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Abstrat

We study here the use of di�erent representation for in�nitary regular languages

in extended temporal logi. We fous on three di�erent kinds of aeptane on-

ditions for �nite automata on in�nite words, due to B�uhi, Streett, and Emerson

and Lei (EL), and we study their omputational properties. Our �nding is that

B�uhi, Streett, and EL automata span a spetrum of suintness. EL automata

are exponentially more suint than B�uhi automata, and omplementation of EL

automata is doubly exponential. Streett automata are of intermediate omplexity.

While translating from Streett automata to B�uhi automata involves an expo-

nential blow-up, so does the translation from EL automata to Streett automata.

Furthermore, even though Streett automata are exponentially more suint than

B�uhi automata, omplementation of Streett automata is only exponential. As a

result, we show that the deision problem for ETL

EL

, where temporal onnetives

are represented by EL automata, is EXPSPACE-omplete, and the deision prob-

lem for ETL

S

, where temporal onnetives are represented by Streett automata, is

PSPACE-omplete.

1 Introdution

Sine the proposal by Pnueli in 1977 [Pn77℄ to apply Temporal Logi (TL) to the spei-

�ation and veri�ation of onurrent programs, the role of TL as a feasible approah to

that task has been widely aepted [E89, Ga87, Kr87℄. Over the last deade an extensive

researh has been arried out onerning both pratial and theoretial aspets of using

TL to speify and verify onurrent programs (see survey in [Pn86℄). One of the onlu-

sions of this researh is that the standard TL, whih onsists of the temporal onnetives

nexttime and until is not expressive enough for its task.

The �rst to omplain about the expressive power of TL was Wolper [Wo83℄ who

observed that temporal logi annot express ertain regular events (in fat, TL an express

preisely the star-free !-regular events [To81℄). As was shown later, this makes TL

inadequate for ompositional veri�ation (as opposed to global veri�ation) [LPZ85℄. As
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a remedy, Wolper suggested extending TL with temporal onnetives that orrespond to

regular grammars. The extended TL, is alled, naturally enough, ETL. It was shown later

that the expressive power of ETL is suÆient and neessary to perform ompositional

spei�ation and veri�ation [LPZ85, Pn85, Pn86℄.

ETL was further explored by Wolper et al. in [WVS83℄, where the basi paradigm

of ETL was made expliit: every !-regular langauage L over an n-letter alphabet an

be viewed as an n-ary temporal onnetive (the restrition to !-regular language is for

pratial reasons). To obtain a �nitary syntax, a �nitary representation for !-regular

languages must be hosen. This hoie is the subjet matter of this paper.

As in [WVS83℄ we fous on representation of !-regular languages by means of non-

deterministi �nite-state automata. Unlike the lass of regular languages, however,

there are several types of �nite-state automata that de�nes the lass of !-regular lan-

guage: B�uhi automata [Bu62℄, Street automata [St82℄, whih generalize B�uhi automata,

and Emerson-Lei (abbr. EL) automata [EL87℄, whih generalize Streett automata.

1

While these automata have the same expressive power, they di�er in their suintness:

the nonemptiness problem is NL-omplete for B�uhi automata [VW88℄, P-omplete for

Streett automata [EL87℄, and NP-omplete for EL automata [EL87℄. Thus, it is lear that

the hoie of representation has the potential of having a drasti e�et on the omplexity

of the deision problem for ETL.

Sistla et al. [SVW87℄ studied ETL

B

, where temporal onnetives are represented

by B�uhi automata, and showed that the deision problem for this logi is PSPACE-

omplete, just like the deision problem for TL [HR83, SC85℄.

2

What we'd like here is to

get \more bang for the buk". That is, we'd like to use the most suint representation

for temporal onnetives that is ompatible with retaining the polynomial-spae upper

bound on the omplexity of the deision problem for the logi. To that end we study

the omputational properties of !-automata. In partiular we study the omplexity of

translating one representation to another and the omplexity of omplementation (sine

the lass of !-regular automata is losed under omplementation). We believe that this

investigation is of great interest in view of the emerging importane of !-automata to the

spei�ation and veri�ation of onurrent programs [AS85, AS87, CY88, MP87, Pa81,

Va85, Va87, VW85, VW86℄.

Our �nding is that B�uhi, Streett, and EL automata span a spetrum of suintness.

We fous �rst on EL automata. We show that EL automata are exponentially more

suint than B�uhi automata. Translating from the former to the latter involves an

exponential blow-up. Furthermore, omplementation of EL automata is doubly expo-

nential, while omplementation for B�uhi automata is only exponential [Sa88, SVW87℄.

As a result, we show that the deision problem for ETL

EL

, where temporal onnetives

are represented by EL automata, is EXPSPACE-omplete. This rules out the use of EL

1

The lass of Rabin automata [Ra69℄ also de�nes the lass of of !-regular languages. This represen-

tation, however, is polynomially equivalent to the B�uhi representation.

