t to a pair assigment � 
orresponds to a �nite

word w 2 �

�

if �(V; w) = V and (i; j) 2 F (r; s; t) where �(t) = l

1

; : : : ; l

m

if and only if

there is an T -run from r to s over w that

� visits no state in L

l

i

0

for i

0

< i, and visits no state in U

l

j

0

for j

0

< j,

� visits a state in L

l

i

, if i � m, and visit a state in U

l

j

, if j � m.

A pair graphG = hV; F iwith respe
t to a pair assigment � 
orresponds to an in�nite word

w 2 �

!

if there is an in
reasing sequen
e 0 � i

0

< i

1

< : : : su
h that �(S

0

; w[0; i

0

℄) = V

and G 
orresponds to w[i

j

; i

j+1

℄ for all j � 0.

We now have to rede�ne idempoten
e and nona

eptan
e for pair graphs. A pair

graph G = hV; F i with respe
t to a pair assignment � is idempotent if for any (not

ne
essarily distin
t) states r; s; t; u 2 V , if (i

1

; j

1

) 2 F (r; s; u) and (i

2

; j

2

) 2 F (s; t; u),

then (min(i

1

; i

2

);min(j

1

; j

2

)) 2 F (r; t; u). A pair graph G = hV; F i with respe
t to a pair

assignment � is nona

epting if for ea
h s 2 V and index pair (i; j) 2 F (s; s; s), we have

that i < j.

Lemma 4.10: A word w is not a

epted by A if and only if there exists a pair assignment

� and nona

epting idempotent pair graph with respe
t to � that 
orresponds to w.
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Proof: If w is not a

epted by A, then, by Lemma 4.8, there is a nona

epting idempotent

history graph G = hV;Ei that 
orresponds to w. By Lemma 4.9, this history graph has

a pair assignment �. We now de�ne a pair graph G

0

= hV; F i with respe
t to �. Let

r; s; t 2 V , and let �(t) = l

1

; : : : ; l

k

. Then we have that (i; j) 2 F (r; s; t) if there is a set

H 2 E(r; s) su
h that

� H \ L

l

i

0

= ; for i

0

< i and H \ U

l

j

0

= ; for j

0

< j,

� H \ L

l

i

6= ;, if i � m, and H \ U

l

j

, if j � m.

It 
an be shown that G

0

is idempotent, nona

epting, and 
orresponds to w.

Assume that there exist a pair assignment � and a nona

epting idempotent pair

graph G = hV; F i with respe
t to � su
h that G 
orresponds to w via the sequen
e

m

0

; m

1

; :::. Consider any T -run s over w su
h that lim(s) = H. Sin
e V is �nite, there

is a state s 2 V su
h that s = s

m

j

for in�nitely many j's. Let �(s) = l

1

; : : : ; l

k

. By

idempoten
e, there is a pair (i; j) 2 F (s; s; s) su
h that

� H \ L

l

i

0

= ; for i

0

< i and H \ U

l

j

0

= ; for j

0

< j,

� H \ L

l

i

6= ;, if i � m, and H \ U

l

j

, if j � m.

Sin
e G is nona

epting, we have that i < j. It follows that H is nona

epting.

We are now in position to provide an exponential 
omplementation 
onstru
tion for

Streett automata.

Theorem 4.11: Let A be a Streett automaton of size n over an alphabet �, then is a

B�u
hi automaton A

0

with 2

n

5

states su
h that L

!

(A

0

) = �

!

� L

!

(A).

Proof: A

0

�rst guesses a pair assignment � and a nona

epting idempotent pair graph

with respe
t to �. It then reads w and nondeterministi
ally veri�es that the pair graph


orresponds to w.

Mi
hel's 2

O(n log n)

lower bound for 
omplementation of Bu
hi automata [Mi88℄ 
an

be extended to Streett automata. This leaves a marked gap between the upper and the

lower bounds.

Finally, we use our 
omplementation 
onstru
tion to deal with universality of Streett

automata.

Proposition 4.12: The universality problem for Streett automata is PSPACE-
omplete.
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5 Extended Temporal Logi


Having studied the 
omputational properties of B�u
hi, Streett, and EL automata, we

turn our attention ba
k to ETL. As we have mentioned earlier, the satis�ability problem

for ETL

B

is PSPACE-
omplete. The question is whether we 
an use more su

in
t

representation for the temporal 
onne
tives while retaining the polynomial-spa
e upper

bound.

