Logic, Automata, Games, and Algorithms

Moshe Y. Vardi

Rice University
Two Separate Paradigms in Mathematical Logic

- **Paradigm I**: *Logic* – declarative formalism
 - Specify properties of mathematical objects, e.g., \((\forall x, y, z)(\text{mult}(x, y, z) \leftrightarrow \text{mult}(y, x, z))\) – commutativity.

- **Paradigm II**: *Machines* – imperative formalism
 - Specify computations, e.g., Turing machines, finite-state machines, etc.

Surprising Phenomenon: Intimate connection between logic and machines – *topic of this talk*.
Nondeterministic Finite Automata

\[A = (\Sigma, S, S_0, \rho, F) \]

- **Alphabet**: \(\Sigma \)
- **States**: \(S \)
- **Initial states**: \(S_0 \subseteq S \)
- **Nondeterministic transition function**: \(\rho : S \times \Sigma \rightarrow 2^S \)
- **Accepting states**: \(F \subseteq S \)

Input word: \(a_0, a_1, \ldots, a_{n-1} \)

Run: \(s_0, s_1, \ldots, s_n \)
- \(s_0 \in S_0 \)
- \(s_{i+1} \in \rho(s_i, a_i) \) for \(i \geq 0 \)

Acceptance: \(s_n \in F \)

Recognition: \(L(A) \) – words accepted by \(A \).

Example: \[\begin{array}{c}
\text{Example:} \\
\bullet & 1 & \bullet \\
\text{---} & \text{---} & \text{---} \\
0 & 0 & 1 \\
\end{array} \] – ends with 1’s

Fact: NFAs define the class \(\text{Reg} \) of regular languages.
Logic of Finite Words

View finite word \(w = a_0, \ldots, a_{n-1} \) over alphabet \(\Sigma \) as a mathematical structure:

- Domain: \(0, \ldots, n - 1 \)
- Binary relations: \(<, \leq \)
- Unary relations: \(\{ P_a : a \in \Sigma \} \)

First-Order Logic (FO):

- Unary atomic formulas: \(P_a(x) \ (a \in \Sigma) \)
- Binary atomic formulas: \(x < y, x \leq y \)

Example: \((\exists x)((\forall y)(\neg(x < y)) \land P_a(x)) \) — last letter is \(a \).

Monadic Second-Order Logic (MSO):

- Monadic second-order quantifier: \(\exists Q \)
- New unary atomic formulas: \(Q(x) \)
Theorem [Büchi, Elgot, Trakhtenbrot, 1957-8 (independently)]: MSO \equiv NFA

- Both MSO and NFA define the class Reg.

Proof: Effective

- From NFA to MSO ($A \mapsto \varphi_A$)
 - Existence of run – existential monadic quantification
 - Proper transitions and acceptance - first-order formula

- From MSO to NFA ($\varphi \mapsto A_{\varphi}$): closure of NFAs under
 - Union – disjunction
 - Projection – existential quantification
 - Complementation – negation
NFA Complementation

Run Forest of A on w:

- Roots: elements of S_0.
- Children of s at level i: elements of $\rho(s, a_i)$.
- Rejection: no leaf is accepting.

Key Observation: collapse forest into a DAG – at most one copy of a state at a level; width of DAG is $|S|$.

Subset Construction Rabin-Scott, 1959:

- $A^c = (\Sigma, 2^S, \{S_0\}, \rho^c, F^c)$
- $F^c = \{T : T \cap F = \emptyset\}$
- $\rho^c(T, a) = \bigcup_{t \in T} \rho(t, a)$
- $L(A^c) = \Sigma^* - L(A)$
Complementation Blow-Up

\[A = (\Sigma, S, S_0, \rho, F), \; |S| = n \]
\[A^c = (\Sigma, 2^S, \{S_0\}, \rho^c, F^c) \]

Blow-Up: \(2^n\) upper bound

Can we do better?

Lower Bound: \(2^n\)

Sakoda-Sipser 1978, Birget 1993

\[L_n = (0 + 1)^*1(0 + 1)^{n-1}0(0 + 1)^* \]
- \(L_n\) is easy for NFA
- \(\overline{L_n}\) is hard for NFA
NFA Nonemptiness

Nonemptiness: \(L(A) \neq \emptyset \)

Nonemptiness Problem: Decide if given \(A \) is nonempty.