2

ETL

B

is alled ETL

r

in [WVS83, SVW87℄.
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automata for the representation of temporal onnetives.

The more surprising result is that Streett automata are of intermediate omplex-

ity. While translating from Streett automata to B�uhi automata involves an exponential

blow-up, so does the translation from EL automata to Streett automata. Furthermore,

even though Streett automata are exponentially more suint than B�uhi automata,

omplementation of Streett automata is only exponential. This result is rather unex-

peted; it involves a rather ompliated onstrution and requires a fairly deep analysis

of aeptane by Streett automata. As a result, we show that the deision problem for

ETL

S

, where temporal onnetives are represented by Streett automata, is PSPACE-

omplete. Sine Streett automata also enable us to diretly enode very powerful notions

of fairness [FK84℄, one is tempted to reommend the Streett representation for !-regular

temporal onnetives. We will return to this point in our onluding remarks.

2 Basi De�nitions

2.1 Finite Automata

We onsider words over �nite alphabets. A �nite word over an alphabet � is a member

of �

�

. An in�nite word over an alphabet � is a member of �

!

. It will usually be lear

from the ontext whether we refer to �nite or in�nite words.

A table T is a tuple (�; S; S

0

; �), where � is a �nite alphabet, S is a �nite set of states,

S

0

� S is a set of initial states, and � : S��! 2

S

is the transition funtion. A run of T

over an word w = a

0

a

1

: : : a

n�1

in �

�

from a state s to a state t is a sequene s

0

; s

1

; : : : ; s

n

in S

�

suh that s

0

= s, s

n

= t and s

i+1

2 �(s

i

; a

i

) for all i, 0 � i < n. A run of T

over an word w = a

0

a

1

: : : in �

!

is a sequene s

0

; s

1

; : : : in S

!

suh that s

0

2 S

0

, and

s

i+1

2 �(s

i

; a

i

) for all i � 0.

Aeptane of runs is de�ned in terms of their limit behavior. Let x = x

0

; x

1

; : : : be

in X

!

, for some �nite set X. Then lim(x) is the set of elements that our in x in�nitely

often, i.e.,

lim(x) = fx j (8i � 0)(9j � i) suh that x

j

= xg:

An aeptane ondition for a table T = (�; S; S

0

; �) is a olletion C � 2

S

of sets of

states. A set S

0

is aepting with respet to C if it is in C. A run s = s

0

; s

1

; : : : is

aepting with respet to an aeptane ondition C if lim(s) is aepting with respet

to C.

A Muller automaton A is a pair (T; C) onsisting of a table T = (�; S; S

0

; �) and an

aeptane ondition C � 2

S

for T . A word w 2 �

!

is aepted by A if T has a run s on

w that is aepting with respet to C. L

!

(A) is the set of all words in �

!

aepted by

A. An automaton A is nonempty if L

!

(A) is nonempty. A language L � �

!

is !-regular

if L = L

!

(A) for some Muller automaton A.

We an speify aeptane onditions for a table T = (�; S; S

0

; �) more suintly

by means of aeptane formulas, whih are propositional formulas onstruted using
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the states in S as propositional variables. Let S

0

be a subset of S, then �(S

0

) is the

harateristi funtion of S

0

, whih an be viewed as a truth assignment on S. A set S

0

is aepting with respet to an aeptane formula f if �(S

0

) satis�es f .

Example 2.1: Let S = fp; q; rg, and let f be the aeptane formula :p^ (q_r). Then,

the aepting set with respet to f are fqg, frg, and fq; rg. That is, a run is aepting

with respet to f if p ours only �nite often in the run and either q or r ours in�nitely

often in the run.

An Emerson-Lei (EL) automaton A is a pair (T; f) onsisting of a table T and an

aeptane formula f for T . Streett automata and B�uhi automata are obtained by

restriting the lass of aeptane formulas. A B�uhi formula is simply a disjuntion of

propositional variables. Equivalently, a B�uhi ondition is a set F of states, and a set S

0

is aepting if S

0

\ F 6= ;. A Streett formula is of the form

V

k

i=1

(

W

L

i

!

W

U

i

), k � 0,

where L

i

and U

i

are sets of states. Equivalently, a Streett ondition is a olletion of pairs

of sets of states, and a set S

0

is aepting if S

0

\ L

i

6= ; entails S

0

\ U

i

6= ; for every pair

(L

i

; U

i

). It is easy to see that B�uhi ondition is a speial ase of Streett ondition.

The interest in B�uhi and Streett onditions stems from the fat that they an be

viewed as normal forms, they both de�ne the lass of !-regular languages. More formally,

for every !-regular language L there exists a B�uhi automaton A suh that L = L

!