Our approa
h is based on the automata-theoreti
 paradigm expounded in [WVS83,

SVW87℄. The basis of that paradigm is that 
omputations 
an be viewed as words

over the alphabet 2

Prop

and ETL formulas always de�ne !-regular sets of 
omputations.

Thus, with every ETL formula ' we 
an asso
iated a B�u
hi automaton A

'

su
h that

Mod(') = L

!

(A

'

), i.e., the set of 
omputations de�ned by ' is pre
isely the language

a

epted by A

'

. To 
he
k whether ' is satis�able we just have to 
he
k whether A

'

is nonempty.

4

The 
ru
ial question is how big is the automaton A

'

; sin
e negation


orresponds to 
omplementation and 
omplementation involves at least an exponential

blow up, one might suspe
t that the size of A

'

might be nonelementary in the length

of '. Fortunately, for ETL

B

formulas, it was shown in [SVW87℄ that the size A

'

is

exponential in the length of ', from whi
h a polynomial-spa
e de
ision pro
edure is

obtained. There are two major 
omponents to that 
onstru
tion. The �rst is running

unboundedly many automata in parallel under 
entral 
ontrol, and the se
ond is using

the power of nondeterminism so 
omplementation has to be applied only on
e.

We now turn our attention to EL automata.

Proposition 5.1: Let ' be an ETL

EL

formula of length n. Then there is a B�u
hi

automaton A

'

of size 2

2

O(n)

su
h that Mod(') = L

!

(A

'

). Furthermore, for every n > 0

there is an ETL

EL

formula '

n

of length O(n) su
h that Mod(') is not a

epted by any

EL automaton with less than 2

2

n

.

Proof: The upper bound follows from Proposition 3.1 and the lower bound follows from

Proposition 4.5.

Using Propositions 4.6 and 5.1 we 
an 
haraterize the 
omplexity of ETL

EL

.

Theorem 5.2: The satis�ability problem for ETL

EL

is EXPSPACE-
omplete.

The good news is that ETL

S

is more tra
table.

Proposition 5.3: Let ' be an ETL

S

formula of length n. Then there is a B�u
hi au-

tomaton A

'

of size 2

O(n

5

)

su
h that Mod(') = L

!

(A

'

). Furthermore, for every n > 0

there is an ETL

S

formula '

n

of length O(n) su
h that Mod(') is not a

epted by any

EL automaton with less than 2

n

.

4

The translation of a formula ' to an equivalent automaton A

'

has several other appli
ations to

program synthesis and veri�
ation. See [AS85, AS87, CY88, MP87, Va85, Va87, VW85, VW86℄.
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Proof: The lower bound follows from Proposition 4.3. The upper bound requires an ex-

tension of the ideas in [SVW87℄. For 
omplementation we use the 
onstru
tion des
ribed

in Se
tion 4. In addition we have to show that we 
an run Streett automata in parallel

and 
onvert the result to a B�u
hi automaton with a single exponential blow-up.

We �nally get the desired 
omplexity result by 
ombining Propositions 5.3 and 4.12.

Theorem 5.4: The satis�ability problem for ETL

S

is PSPACE-
omplete.

6 Con
luding Remarks

Our investigation yielded the surprising result that even though Streett automata are

exponentially more su

in
t that B�u
hi automata, one 
an use them to represent !-

regular languages in ETL while retaining the polynomial-spa
e 
omplexity of the de
ision

pro
edure. We should note, however, that the de
ision pro
edure for ETL

B

runs in time

2

O(n log n)

[Sa88, SVW87℄, while our de
ision pro
edure for ETL

S

runs in time 2

O(n

5

)

. The

pra
ti
al di�eren
e between these running times is signi�
ant enough to put a question

mark on the pra
ti
ality of ETL

S

.

In 
on
lusion we note that there is another yardsti
k of 
omplexity for !-automata

that we have not 
onsidered here and that is the 
omplexity of determinization. While it

is known that B�u
hi automata 
an be determinized with an exponential blow-up [Sa88℄,

it follows from Proposition 4.5 that determinization of EL automata requires a doubly

exponential blow-up. The 
omplexity of determinizing Streett automata is 
urrently

unknown.
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