Directed Graph \(G_A = (S, E) \) of NFA \(A = (\Sigma, S, S_0, \rho, F) \):

- **Nodes:** \(S \)
- **Edges:** \(E = \{(s, t) : t \in \rho(s, a) \text{ for some } a \in \Sigma\} \)

Lemma: \(A \) is nonempty iff there is a path in \(G_A \) from \(S_0 \) to \(F \).

- Decidable in time linear in size of \(A \), using *breadth-first search* or *depth-first search*.
MSO Satisfiability – Finite Words

Satisfiability: \(\text{models}(\psi) \neq \emptyset \)

Satisfiability Problem: Decide if given \(\psi \) is satisfiable.

Lemma: \(\psi \) is satisfiable iff \(A_\psi \) is nonempty.

Corollary: MSO satisfiability is decidable.

- Translate \(\psi \) to \(A_\psi \).
- Check nonemptiness of \(A_\psi \).

Complexity:

- **Upper Bound:** Nonelementary Growth

\[
2 \cdot 2^n
\]

tower of height \(O(n) \)

- **Lower Bound** [Stockmeyer, 1974]: Satisfiability of FO over finite words is nonelementary (no bounded-height tower).
Automata on Infinite Words

Büchi Automaton, 1962: \(A = (\Sigma, S, S_0, \rho, F) \)

- \(\Sigma \): finite alphabet
- \(S \): finite state set
- \(S_0 \subseteq S \): initial state set
- \(\rho : S \times \Sigma \rightarrow 2^S \): transition function
- \(F \subseteq S \): accepting state set

Input: \(w = a_0, a_1 \ldots \)
Run: \(r = s_0, s_1 \ldots \)
- \(s_0 \in S_0 \)
- \(s_{i+1} \in \rho(s_i, a_i) \)
Acceptance: run visits \(F \) infinitely often.

Fact: NBAs define the class \(\omega\text{-Reg} \) of \(\omega \)-regular languages.
Examples

\(((0 + 1) \ast 1)^\omega:\)

\[
\begin{array}{c}
\text{– infinitely many 1’s}
\end{array}
\]

\[
\begin{array}{c}
\text{– finitely many 0’s}
\end{array}
\]
Logic of Infinite Words

View infinite word $w = a_0, a_1, \ldots$ over alphabet Σ as a mathematical structure:
- Domain: \mathbb{N}
- Binary relations: $<$, \leq
- Unary relations: \{ $P_a : a \in \Sigma$ \}

First-Order Logic (FO):
- Unary atomic formulas: $P_a(x)$ ($a \in \Sigma$)
- Binary atomic formulas: $x < y$, $x \leq y$

Monadic Second-Order Logic (MSO):
- Monadic second-order quantifier: $\exists Q$
- New unary atomic formulas: $Q(x)$

Example: q holds at every even point.

$$(\exists Q)(\forall x)(\forall y) (((Q(x) \land y = x + 1) \rightarrow (\neg Q(y))) \land \((\neg Q(x)) \land y = x + 1) \rightarrow Q(y))) \land \((x = 0 \rightarrow Q(x)) \land (Q(x) \rightarrow q(x)))$$
NBA vs. MSO

Theorem [Büchi, 1962]: MSO \equiv NBA
- Both MSO and NBA define the class ω-Reg.

Proof: Effective

- From NBA to MSO ($A \mapsto \varphi_A$)
 - Existence of run – existential monadic quantification
 - Proper transitions and acceptance - first-order formula

- From MSO to NBA ($\varphi \mapsto A\varphi$): closure of NBAs under
 - $Union$ – disjunction
 - $Projection$ - existential quantification
 - $Complementation$ - negation
Büchi Complementation

Problem: subset construction fails!

\[
\begin{array}{ccc}
0 & \rightarrow & 0 \\
\rightarrow & 0 & \rightarrow \\
s & \rightarrow & t \\
0 & \rightarrow & t \\
s & t
\end{array}
\]

History
- Büchi’62: doubly exponential construction.
- SVW’85: \(16^n^2\) upper bound
- Saf’88: \(n^{2n}\) upper bound
- Mic’88: \((n/e)^n\) lower bound
- KV’97: \((6n)^n\) upper bound
- FKV’04: \((0.97n)^n\) upper bound
- Yan’06: \((0.76n)^n\) lower bound
- Schewe’09: \((0.76n)^n\) upper bound
NBA Nonemptiness

Nonemptiness: $L(A) \neq \emptyset$

Nonemptiness Problem: Decide if given A is nonempty.