(A)

[M66℄. Furthermore, for every !-regular language L there exists a deterministi Streett

automaton A

0

suh that L = L

!

(A

0

) [M66, St82℄ (note that deterministi B�uhi au-

tomata are weaker than nondeterministi B�uhi automata [Ch74℄). Streett ondition

is also of speial interest beause it is essentially the ondition of generalized fairness

de�ned in [FK84℄ (see also [Fr86℄).

2.2 Extended Temporal Logi

We onsider a propositional temporal logi where the temporal onnetives are de�ned

by !-regular languages [WVS83, Wo83, SVW87℄. The formulas built from a set Prop of

atomi propositions. The set of formulas is de�ned indutively as follows:

� every proposition p 2 Prop is a formula.

� if  

1

and  

2

are formulas, then : 

1

and  

1

^  

2

are formulas.

� If � is the alphabet fa

1

; : : : ; a

n

g, L � �

!

is an !-regular language, and  

1

; : : : ;  

n

are formulas, then L( 

1

; : : : ;  

n

) is a formula.

The atual syntax for the logi depends on the representation of !-regular languages.

If we represent !-regular languages by B�uhi automata, we get ETL

B

(alled ETL

r

in
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[WVS83, SVW87℄). Analogously, if we represent !-regular languages by Streett automata

(resp., EL automata) we get ETL

S

(resp., ETL

EL

).

3

We interpret ETL formulas over omputations, whih are in�nite sequenes of truth

assignments, i.e., funtions � : ! ! 2

Prop

that assign truth values to the atomi proposi-

tions in eah state. We now de�ne satisfation of formulas. Satisfation of a formula  

at a position i in a omputation � is denoted �; i j= f .

� for an atomi proposition p, we have �; i j= p i� p 2 �(i).

� �; i j=  

1

^  

2

i� �; i j=  

1

and �; i j=  

2

.

� �; i j= : i� �; i 6j=  .

� �; i j= L( 

1

; : : : ;  

n

), where L � �

!

, for � = fa

1

; : : : ; a

n

g, if there is a word

w = a

j

0

a

j

1

: : : in L suh that for all k � 0 we have that �; i+ k j=  

j

k

.

We say that a omputation � satis�es f , denoted � j= f , if �; 0 j= f . Every formula

' de�nes a set of omputations Mod(') = f� j � j= 'g, i.e., the set of omputations

that satisfy '. We will say that a formula is satis�able if Mod(') is nonempty. The

satis�ability problem is to determine, given a formula ', whether ' is satis�able.

3 Translations among the Models

We know that B�uhi, Streett, and EL automata all have the same expressive power; they

all de�ne the lass of !-regular languages. Thus, for every EL automaton A there exists

an equivalent B�uhi automaton A

0

, that is, L

!

(A) = L

!

(A

0

). What we are interested here

is in the size of A

0

relative to the size of A, where the size of an automaton is the length

of its desription in some standard enoding.

Proposition 3.1: Let A be an EL automaton of size n. Then there is an equivalent

B�uhi automaton A

0

of size 2

O(n)

.

Proof: The proof is onstrutive. Let A = (�; S; S

0

; �; f) be an EL automaton of size

n. Let

W

k

i=1

f

i

be the disjuntive normal form of f , where learly 0 � k � 2

n

. it is easy

to see that L

!

(A) =

S

k

i=1

L

!

(A

i

), where A

i

= (�; S; S

0

; �; f

i

), for 1 � i � k. Now we

onstrut for eah A

i

an equivalent B�uhi automaton A

0

i

of size O(n

2

). Finally, we take

the disjoint union of the A

0

i

's to obtain A

0

.

Sine a B�uhi automaton is in partiular also a Streett automaton and Streett au-

tomaton is in partiular also an EL automaton, Proposition 3.1 also gives us exponential

translations from EL automata to Streett automata and from Streett automata to B�uhi

automata. We now show that these translations are inherently exponential.

3

We note that Wolper et al. onsidered also the logis ETL

f

and ETL

l

where not all !-regular

onnetives are allowed. They showed that these logis are nevertheless as expressive as ETL

B

[WVS83℄.
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Proposition 3.2 : For every n > 0 there is a language L

n

that an be aepted by

a (deterministi) Streett automaton of size O(n) but annot be aepted by any B�uhi

automaton with less than 2

n

states.

Proof: Let � be the ternary alphabet f0; 1; 2g. Every word w in �

!

an be viewed

as a word in (�

n

)

!

, that is, as an in�nite sequene of n-vetors over �. Let u =

ha

0

; : : : ; a

n�1

i 2 �

n

. We say that i is 0-ativated (resp., 1-ativated) in u, for 0 � i < n,

if a

i

= 0 (resp., a

i

= 1). Let w 2 �

!

, then w = u

0

u

1

: : :, where u

j

2 �

n

for all j � 0. We

say that i is 0-ativated (resp., 1-ativated) in w, for 0 � i < n, if i is 0-ativated (resp.,

1-ativated) in u

j

for in�nitely many j's. L

n

is the set of words in �

!

with a symmetri

ativity reord. Formally,

L

n

= fw 2 �

!

j i is 0-ativated in w i� i is 1-ativated in w for 0 � i < ng:

L

n

is aepted by a (deterministi) Streett automaton with O(n) states and an aep-

tane formula of length O(n). Let A

n

= (�; S; S

0

; �; f), where S = f0; :::; n�1g�f0; 1; 2g,

S

0

= f(0; 0)g, �((i; k); l) = (i + 1 mod n; l) for 0 � i < n and 0 � k; l � 2, and f is the

formula

n�1

^

i=0

((i; 0)! (i; 1)) ^ ((i; 1)! (i; 0)):

The reader an verify that L

n

= L

!

(A

n

). On the other hand, in the full paper we shall

show that L

n

is not aepted by any B�uhi automaton with less than 2

n

states. The

proof depends ruially on the fat that for any B�uhi aeptane ondition the set of

aepting sets is losed under extension.

Proposition 3.3: For every n > 0 there is a language L

n

that an be aepted by a (de-

terministi) EL automaton of size O(n) but annot be aepted by any Streett automaton

with less than 2

n

states.

Proof: Let � be the binary alphabet f0; 1g. Every word w in �

!

an be viewed as a

word in (�

n

)

!

, that is, as an in�nite sequene of n-bit vetors. We take L

n

to onsist of

the sequenes that are almost everywhere idential. Formally,

L

n

= fw j 9u 2 (�

n

)

�

and v 2 �

n

suh that w = uv

!

g:

L

n

is aepted by a (deterministi) EL automaton with O(n) states and an aeptane

formula of length O(n). Let A

n

= (�; S; S

0

; �; f), where S = f0; :::; n � 1g � f0; 1g,

S

0

= f(0; 0)g, �((i; k); l) = (i + 1 mod n; l) for 0 � i < n and 0 � k; l � 1, and f is the

formula

n

^

i=1

:((i; 0) ^ (i; 1)):
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The reader an verify that L

n

= L

!

(A

n

). On the other hand, in the full paper we shall

show that L

n

is not aepted by any Streett automaton with less than 2

n

states. The

proof depends ruially on the fat that for any Streett aeptane ondition the set of

aepting sets is losed under union.

The bottom line of the results in this setion is that EL automata are exponentially

more suint than Streett automata, and the latter are exponentially more suint than

B�uhi automata. The two exponentials, however, do not ombine, and EL automata are

only exponentially more suint than B�uhi automata. Interestingly, the di�erene in

the omplexity of the nonemptiness problem (i.e., heking whether a given automaton

is nonempty) is less substantial; the nonemptiness problem is NL-omplete for B�uhi

automata [VW88℄, P-omplete for Streett automata [EL87℄, and NP-omplete for EL

automata [EL87℄.

4 Complementation

Sine the set of ETL formulas is losed under negation, it is lear that we have to deal

with the omplementation of !-regular languages. B�uhi has shown that the lass of

!-regular languages is losed under omplementation [Bu62℄. That is, if L � �

!

is an

!-regular language, then so is the omplementary language �

!

�L. Construtive proofs

of this property were given in [M66, Sa88, SVW87℄ in the ontext of B�uhi automata.

The best bound was given in [Sa88℄:

Proposition 4.1: Let A be an n-state B�uhi automaton over an alphabet �. Then there

is a B�uhi automaton A

0

with 2

O(n logn)

states suh that L

!

(A

0

) = �

!

� L

!

(A).

The above upper bound was proven optimal by Mihel [Mi88℄.

A related issue is that of universality. An automaton A over an alphabet � is universal

if L

!

(A) = �

!

. The universality problem, heking whether a given automaton is univer-

sal, is related to omplementation, sine L

!

(A) = �

!

preisely when �

!

� L

!

(A) = ;.

The universality problem for B�uhi automata was studied in [SVW87℄:

Proposition 4.2: The universality problem for B�uhi automata is PSPACE-omplete.

Here we examine the issues of omplementation and universality in the ontext of

B�uhi, Streett, and EL automata. Our �rst result is that omplementation of B�uhi au-

tomata is exponential even if one is willing to use an EL automata for the omplementary

language.

Proposition 4.3: There is an alphabet � suh that for every n > 0 there is a language

L

n

with the property that L

n

an be aepted by a B�uhi automaton of size O(n) but

�

!

� L

n

annot be aepted by any EL automaton with less than 2

n

states.
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Proof: Let � be the alphabet f0; 1; 2g, and let � = f0; 1g. A word u 2 �

n

an be viewed

as an n-bit number. Let w = u

1

2u

2

2 : : :, where u

j

2 �

n

for all j � 1 (i,e w 2 (�

n

2)

!