Directed Graph $G_A = (S, E)$ of NBA $A = (\Sigma, S, S_0, \rho, F)$:

- Nodes: S
- Edges: $E = \{(s, t) : t \in \rho(s, a) \text{ for some } a \in \Sigma\}$

Lemma: A is nonempty iff there is a path in G_A from S_0 to some $t \in F$ and from t to itself — lasso.

- Decidable in time linear in size of A, using depth-first search — analysis of cycles in graphs.
MSO Satisfiability – Infinite Words

Satisfiability: $\text{models}(\psi) \neq \emptyset$

Satisfiability Problem: Decide if given ψ is satisfiable.

Lemma: ψ is satisfiable iff A_ψ is nonempty.

Corollary: MSO satisfiability is decidable.

- Translate ψ to A_ψ.
- Check nonemptiness of A_ψ.

Complexity:

- **Upper Bound**: Nonelementary Growth
 \[
 2^{2^{O(n \log n)}}
 \]
 (tower of height $O(n)$)

- **Lower Bound** [Stockmeyer, 1974]: Satisfiability of FO over infinite words is nonelementary (no bounded-height tower).
Logic and Automata for Infinite Trees

Labeled Infinite \(k \)-ary Tree: \(\tau : \{0, \ldots, k-1\}^* \rightarrow \Sigma \)

Tree Automata:
- Transition Function: \(\rho : S \times \Sigma \rightarrow 2^{S^k} \)

MSO for Trees:
- Atomic predicates: \(E_1(x, y), \ldots, E_k(x, y) \)

Theorem [Rabin, 1969]:
Tree MSO \(\equiv \) Tree Automata
- Major difficulty: complementation.

Corollary: Decidability of satisfiability of MSO on trees – one of the most powerful decidability results in logic.

Standard technique during 1970s: Prove decidability via reduction to MSO on trees.
- **Nonelementary complexity**.
Temporal Logic

Prior, 1914–1969, Philosophical Preoccupations:

- **Religion**: Methodist, Presbytarian, atheist, agnostic
- **Ethics**: “Logic and The Basis of Ethics”, 1949
- **Free Will, Predestination, and Foreknowledge**:
 - “The future is to some extent, even if it is only a very small extent, something we can make for ourselves”.
 - “Of what will be, it has now been the case that it will be.”
 - “There is a deity who infallibly knows the entire future.”

Mary Prior: “I remember his waking me one night [in 1953], coming and sitting on my bed, . . ., and saying he thought one could make a formalised tense logic.”

- **1957**: “Time and Modality”
The Temporal Logic of Programs

Precursors:

- Prior: “There are practical gains to be had from this study too, for example in the representation of time-delay in computer circuits”

- Rescher & Urquhart, 1971: applications to processes (“a programmed sequence of states, deterministic or stochastic”)

[Pnueli, 1977]:
- Future linear temporal logic (LTL) as a logic for the specification of non-terminating programs
- Temporal logic with “next” and “until”.
Programs as Labeled Graphs

Key Idea: Programs can be represented as transition systems (state machines)

Transition System: $M = (W, I, E, F, \pi)$
- W: states
- $I \subseteq W$: initial states
- $E \subseteq W \times W$: transition relation
- $F \subseteq W$: fair states
- $\pi : W \rightarrow \text{Powerset(Prop)}$: Observation function

Fairness: An assumption of “reasonableness” – restrict attention to computations that visit F infinitely often, e.g., “the channel will be up infinitely often”.
Runs and Computations

Run: \(w_0, w_1, w_2, \ldots \)

- \(w_0 \in I \)
- \((w_i, w_{i+1}) \in E \) for \(i = 0, 1, \ldots \)

Computation: \(\pi(w_0), \pi(w_1), \pi(w_2), \ldots \)

- \(L(M) \): set of computations of \(M \)

Verification: System \(M \) satisfies specification \(\varphi \) –

- all computations in \(L(M) \) satisfy \(\varphi \).
Specifications

Specification: properties of computations.