).

Then w is a sequene of n-bit numbers separated by 2's. We say that w is an n-ounter

if u

j+1

is the suessor of u

j

(modulo 2

n

) for all j � 1. We take �

!

�L

n

to onsist of all

n-ounters. Formally,

L

n

= fw 2 �

!

jw is not an n� ounterg:

In the full paper we shall show that L

n

is aepted by a B�uhi automaton of size

O(n), but �

!

� L

n

is not aepted by any EL automaton with less than 2

n

states.

We now turn to omplementation of EL automata. A straightforward approah would

be to ombine Propositions 3.1 and 4.1. That is, to omplement an EL automaton we

�rst onvert it to an equivalent B�uhi automaton, whih we then omplement.

Proposition 4.4: Let A be a EL automaton of size O(n) over an alphabet �. Then

there is a B�uhi automaton A

0

with 2

2

O(n)

states suh that L

!

(A

0

) = �

!

� L

!

(A).

Now we know that both the translation from EL automata to B�uhi automata and

the omplementation of B�uhi automata are inherently exponential, by Propositions 3.2

and 4.3, but it does not follow from this that the omplementation of EL automata is

inherently doubly exponential. It is oneivable that EL automata an be omplemented

exponentially by some diret onstrution. Nevertheless, the following proposition shows

that this is not the ase.

Proposition 4.5: There is an alphabet � suh that for every n > 0 there is a language

L

n

with the property that L

n

an be aepted by an EL automaton of size O(n) but �

!

�L

n

annot be aepted by any EL automaton with less than 2

2

n

states.

Proof: Let � be the alphabet f0; 1; 2; 3g, and let � = f0; 1g. A word u 2 �

n

an be

viewed as an n-bit number. Consider now a word v 2 (�

n

2�)

2

n

, i.e., v = u

1

2i

1

: : : u

2

n

2i

2

n

.

The sequene i

1

: : : i

2

n

an be viewed an a 2

n

-bit number. Suppose now that u

1

is 0

n

and u

j+1

is the suessor of u

j

for 1 � j < 2

n

. Then eah u

j

an be viewed as an index

to the bit i

j

. Thus, we all v an indexed 2

n

-bit number. We say that an indexed 2

n

-bit

number v

0

= u

1

2i

0

1

: : : u

2

n

2i

0

2

n

is the suessor of v (modulo 2

2

n

) if the sequene i

0

1

: : : i

0

2

n

is the suessor of the sequene i

0

1

: : : i

0

2

n

(modulo 2

2

n

).

Let w = v

1

3v

2

3 : : :, where v

j

is an indexed 2

n

-bit ounter for all j � 1, i.e., w is a

sequene of indexed 2

n

-bit numbers separated by 3's. We say that w is an 2

n

-ounter if

there is some j

0

suh that u

j+1

is the suessor of u

j

(modulo 2

2

n

) for all j � j

0

. (Notie

that, unlike the de�nition of n-ounters, we require proper ounting \behavior" only in

the limit). We take �

!

� L

n

to onsist of all 2

n

-ounters. Formally,

L

n

= fw 2 �

!

jw is not a 2

n

� ounterg:

8



In the full paper we shall show that L

n

is aepted by an EL automaton of size O(n),

but �

!

� L

n

is not aepted by any EL automaton with less than 2

2

n

states.

The ideas underlying Propositions 4.4 and 4.5 an be extended to deal with for the

universality problem for EL automata.

Proposition 4.6: The universality problem for EL automata is EXPSPACE-omplete.

Finally, we turn to Streett automata. Clearly, they an be omplemented by a doubly

exponential onstrution, but the lower bound of Proposition 4.5 seem to need the full

power of EL automata. It turns out that there is an exponential omplementation for

Streett automata. This is a fairly deep result to whih we dediate the rest of this setion.

For a word w we denote by w[i; j℄ the word w

i

; w

i+1

; :::; w

j�1

. We say that a run

s = s

0

; s

1

; : : : ; s

n

visits a state s if there exists an i suh that s

i

= s.

Let T = (�; S; S

0

; �) be a table. We extend � to take as arguments sets of states and

�nite words as follows: �(V; �) = V , and �(V; wa) = ft j t 2 �(s; a) for some s 2 �(V; w)g.

A history graphG = hV;Ei for T is an edge-labelled direted graph over a subset of the

states V � S, where eah edge is labelled by a olletion of sets of states, E:V �V ! 2

2

S

.

A history graph is intended to desribe all possible runs of T over some �nite words. A

history graph G = hV;Ei orresponds to a �nite word w 2 �

�

if �(V; w) = V and

H 2 E(s; t) if and only if there is a T -run from s to t over w visiting exatly the set

H. A history graph G = hV;Ei is idempotent if for any (not neessarily distint) states

r; s; t 2 V , if H

1

2 E(r; s) and H

2

2 E(s; t) then H

1

[H

2

2 E(r; t).

History graphs an also desribe runs over in�nite words. A history graph G = hV;Ei

orresponds to an in�nite word w 2 �

!

if there is an inreasing sequene 0 � i

0

< i

1

< : : :

suh that �(S

0

; w[0; i

0

℄) = V and G orresponds to w[i

j

; i

j+1

℄ for all j � 0.

Lemma 4.7: For eah word w there exists an idempotent history graph that orresponds

to w.

Proof: Given a word w 2 �

!

, we assign to eah pair of integers (i; j), i < j, a triple

hV

i

; V

j

; E

ij

i suh that V

i

= �(S

0

; w[0; i℄), V

j

= �(S

0

; w[0; j℄), and E

ij

:V

i

�V

j

! 2

2

S

is suh

that H 2 E(s; t) i� there is a T -run from s to t over w[i; j℄ visiting exatly the set H. By

the In�nite Ramsey Theorem, there exists a history graph, G = hV;Ei, and an in�nite

set X � N suh that for every i 2 X, �(S

0

; w[0; i℄) = V , and for every i; j 2 X, i < j,

we have that G orresponds to w[i; j℄. Thus, G orresponds to w, and is idempotent.

Now let A be an EL automaton (T; f). A history graph G = hV;Ei for T is nona-

epting with respet to f if for eah s 2 V , and for eah history set H 2 E(s; s), H is a

nonaepting.

Lemma 4.8: A word w is not aepted by A i� there exists a nonaepting idempotent

history graph that orresponds to w.

9



Proof: Note that there may be di�erent history graphs that orrespond to a word w.

Nevertheless, we an show that they are all either aepting or nonaepting.

Assume there exists a nonaepting idempotent history graph G = hV;Ei that orre-

sponds to w via the sequene i

0

; i

1

; :::. Consider any T -run s over w suh that lim(s) = H.

Sine V is �nite, there is a state s 2 V suh that s = s

i

j

for in�nitely many j's. By the

idempotene ondition H 2 E(s; s), and beause G is nonaepting, H is nonaepting.

In the other diretion, assume that there is no nonaepting idempotent history graph

that orresponds to w. Then, by Lemma 4.7, there is an aepting idempotent history

graph G = hV;Ei orresponding to w. That is, there is some s 2 V and an aepting set

H 2 E(s; s). That means that s 2 �(S

0

; w[0; i

0

℄), and for every j � 0, there is a T -run

from s to s over w[i

j

; i

j+1

℄ visiting exatly the set H. It follows that there is an aepting

T -run over w.

We ould use history graphs for omplementation, but unfortunately history graphs

are of exponential size, whih means that a onstrution that uses history graphs diretly

would be doubly exponential. What we need is to enode the information aptured in

a history graph in a more eÆient way. This is possible if A is a Streett automaton,

whih means that f is a Streett formula

V

k

i=1

(

W

L

i

!

W

U

i

). Let � = f1; : : : ; kg. A pair

assignment for a set V of states is a funtion � : V ! �

�

that assigns to every state in V

a sequene of distint indies of pairs. Note that the length of �(s) is bounded by k for

all s 2 V . The pair assignment � is a pair assignment for a history graph G = hV;Ei if �

is an assignment on V and for eah s 2 V , where �(s) = i

1

; :::; i

l

, and every H 2 E(s; s)

there exists a j, 1 � j � l suh that

� H \ L

i

j

6= ; and

� H \ U

i

j

0

= ; for every j

0

� j.

Lemma 4.9: An idempotent history graph G is nonaepting if and only if it has a pair

assignment.

Proof: The ondition is learly suÆient. To prove neessity, suppose that G = hV;Ei is

an idempotent nonaepting history graph and s 2 V . We de�ne a sequene of i

1

; : : : ; i

k

of pair indies, a sequene H

1

; : : : ; H

k

of elements of E(s; s), and sequenes H

0

; : : : ;H

k

and H

0

0

; : : : ;H

0

k

of subsets of E(s; s) suh that

1. If H 2 H

i

j

, 1 � j � l, then H \ L

i

j

6= ; and H \ U

i

j

0

= ; for 1 � j

0

� j.

2. If H 2 H

0

i

j

, 1 � j � l, then H \ L

i

j

0

= ; and H \ U

i

j

0

= ; for 1 � j

0

� j.

3. For 1 � j � l, we have that H

j

= fH 2 H

0

j�1

jH \ L

i

j

6= ;g.

4. For 0 � j � l, we have that H

0

j

= E(s; s)�

S

l

j=0

H

j

.

10



5. For 0 � j � l, we have that H

0

j

is losed under union.

We �rst take H

0

to be the empty set and we take H

0

0

to be E(s; s). It is easy to verify

that the indutive properties hold.