Examples:

- “No two processes can be in the critical section at the same time.” – *safety*

- “Every request is eventually granted.” – *liveness*

- “Every continuous request is eventually granted.” – *liveness*

- “Every repeated request is eventually granted.” – *liveness*
Temporal Logic

Linear Temporal logic (LTL): logic of temporal sequences (Pnueli, 1977)

Main feature: time is implicit

- next φ: φ holds in the next state.
- eventually φ: φ holds eventually
- always φ: φ holds from now on
- φ until ψ: φ holds until ψ holds.

- $\pi, w \models next \varphi$ if $w \bullet \bullet \bullet \varphi \bullet \bullet \bullet \bullet \bullet \ldots$
- $\pi, w \models \varphi$ until ψ if $w \bullet \bullet \bullet \varphi \bullet \varphi \varphi \psi \bullet \bullet \bullet \bullet \bullet \bullet \bullet \ldots$
Examples

• always not \((CS_1 \text{ and } CS_2)\): mutual exclusion (safety)

• always \((\text{Request implies eventually Grant})\): liveness

• always \((\text{Request implies (Request until Grant)})\): liveness

• always \((\text{always eventually Request) implies eventually Grant})\): liveness
Expressive Power

Gabbay, Pnueli, Shelah & Stavi, 1980: Propositional LTL has precisely the expressive power of FO over the naturals (builds on [Kamp, 1968]).

Easy Direction: $LTL \rightarrow FO$

Example: φ is θ until ψ

$FO(\varphi)(x) :$

$(\exists y)(y > x \land FO(\psi)(y) \land (\forall z)((x \leq z < y) \rightarrow FO(\theta)(z))$

Corollary: There is a translation of LTL to NBA via FO.

- **But**: Translation is nonelementary.
Elementary Translation

Theorem [V.&Wolper, 1983]: There is an exponential translation of LTL to NBA.

Corollary: There is an exponential algorithm for satisfiability in LTL.

Industrial Impact:

- Practical verification tools based on LTL.
- Widespread usage in industry.

Question: What is the key to efficient translation?

Answer: *Games*!

Alternating Automata

Alternating automata: 2-player games

Nondeterministic transition: \(\rho(s, a) = t_1 \lor t_2 \lor t_3 \)

Alternating transition: \(\rho(s, a) = (t_1 \land t_2) \lor t_3 \)

“either both \(t_1 \) and \(t_2 \) accept or \(t_3 \) accepts”.

- \((s, a) \mapsto \{t_1, t_2\} \) or \((s, a) \mapsto \{t_3\}\)

- \(\{t_1, t_2\} \models \rho(s, a) \) and \(\{t_3\} \models \rho(s, a) \)

Alternating transition relation: \(\rho : S \times \Sigma \rightarrow B^+(S) \)

(positive Boolean formulas over \(S \))

Alternative Approach: existential and universal states [Chandra, Kozen & Stckmeyer, 1980]
Alternating Automata

Brzozowski & Leiss, 1980: Boolean automata

\[A = (\Sigma, S, s_0, \rho, F) \]

- \(\Sigma, S, F \subseteq S \): as before
- \(s_0 \in S \): initial state
- \(\rho : S \times \Sigma \rightarrow \mathcal{B}^+(S) \): alternating transition function

Game:

- **Board:** \(a_0, a_1 \ldots \)
- **Positions:** \(S \times N \)
- **Initial position:** \((s_0, 0) \)
- **Automaton move at** \((s, i) \):
 choose \(T \subseteq S \) such that \(T \models \rho(s, a_i) \)
- **Opponent's response:**
 move to \((t, i + 1) \) for some \(t \in T \)
- **Automaton wins if play goes through infinitely many** positions \((s', i) \) with \(s' \in F \)

Acceptance: Automaton has a winning strategy.
Example

\[A = (\{0, 1\}, \{m, s\}, m, \rho, \{m\}) \]

- \(\rho(m, 1) = m \)
- \(\rho(m, 0) = m \land s \)
- \(\rho(s, 1) = \text{true} \)
- \(\rho(s, 0) = s \)

Intuition:

- \(m \) is a master process. It launches \(s \) when it sees 0.
- \(s \) is a slave process. It waits for 1, and then terminates successfully.