Indutively, suppose that we have already de�ned i

1

; : : : ; i

l

, H

1

; : : : ; H

l

, H

0

; : : : ;H

l

,

and H

0

0

; : : : ;H

0

l

, l � 0.

Consider now the olletion H

0

l

. If H

0

= ;, then E(s; s) =

S

l

j=1

H

j

, so we an take

�(s) to be i

1

; : : : ; i

l

, and we are done. Assume now that H

0

l

6= ;. We know that H

0

l

is losed under union. Let H

l+1

=

S

H2H

0

l

H. By indution, H

l+1

2 H

0

l

� E(s; s), so

H

l+1

is nonaepting. It follows that for some index j we have that H

l+1

\ L

j

6= ; and

H

l+1

\U

j

= ;. Let i

l+1

= j, letH

l+1

= fH 2 H

0

l

jH\L

j

6= ;g, and letH

0

l+1

= H

0

l

�H

l+1

.

We leave it to the reader to verify that the indutive properties holds.

We are now in position to de�ne a more ompat version of the history graph. The

idea is to replae the sets labelling the edges by indies of pairs with whih these sets

\interat". Let �

0

= f1; : : : ; k; k + 1g. A pair graph G = hV; F i for A with respet

to a pair assignment � on V is is a labelled direted graph over the set V � S, where

F : V

3

! 2

�

0

2

labels every triple of states with a set of pairs of indies suh that if

(i; j) 2 F (r; s; t) then 1 � i; j �j �(t) j +1. Put di�erently, the label of every edge is a

mapping from V to 2

�

0

2

. Note that the size of the pair graph is bounded by n

5

, where n

is the size of A.

A pair graph G = hV; F i with respet to a pair assigment � orresponds to a �nite

word w 2 �

�

if �(V; w) = V and (i; j) 2 F (r; s; t) where �(t) = l

1

; : : : ; l

m

if and only if

there is an T -run from r to s over w that

� visits no state in L

l

i

0

for i

0

< i, and visits no state in U

l

j

0

for j

0

< j,

� visits a state in L

l

i

, if i � m, and visit a state in U

l

j

, if j � m.

A pair graphG = hV; F iwith respet to a pair assigment � orresponds to an in�nite word

w 2 �

!

if there is an inreasing sequene 0 � i

0

< i

1

< : : : suh that �(S

0

; w[0; i

0

℄) = V

and G orresponds to w[i

j

; i

j+1

℄ for all j � 0.

We now have to rede�ne idempotene and nonaeptane for pair graphs. A pair

graph G = hV; F i with respet to a pair assignment � is idempotent if for any (not

neessarily distint) states r; s; t; u 2 V , if (i

1

; j

1

) 2 F (r; s; u) and (i

2

; j

2

) 2 F (s; t; u),

then (min(i

1

; i

2

);min(j

1

; j

2

)) 2 F (r; t; u). A pair graph G = hV; F i with respet to a pair

assignment � is nonaepting if for eah s 2 V and index pair (i; j) 2 F (s; s; s), we have

that i < j.

Lemma 4.10: A word w is not aepted by A if and only if there exists a pair assignment

� and nonaepting idempotent pair graph with respet to � that orresponds to w.
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Proof: If w is not aepted by A, then, by Lemma 4.8, there is a nonaepting idempotent

history graph G = hV;Ei that orresponds to w. By Lemma 4.9, this history graph has

a pair assignment �. We now de�ne a pair graph G

0

= hV; F i with respet to �. Let

r; s; t 2 V , and let �(t) = l

1

; : : : ; l

k

. Then we have that (i; j) 2 F (r; s; t) if there is a set

H 2 E(r; s) suh that

� H \ L

l

i

0

= ; for i

0

< i and H \ U

l

j

0

= ; for j

0

< j,

� H \ L

l

i

6= ;, if i � m, and H \ U

l

j

, if j � m.

It an be shown that G

0

is idempotent, nonaepting, and orresponds to w.

Assume that there exist a pair assignment � and a nonaepting idempotent pair

graph G = hV; F i with respet to � suh that G orresponds to w via the sequene

m

0

; m

1

; :::. Consider any T -run s over w suh that lim(s) = H. Sine V is �nite, there

is a state s 2 V suh that s = s

m

j

for in�nitely many j's. Let �(s) = l

1

; : : : ; l

k

. By

idempotene, there is a pair (i; j) 2 F (s; s; s) suh that

� H \ L

l

i

0

= ; for i

0

< i and H \ U

l

j

0

= ; for j

0

< j,

� H \ L

l

i

6= ;, if i � m, and H \ U

l

j

, if j � m.

Sine G is nonaepting, we have that i < j. It follows that H is nonaepting.

We are now in position to provide an exponential omplementation onstrution for

Streett automata.

Theorem 4.11: Let A be a Streett automaton of size n over an alphabet �, then is a

B�uhi automaton A

0

with 2

n

5

states suh that L

!

(A

0

) = �

!

� L

!

(A).

Proof: A

0

�rst guesses a pair assignment � and a nonaepting idempotent pair graph

with respet to �. It then reads w and nondeterministially veri�es that the pair graph

orresponds to w.

Mihel's 2

O(n log n)

lower bound for omplementation of Buhi automata [Mi88℄ an

be extended to Streett automata. This leaves a marked gap between the upper and the

lower bounds.

Finally, we use our omplementation onstrution to deal with universality of Streett

automata.

Proposition 4.12: The universality problem for Streett automata is PSPACE-omplete.

12



5 Extended Temporal Logi

Having studied the omputational properties of B�uhi, Streett, and EL automata, we

turn our attention bak to ETL. As we have mentioned earlier, the satis�ability problem

for ETL

B

is PSPACE-omplete. The question is whether we an use more suint

representation for the temporal onnetives while retaining the polynomial-spae upper

bound.

Our approah is based on the automata-theoreti paradigm expounded in [WVS83,

SVW87℄. The basis of that paradigm is that omputations an be viewed as words

over the alphabet 2

Prop

and ETL formulas always de�ne !-regular sets of omputations.

Thus, with every ETL formula ' we an assoiated a B�uhi automaton A

'

suh that

Mod(') = L

!

(A

'

), i.e., the set of omputations de�ned by ' is preisely the language

aepted by A

'

. To hek whether ' is satis�able we just have to hek whether A

'

is nonempty.

4

The ruial question is how big is the automaton A

'

; sine negation

orresponds to omplementation and omplementation involves at least an exponential

blow up, one might suspet that the size of A

'

might be nonelementary in the length

of '. Fortunately, for ETL

B

formulas, it was shown in [SVW87℄ that the size A

'

is

exponential in the length of ', from whih a polynomial-spae deision proedure is

obtained. There are two major omponents to that onstrution. The �rst is running

unboundedly many automata in parallel under entral ontrol, and the seond is using

the power of nondeterminism so omplementation has to be applied only one.

We now turn our attention to EL automata.

Proposition 5.1: Let ' be an ETL

EL

formula of length n. Then there is a B�uhi

automaton A

'

of size 2

2

O(n)

suh that Mod(') = L

!

(A

'

). Furthermore, for every n > 0

there is an ETL

EL

formula '

n

of length O(n) suh that Mod(') is not aepted by any

EL automaton with less than 2

2

n

.

Proof: The upper bound follows from Proposition 3.1 and the lower bound follows from

Proposition 4.5.

Using Propositions 4.6 and 5.1 we an haraterize the omplexity of ETL

EL

.

Theorem 5.2: The satis�ability problem for ETL

EL

is EXPSPACE-omplete.

The good news is that ETL

S

is more tratable.

Proposition 5.3: Let ' be an ETL

S

formula of length n. Then there is a B�uhi au-

tomaton A

'

of size 2

O(n

5

)

suh that Mod(') = L

!

(A

'

). Furthermore, for every n > 0

there is an ETL

S

formula '

n

of length O(n) suh that Mod(') is not aepted by any

EL automaton with less than 2

n

.

4

The translation of a formula ' to an equivalent automaton A

'

has several other appliations to

program synthesis and veri�ation. See [AS85, AS87, CY88, MP87, Va85, Va87, VW85, VW86℄.
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Proof: The lower bound follows from Proposition 4.3. The upper bound requires an ex-

tension of the ideas in [SVW87℄. For omplementation we use the onstrution desribed

in Setion 4. In addition we have to show that we an run Streett automata in parallel

and onvert the result to a B�uhi automaton with a single exponential blow-up.

We �nally get the desired omplexity result by ombining Propositions 5.3 and 4.12.

Theorem 5.4: The satis�ability problem for ETL

S

is PSPACE-omplete.

6 Conluding Remarks

Our investigation yielded the surprising result that even though Streett automata are

exponentially more suint that B�uhi automata, one an use them to represent !-

regular languages in ETL while retaining the polynomial-spae omplexity of the deision

proedure. We should note, however, that the deision proedure for ETL

B

runs in time

2

O(n log n)

[Sa88, SVW87℄, while our deision proedure for ETL

S

runs in time 2

O(n

5

)

. The

pratial di�erene between these running times is signi�ant enough to put a question

mark on the pratiality of ETL

S

.

In onlusion we note that there is another yardstik of omplexity for !-automata

that we have not onsidered here and that is the omplexity of determinization. While it

is known that B�uhi automata an be determinized with an exponential blow-up [Sa88℄,

it follows from Proposition 4.5 that determinization of EL automata requires a doubly

exponential blow-up. The omplexity of determinizing Streett automata is urrently

unknown.
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