\(L(A) = \) infinitely many 1’s.
Expressiveness

[Miyano&Hayashi, 1984]:

- Nondeterministic Büchi automata: \(\omega \)-regular languages
- Alternating automata: \(\omega \)-regular languages

What is the point?: Succinctness

Exponential gap:

- Exponential translation from alternating Büchi automata to nondeterministic Büchi automata
- In the worst case this is the best possible
- PSPACE nonemptiness test: go via nondeterministic automata.

Theorem[V., 1994]: For each LTL formula \(\varphi \) there is an alternating Büchi automaton \(A_{\varphi} \) with \(|\varphi| \) states such that \(\text{models}(\varphi) = L(A_{\varphi}) \).
Game Semantics for LTL

Background: game-semantics for FO, à la [Lorenzen, 1958] and [Hintikka, 1973].

Game for LTL: Protagonist vs Antagonist

- Formula φ
- Infinite word $w = a_0, a_1, \ldots$
- Position (ψ, i) in $\text{subformulas}(\varphi) \times N$
- Initial position $(\varphi, 0)$

```
case
  • $\psi$ propositional: Protagonist wins iff $\psi$ holds at $a_i$
  • $\psi = \psi_1 \lor \psi_2$: Protagonist chooses $\psi_j$ and moves to $(\psi_j, i)$
  • $\psi = \psi_1 \land \psi_2$: Antagonist chooses $\psi_j$ and moves to $(\psi_j, i)$
  • $\psi = \text{next } \theta$: Protagonist moves to $(\theta, i + 1)$
  • $\psi = \theta \text{ until } \chi$: Protagonist moves to $(\chi, i)$ or $(\theta \land \text{next } \psi), i)$

esac.
```

Crucial Idea: Alternating automata capture game semantics
LTL to Alternating Büchi Automata

Input formula: φ

- $\text{subf}(\varphi)$: subformulas of φ
- $\text{nonU}(\varphi)$: non-Until subformulas of φ

Alternating Büchi Automaton:

$$A_\varphi = \{2^{\text{Prop}}, \text{subf}(\varphi), \varphi, \rho, \text{nonU}(\varphi)\} :$$

- $\rho(p, a) = \text{true}$ if $p \in a$,
- $\rho(p, a) = \text{false}$ if $p \notin a$,
- $\rho(\xi \land \psi, a) = \rho(\xi, a) \land \rho(\psi, a)$,
- $\rho(\xi \lor \psi, a) = \rho(\xi, a) \lor \rho(\psi, a)$,
- $\rho(X\psi, a) = \psi$,
- $\rho(\xiU\psi, a) = \rho(\psi, a) \lor (\rho(\xi, a) \land \xiU\psi)$.
Back to Trees

Games, viz. alternating automata, provide the key to obtaining elementary decision procedures to numerous modal, temporal, and dynamic logics.

Theorem [Kupferman & V. & Wolper, 1994]: For each CTL formula φ there is an alternating Büchi tree automaton A_φ with $||\varphi||$ states such that $\text{models}(\varphi) = L(A_\varphi)$.

Theorem [KVW, 1986]: There is an exponential translation of alternating Büchi tree automata to nondeterministic Büchi tree automata.

Known: Nonemptiness of nondeterministic Büchi tree automata can be checked in quadratic time [V. & Wolper, 1984]

Corollary: There is an exponential algorithm for satisfiability of CTL [Emerson & Halpern, 1985]
Discussion

Major Points:

- The *logic-automata connection* is one of the most fundamental paradigms of logic.

- One of the major benefits of this paradigm is its algorithmic consequences.

- A newer component of this approach is that of *games*, and *alternating automata* as their automata-theoretic counterpart.

- The interaction between logic, automata, games, and algorithms yields a fertile research area.
Tower of Abstractions

Key idea in science: *abstraction tower*

- strings
- quarks
- hadrons
- atoms
- molecules
- amino acids
- genes
- genomes
- organisms
- populations
Abstraction Tower in CS

CS Abstraction Tower:
- analog devices
- digital devices
- microprocessors
- assembly languages
- high-level languages
- libraries
- software frameworks

Crux: Abstraction tower is the only way to deal with complexity!

Similarly: We need high-level algorithmic building blocks, e.g., *BFS*, *DFS*.

This talk: *Games/alternation* as a high-level algorithmic construct.

Bottom line: Alternation is a key algorithmic construct in automated reasoning — used in industrial tools.